aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/Crypto/PublicKey
diff options
context:
space:
mode:
authorDeterminant <[email protected]>2020-11-17 20:04:09 -0500
committerDeterminant <[email protected]>2020-11-17 20:04:09 -0500
commitc4d90bf4ea0c5b7a016028ed994de19638d3113b (patch)
tree693279a91311155f565e90ecd2d93bf701d6d4e9 /frozen_deps/Crypto/PublicKey
parent3bef51eec2299403467e621ae660cef3f9256ac8 (diff)
support saving as a keystore file
Diffstat (limited to 'frozen_deps/Crypto/PublicKey')
-rw-r--r--frozen_deps/Crypto/PublicKey/DSA.py379
-rw-r--r--frozen_deps/Crypto/PublicKey/ElGamal.py373
-rw-r--r--frozen_deps/Crypto/PublicKey/RSA.py719
-rw-r--r--frozen_deps/Crypto/PublicKey/_DSA.py115
-rw-r--r--frozen_deps/Crypto/PublicKey/_RSA.py81
-rw-r--r--frozen_deps/Crypto/PublicKey/__init__.py41
-rwxr-xr-xfrozen_deps/Crypto/PublicKey/_fastmath.cpython-38-x86_64-linux-gnu.sobin78864 -> 0 bytes
-rw-r--r--frozen_deps/Crypto/PublicKey/_slowmath.py187
-rw-r--r--frozen_deps/Crypto/PublicKey/pubkey.py240
9 files changed, 0 insertions, 2135 deletions
diff --git a/frozen_deps/Crypto/PublicKey/DSA.py b/frozen_deps/Crypto/PublicKey/DSA.py
deleted file mode 100644
index 648f4b2..0000000
--- a/frozen_deps/Crypto/PublicKey/DSA.py
+++ /dev/null
@@ -1,379 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# PublicKey/DSA.py : DSA signature primitive
-#
-# Written in 2008 by Dwayne C. Litzenberger <[email protected]>
-#
-# ===================================================================
-# The contents of this file are dedicated to the public domain. To
-# the extent that dedication to the public domain is not available,
-# everyone is granted a worldwide, perpetual, royalty-free,
-# non-exclusive license to exercise all rights associated with the
-# contents of this file for any purpose whatsoever.
-# No rights are reserved.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
-# ===================================================================
-
-"""DSA public-key signature algorithm.
-
-DSA_ is a widespread public-key signature algorithm. Its security is
-based on the discrete logarithm problem (DLP_). Given a cyclic
-group, a generator *g*, and an element *h*, it is hard
-to find an integer *x* such that *g^x = h*. The problem is believed
-to be difficult, and it has been proved such (and therefore secure) for
-more than 30 years.
-
-The group is actually a sub-group over the integers modulo *p*, with *p* prime.
-The sub-group order is *q*, which is prime too; it always holds that *(p-1)* is a multiple of *q*.
-The cryptographic strength is linked to the magnitude of *p* and *q*.
-The signer holds a value *x* (*0<x<q-1*) as private key, and its public
-key (*y* where *y=g^x mod p*) is distributed.
-
-In 2012, a sufficient size is deemed to be 2048 bits for *p* and 256 bits for *q*.
-For more information, see the most recent ECRYPT_ report.
-
-DSA is reasonably secure for new designs.
-
-The algorithm can only be used for authentication (digital signature).
-DSA cannot be used for confidentiality (encryption).
-
-The values *(p,q,g)* are called *domain parameters*;
-they are not sensitive but must be shared by both parties (the signer and the verifier).
-Different signers can share the same domain parameters with no security
-concerns.
-
-The DSA signature is twice as big as the size of *q* (64 bytes if *q* is 256 bit
-long).
-
-This module provides facilities for generating new DSA keys and for constructing
-them from known components. DSA keys allows you to perform basic signing and
-verification.
-
- >>> from Crypto.Random import random
- >>> from Crypto.PublicKey import DSA
- >>> from Crypto.Hash import SHA
- >>>
- >>> message = "Hello"
- >>> key = DSA.generate(1024)
- >>> h = SHA.new(message).digest()
- >>> k = random.StrongRandom().randint(1,key.q-1)
- >>> sig = key.sign(h,k)
- >>> ...
- >>> if key.verify(h,sig):
- >>> print "OK"
- >>> else:
- >>> print "Incorrect signature"
-
-.. _DSA: http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
-.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
-.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
-"""
-
-__revision__ = "$Id$"
-
-__all__ = ['generate', 'construct', 'error', 'DSAImplementation', '_DSAobj']
-
-import sys
-if sys.version_info[0] == 2 and sys.version_info[1] == 1:
- from Crypto.Util.py21compat import *
-
-from Crypto.PublicKey import _DSA, _slowmath, pubkey
-from Crypto import Random
-
-try:
- from Crypto.PublicKey import _fastmath
-except ImportError:
- _fastmath = None
-
-class _DSAobj(pubkey.pubkey):
- """Class defining an actual DSA key.
-
- :undocumented: __getstate__, __setstate__, __repr__, __getattr__
- """
- #: Dictionary of DSA parameters.
- #:
- #: A public key will only have the following entries:
- #:
- #: - **y**, the public key.
- #: - **g**, the generator.
- #: - **p**, the modulus.
- #: - **q**, the order of the sub-group.
- #:
- #: A private key will also have:
- #:
- #: - **x**, the private key.
- keydata = ['y', 'g', 'p', 'q', 'x']
-
- def __init__(self, implementation, key):
- self.implementation = implementation
- self.key = key
-
- def __getattr__(self, attrname):
- if attrname in self.keydata:
- # For backward compatibility, allow the user to get (not set) the
- # DSA key parameters directly from this object.
- return getattr(self.key, attrname)
- else:
- raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
-
- def sign(self, M, K):
- """Sign a piece of data with DSA.
-
- :Parameter M: The piece of data to sign with DSA. It may
- not be longer in bit size than the sub-group order (*q*).
- :Type M: byte string or long
-
- :Parameter K: A secret number, chosen randomly in the closed
- range *[1,q-1]*.
- :Type K: long (recommended) or byte string (not recommended)
-
- :attention: selection of *K* is crucial for security. Generating a
- random number larger than *q* and taking the modulus by *q* is
- **not** secure, since smaller values will occur more frequently.
- Generating a random number systematically smaller than *q-1*
- (e.g. *floor((q-1)/8)* random bytes) is also **not** secure. In general,
- it shall not be possible for an attacker to know the value of `any
- bit of K`__.
-
- :attention: The number *K* shall not be reused for any other
- operation and shall be discarded immediately.
-
- :attention: M must be a digest cryptographic hash, otherwise
- an attacker may mount an existential forgery attack.
-
- :Return: A tuple with 2 longs.
-
- .. __: http://www.di.ens.fr/~pnguyen/pub_NgSh00.htm
- """
- return pubkey.pubkey.sign(self, M, K)
-
- def verify(self, M, signature):
- """Verify the validity of a DSA signature.
-
- :Parameter M: The expected message.
- :Type M: byte string or long
-
- :Parameter signature: The DSA signature to verify.
- :Type signature: A tuple with 2 longs as return by `sign`
-
- :Return: True if the signature is correct, False otherwise.
- """
- return pubkey.pubkey.verify(self, M, signature)
-
- def _encrypt(self, c, K):
- raise TypeError("DSA cannot encrypt")
-
- def _decrypt(self, c):
- raise TypeError("DSA cannot decrypt")
-
- def _blind(self, m, r):
- raise TypeError("DSA cannot blind")
-
- def _unblind(self, m, r):
- raise TypeError("DSA cannot unblind")
-
- def _sign(self, m, k):
- return self.key._sign(m, k)
-
- def _verify(self, m, sig):
- (r, s) = sig
- return self.key._verify(m, r, s)
-
- def has_private(self):
- return self.key.has_private()
-
- def size(self):
- return self.key.size()
-
- def can_blind(self):
- return False
-
- def can_encrypt(self):
- return False
-
- def can_sign(self):
- return True
-
- def publickey(self):
- return self.implementation.construct((self.key.y, self.key.g, self.key.p, self.key.q))
-
- def __getstate__(self):
- d = {}
- for k in self.keydata:
- try:
- d[k] = getattr(self.key, k)
- except AttributeError:
- pass
- return d
-
- def __setstate__(self, d):
- if not hasattr(self, 'implementation'):
- self.implementation = DSAImplementation()
- t = []
- for k in self.keydata:
- if k not in d:
- break
- t.append(d[k])
- self.key = self.implementation._math.dsa_construct(*tuple(t))
-
- def __repr__(self):
- attrs = []
- for k in self.keydata:
- if k == 'p':
- attrs.append("p(%d)" % (self.size()+1,))
- elif hasattr(self.key, k):
- attrs.append(k)
- if self.has_private():
- attrs.append("private")
- # PY3K: This is meant to be text, do not change to bytes (data)
- return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
-
-class DSAImplementation(object):
- """
- A DSA key factory.
-
- This class is only internally used to implement the methods of the
- `Crypto.PublicKey.DSA` module.
- """
-
- def __init__(self, **kwargs):
- """Create a new DSA key factory.
-
- :Keywords:
- use_fast_math : bool
- Specify which mathematic library to use:
-
- - *None* (default). Use fastest math available.
- - *True* . Use fast math.
- - *False* . Use slow math.
- default_randfunc : callable
- Specify how to collect random data:
-
- - *None* (default). Use Random.new().read().
- - not *None* . Use the specified function directly.
- :Raise RuntimeError:
- When **use_fast_math** =True but fast math is not available.
- """
- use_fast_math = kwargs.get('use_fast_math', None)
- if use_fast_math is None: # Automatic
- if _fastmath is not None:
- self._math = _fastmath
- else:
- self._math = _slowmath
-
- elif use_fast_math: # Explicitly select fast math
- if _fastmath is not None:
- self._math = _fastmath
- else:
- raise RuntimeError("fast math module not available")
-
- else: # Explicitly select slow math
- self._math = _slowmath
-
- self.error = self._math.error
-
- # 'default_randfunc' parameter:
- # None (default) - use Random.new().read
- # not None - use the specified function
- self._default_randfunc = kwargs.get('default_randfunc', None)
- self._current_randfunc = None
-
- def _get_randfunc(self, randfunc):
- if randfunc is not None:
- return randfunc
- elif self._current_randfunc is None:
- self._current_randfunc = Random.new().read
- return self._current_randfunc
-
- def generate(self, bits, randfunc=None, progress_func=None):
- """Randomly generate a fresh, new DSA key.
-
- :Parameters:
- bits : int
- Key length, or size (in bits) of the DSA modulus
- *p*.
- It must be a multiple of 64, in the closed
- interval [512,1024].
- randfunc : callable
- Random number generation function; it should accept
- a single integer N and return a string of random data
- N bytes long.
- If not specified, a new one will be instantiated
- from ``Crypto.Random``.
- progress_func : callable
- Optional function that will be called with a short string
- containing the key parameter currently being generated;
- it's useful for interactive applications where a user is
- waiting for a key to be generated.
-
- :attention: You should always use a cryptographically secure random number generator,
- such as the one defined in the ``Crypto.Random`` module; **don't** just use the
- current time and the ``random`` module.
-
- :Return: A DSA key object (`_DSAobj`).
-
- :Raise ValueError:
- When **bits** is too little, too big, or not a multiple of 64.
- """
-
- # Check against FIPS 186-2, which says that the size of the prime p
- # must be a multiple of 64 bits between 512 and 1024
- for i in (0, 1, 2, 3, 4, 5, 6, 7, 8):
- if bits == 512 + 64*i:
- return self._generate(bits, randfunc, progress_func)
-
- # The March 2006 draft of FIPS 186-3 also allows 2048 and 3072-bit
- # primes, but only with longer q values. Since the current DSA
- # implementation only supports a 160-bit q, we don't support larger
- # values.
- raise ValueError("Number of bits in p must be a multiple of 64 between 512 and 1024, not %d bits" % (bits,))
-
- def _generate(self, bits, randfunc=None, progress_func=None):
- rf = self._get_randfunc(randfunc)
- obj = _DSA.generate_py(bits, rf, progress_func) # TODO: Don't use legacy _DSA module
- key = self._math.dsa_construct(obj.y, obj.g, obj.p, obj.q, obj.x)
- return _DSAobj(self, key)
-
- def construct(self, tup):
- """Construct a DSA key from a tuple of valid DSA components.
-
- The modulus *p* must be a prime.
-
- The following equations must apply:
-
- - p-1 = 0 mod q
- - g^x = y mod p
- - 0 < x < q
- - 1 < g < p
-
- :Parameters:
- tup : tuple
- A tuple of long integers, with 4 or 5 items
- in the following order:
-
- 1. Public key (*y*).
- 2. Sub-group generator (*g*).
- 3. Modulus, finite field order (*p*).
- 4. Sub-group order (*q*).
- 5. Private key (*x*). Optional.
-
- :Return: A DSA key object (`_DSAobj`).
- """
- key = self._math.dsa_construct(*tup)
- return _DSAobj(self, key)
-
-_impl = DSAImplementation()
-generate = _impl.generate
-construct = _impl.construct
-error = _impl.error
-
-# vim:set ts=4 sw=4 sts=4 expandtab:
-
diff --git a/frozen_deps/Crypto/PublicKey/ElGamal.py b/frozen_deps/Crypto/PublicKey/ElGamal.py
deleted file mode 100644
index 99af71c..0000000
--- a/frozen_deps/Crypto/PublicKey/ElGamal.py
+++ /dev/null
@@ -1,373 +0,0 @@
-#
-# ElGamal.py : ElGamal encryption/decryption and signatures
-#
-# Part of the Python Cryptography Toolkit
-#
-# Originally written by: A.M. Kuchling
-#
-# ===================================================================
-# The contents of this file are dedicated to the public domain. To
-# the extent that dedication to the public domain is not available,
-# everyone is granted a worldwide, perpetual, royalty-free,
-# non-exclusive license to exercise all rights associated with the
-# contents of this file for any purpose whatsoever.
-# No rights are reserved.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
-# ===================================================================
-
-"""ElGamal public-key algorithm (randomized encryption and signature).
-
-Signature algorithm
--------------------
-The security of the ElGamal signature scheme is based (like DSA) on the discrete
-logarithm problem (DLP_). Given a cyclic group, a generator *g*,
-and an element *h*, it is hard to find an integer *x* such that *g^x = h*.
-
-The group is the largest multiplicative sub-group of the integers modulo *p*,
-with *p* prime.
-The signer holds a value *x* (*0<x<p-1*) as private key, and its public
-key (*y* where *y=g^x mod p*) is distributed.
-
-The ElGamal signature is twice as big as *p*.
-
-Encryption algorithm
---------------------
-The security of the ElGamal encryption scheme is based on the computational
-Diffie-Hellman problem (CDH_). Given a cyclic group, a generator *g*,
-and two integers *a* and *b*, it is difficult to find
-the element *g^{ab}* when only *g^a* and *g^b* are known, and not *a* and *b*.
-
-As before, the group is the largest multiplicative sub-group of the integers
-modulo *p*, with *p* prime.
-The receiver holds a value *a* (*0<a<p-1*) as private key, and its public key
-(*b* where *b*=g^a*) is given to the sender.
-
-The ElGamal ciphertext is twice as big as *p*.
-
-Domain parameters
------------------
-For both signature and encryption schemes, the values *(p,g)* are called
-*domain parameters*.
-They are not sensitive but must be distributed to all parties (senders and
-receivers).
-Different signers can share the same domain parameters, as can
-different recipients of encrypted messages.
-
-Security
---------
-Both DLP and CDH problem are believed to be difficult, and they have been proved
-such (and therefore secure) for more than 30 years.
-
-The cryptographic strength is linked to the magnitude of *p*.
-In 2012, a sufficient size for *p* is deemed to be 2048 bits.
-For more information, see the most recent ECRYPT_ report.
-
-Even though ElGamal algorithms are in theory reasonably secure for new designs,
-in practice there are no real good reasons for using them.
-The signature is four times larger than the equivalent DSA, and the ciphertext
-is two times larger than the equivalent RSA.
-
-Functionality
--------------
-This module provides facilities for generating new ElGamal keys and for constructing
-them from known components. ElGamal keys allows you to perform basic signing,
-verification, encryption, and decryption.
-
- >>> from Crypto import Random
- >>> from Crypto.Random import random
- >>> from Crypto.PublicKey import ElGamal
- >>> from Crypto.Util.number import GCD
- >>> from Crypto.Hash import SHA
- >>>
- >>> message = "Hello"
- >>> key = ElGamal.generate(1024, Random.new().read)
- >>> h = SHA.new(message).digest()
- >>> while 1:
- >>> k = random.StrongRandom().randint(1,key.p-1)
- >>> if GCD(k,key.p-1)==1: break
- >>> sig = key.sign(h,k)
- >>> ...
- >>> if key.verify(h,sig):
- >>> print "OK"
- >>> else:
- >>> print "Incorrect signature"
-
-.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
-.. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption
-.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
-"""
-
-__revision__ = "$Id$"
-
-__all__ = ['generate', 'construct', 'error', 'ElGamalobj']
-
-from Crypto.PublicKey.pubkey import *
-from Crypto.Util import number
-
-class error (Exception):
- pass
-
-# Generate an ElGamal key with N bits
-def generate(bits, randfunc, progress_func=None):
- """Randomly generate a fresh, new ElGamal key.
-
- The key will be safe for use for both encryption and signature
- (although it should be used for **only one** purpose).
-
- :Parameters:
- bits : int
- Key length, or size (in bits) of the modulus *p*.
- Recommended value is 2048.
- randfunc : callable
- Random number generation function; it should accept
- a single integer N and return a string of random data
- N bytes long.
- progress_func : callable
- Optional function that will be called with a short string
- containing the key parameter currently being generated;
- it's useful for interactive applications where a user is
- waiting for a key to be generated.
-
- :attention: You should always use a cryptographically secure random number generator,
- such as the one defined in the ``Crypto.Random`` module; **don't** just use the
- current time and the ``random`` module.
-
- :Return: An ElGamal key object (`ElGamalobj`).
- """
- obj=ElGamalobj()
- # Generate a safe prime p
- # See Algorithm 4.86 in Handbook of Applied Cryptography
- if progress_func:
- progress_func('p\n')
- while 1:
- q = bignum(getPrime(bits-1, randfunc))
- obj.p = 2*q+1
- if number.isPrime(obj.p, randfunc=randfunc):
- break
- # Generate generator g
- # See Algorithm 4.80 in Handbook of Applied Cryptography
- # Note that the order of the group is n=p-1=2q, where q is prime
- if progress_func:
- progress_func('g\n')
- while 1:
- # We must avoid g=2 because of Bleichenbacher's attack described
- # in "Generating ElGamal signatures without knowning the secret key",
- # 1996
- #
- obj.g = number.getRandomRange(3, obj.p, randfunc)
- safe = 1
- if pow(obj.g, 2, obj.p)==1:
- safe=0
- if safe and pow(obj.g, q, obj.p)==1:
- safe=0
- # Discard g if it divides p-1 because of the attack described
- # in Note 11.67 (iii) in HAC
- if safe and divmod(obj.p-1, obj.g)[1]==0:
- safe=0
- # g^{-1} must not divide p-1 because of Khadir's attack
- # described in "Conditions of the generator for forging ElGamal
- # signature", 2011
- ginv = number.inverse(obj.g, obj.p)
- if safe and divmod(obj.p-1, ginv)[1]==0:
- safe=0
- if safe:
- break
- # Generate private key x
- if progress_func:
- progress_func('x\n')
- obj.x=number.getRandomRange(2, obj.p-1, randfunc)
- # Generate public key y
- if progress_func:
- progress_func('y\n')
- obj.y = pow(obj.g, obj.x, obj.p)
- return obj
-
-def construct(tup):
- """Construct an ElGamal key from a tuple of valid ElGamal components.
-
- The modulus *p* must be a prime.
-
- The following conditions must apply:
-
- - 1 < g < p-1
- - g^{p-1} = 1 mod p
- - 1 < x < p-1
- - g^x = y mod p
-
- :Parameters:
- tup : tuple
- A tuple of long integers, with 3 or 4 items
- in the following order:
-
- 1. Modulus (*p*).
- 2. Generator (*g*).
- 3. Public key (*y*).
- 4. Private key (*x*). Optional.
-
- :Return: An ElGamal key object (`ElGamalobj`).
- """
-
- obj=ElGamalobj()
- if len(tup) not in [3,4]:
- raise ValueError('argument for construct() wrong length')
- for i in range(len(tup)):
- field = obj.keydata[i]
- setattr(obj, field, tup[i])
- return obj
-
-class ElGamalobj(pubkey):
- """Class defining an ElGamal key.
-
- :undocumented: __getstate__, __setstate__, __repr__, __getattr__
- """
-
- #: Dictionary of ElGamal parameters.
- #:
- #: A public key will only have the following entries:
- #:
- #: - **y**, the public key.
- #: - **g**, the generator.
- #: - **p**, the modulus.
- #:
- #: A private key will also have:
- #:
- #: - **x**, the private key.
- keydata=['p', 'g', 'y', 'x']
-
- def encrypt(self, plaintext, K):
- """Encrypt a piece of data with ElGamal.
-
- :Parameter plaintext: The piece of data to encrypt with ElGamal.
- It must be numerically smaller than the module (*p*).
- :Type plaintext: byte string or long
-
- :Parameter K: A secret number, chosen randomly in the closed
- range *[1,p-2]*.
- :Type K: long (recommended) or byte string (not recommended)
-
- :Return: A tuple with two items. Each item is of the same type as the
- plaintext (string or long).
-
- :attention: selection of *K* is crucial for security. Generating a
- random number larger than *p-1* and taking the modulus by *p-1* is
- **not** secure, since smaller values will occur more frequently.
- Generating a random number systematically smaller than *p-1*
- (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
- In general, it shall not be possible for an attacker to know
- the value of any bit of K.
-
- :attention: The number *K* shall not be reused for any other
- operation and shall be discarded immediately.
- """
- return pubkey.encrypt(self, plaintext, K)
-
- def decrypt(self, ciphertext):
- """Decrypt a piece of data with ElGamal.
-
- :Parameter ciphertext: The piece of data to decrypt with ElGamal.
- :Type ciphertext: byte string, long or a 2-item tuple as returned
- by `encrypt`
-
- :Return: A byte string if ciphertext was a byte string or a tuple
- of byte strings. A long otherwise.
- """
- return pubkey.decrypt(self, ciphertext)
-
- def sign(self, M, K):
- """Sign a piece of data with ElGamal.
-
- :Parameter M: The piece of data to sign with ElGamal. It may
- not be longer in bit size than *p-1*.
- :Type M: byte string or long
-
- :Parameter K: A secret number, chosen randomly in the closed
- range *[1,p-2]* and such that *gcd(k,p-1)=1*.
- :Type K: long (recommended) or byte string (not recommended)
-
- :attention: selection of *K* is crucial for security. Generating a
- random number larger than *p-1* and taking the modulus by *p-1* is
- **not** secure, since smaller values will occur more frequently.
- Generating a random number systematically smaller than *p-1*
- (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
- In general, it shall not be possible for an attacker to know
- the value of any bit of K.
-
- :attention: The number *K* shall not be reused for any other
- operation and shall be discarded immediately.
-
- :attention: M must be be a cryptographic hash, otherwise an
- attacker may mount an existential forgery attack.
-
- :Return: A tuple with 2 longs.
- """
- return pubkey.sign(self, M, K)
-
- def verify(self, M, signature):
- """Verify the validity of an ElGamal signature.
-
- :Parameter M: The expected message.
- :Type M: byte string or long
-
- :Parameter signature: The ElGamal signature to verify.
- :Type signature: A tuple with 2 longs as return by `sign`
-
- :Return: True if the signature is correct, False otherwise.
- """
- return pubkey.verify(self, M, signature)
-
- def _encrypt(self, M, K):
- a=pow(self.g, K, self.p)
- b=( M*pow(self.y, K, self.p) ) % self.p
- return ( a,b )
-
- def _decrypt(self, M):
- if (not hasattr(self, 'x')):
- raise TypeError('Private key not available in this object')
- ax=pow(M[0], self.x, self.p)
- plaintext=(M[1] * inverse(ax, self.p ) ) % self.p
- return plaintext
-
- def _sign(self, M, K):
- if (not hasattr(self, 'x')):
- raise TypeError('Private key not available in this object')
- p1=self.p-1
- if (GCD(K, p1)!=1):
- raise ValueError('Bad K value: GCD(K,p-1)!=1')
- a=pow(self.g, K, self.p)
- t=(M-self.x*a) % p1
- while t<0: t=t+p1
- b=(t*inverse(K, p1)) % p1
- return (a, b)
-
- def _verify(self, M, sig):
- if sig[0]<1 or sig[0]>self.p-1:
- return 0
- v1=pow(self.y, sig[0], self.p)
- v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
- v2=pow(self.g, M, self.p)
- if v1==v2:
- return 1
- return 0
-
- def size(self):
- return number.size(self.p) - 1
-
- def has_private(self):
- if hasattr(self, 'x'):
- return 1
- else:
- return 0
-
- def publickey(self):
- return construct((self.p, self.g, self.y))
-
-
-object=ElGamalobj
diff --git a/frozen_deps/Crypto/PublicKey/RSA.py b/frozen_deps/Crypto/PublicKey/RSA.py
deleted file mode 100644
index debe39e..0000000
--- a/frozen_deps/Crypto/PublicKey/RSA.py
+++ /dev/null
@@ -1,719 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# PublicKey/RSA.py : RSA public key primitive
-#
-# Written in 2008 by Dwayne C. Litzenberger <[email protected]>
-#
-# ===================================================================
-# The contents of this file are dedicated to the public domain. To
-# the extent that dedication to the public domain is not available,
-# everyone is granted a worldwide, perpetual, royalty-free,
-# non-exclusive license to exercise all rights associated with the
-# contents of this file for any purpose whatsoever.
-# No rights are reserved.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
-# ===================================================================
-
-"""RSA public-key cryptography algorithm (signature and encryption).
-
-RSA_ is the most widespread and used public key algorithm. Its security is
-based on the difficulty of factoring large integers. The algorithm has
-withstood attacks for 30 years, and it is therefore considered reasonably
-secure for new designs.
-
-The algorithm can be used for both confidentiality (encryption) and
-authentication (digital signature). It is worth noting that signing and
-decryption are significantly slower than verification and encryption.
-The cryptograhic strength is primarily linked to the length of the modulus *n*.
-In 2012, a sufficient length is deemed to be 2048 bits. For more information,
-see the most recent ECRYPT_ report.
-
-Both RSA ciphertext and RSA signature are as big as the modulus *n* (256
-bytes if *n* is 2048 bit long).
-
-This module provides facilities for generating fresh, new RSA keys, constructing
-them from known components, exporting them, and importing them.
-
- >>> from Crypto.PublicKey import RSA
- >>>
- >>> key = RSA.generate(2048)
- >>> f = open('mykey.pem','w')
- >>> f.write(RSA.exportKey('PEM'))
- >>> f.close()
- ...
- >>> f = open('mykey.pem','r')
- >>> key = RSA.importKey(f.read())
-
-Even though you may choose to directly use the methods of an RSA key object
-to perform the primitive cryptographic operations (e.g. `_RSAobj.encrypt`),
-it is recommended to use one of the standardized schemes instead (like
-`Crypto.Cipher.PKCS1_v1_5` or `Crypto.Signature.PKCS1_v1_5`).
-
-.. _RSA: http://en.wikipedia.org/wiki/RSA_%28algorithm%29
-.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
-
-:sort: generate,construct,importKey,error
-"""
-
-__revision__ = "$Id$"
-
-__all__ = ['generate', 'construct', 'error', 'importKey', 'RSAImplementation', '_RSAobj']
-
-import sys
-if sys.version_info[0] == 2 and sys.version_info[1] == 1:
- from Crypto.Util.py21compat import *
-from Crypto.Util.py3compat import *
-#from Crypto.Util.python_compat import *
-from Crypto.Util.number import getRandomRange, bytes_to_long, long_to_bytes
-
-from Crypto.PublicKey import _RSA, _slowmath, pubkey
-from Crypto import Random
-
-from Crypto.Util.asn1 import DerObject, DerSequence, DerNull
-import binascii
-import struct
-
-from Crypto.Util.number import inverse
-
-from Crypto.Util.number import inverse
-
-try:
- from Crypto.PublicKey import _fastmath
-except ImportError:
- _fastmath = None
-
-class _RSAobj(pubkey.pubkey):
- """Class defining an actual RSA key.
-
- :undocumented: __getstate__, __setstate__, __repr__, __getattr__
- """
- #: Dictionary of RSA parameters.
- #:
- #: A public key will only have the following entries:
- #:
- #: - **n**, the modulus.
- #: - **e**, the public exponent.
- #:
- #: A private key will also have:
- #:
- #: - **d**, the private exponent.
- #: - **p**, the first factor of n.
- #: - **q**, the second factor of n.
- #: - **u**, the CRT coefficient (1/p) mod q.
- keydata = ['n', 'e', 'd', 'p', 'q', 'u']
-
- def __init__(self, implementation, key, randfunc=None):
- self.implementation = implementation
- self.key = key
- if randfunc is None:
- randfunc = Random.new().read
- self._randfunc = randfunc
-
- def __getattr__(self, attrname):
- if attrname in self.keydata:
- # For backward compatibility, allow the user to get (not set) the
- # RSA key parameters directly from this object.
- return getattr(self.key, attrname)
- else:
- raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
-
- def encrypt(self, plaintext, K):
- """Encrypt a piece of data with RSA.
-
- :Parameter plaintext: The piece of data to encrypt with RSA. It may not
- be numerically larger than the RSA module (**n**).
- :Type plaintext: byte string or long
-
- :Parameter K: A random parameter (*for compatibility only. This
- value will be ignored*)
- :Type K: byte string or long
-
- :attention: this function performs the plain, primitive RSA encryption
- (*textbook*). In real applications, you always need to use proper
- cryptographic padding, and you should not directly encrypt data with
- this method. Failure to do so may lead to security vulnerabilities.
- It is recommended to use modules
- `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
-
- :Return: A tuple with two items. The first item is the ciphertext
- of the same type as the plaintext (string or long). The second item
- is always None.
- """
- return pubkey.pubkey.encrypt(self, plaintext, K)
-
- def decrypt(self, ciphertext):
- """Decrypt a piece of data with RSA.
-
- Decryption always takes place with blinding.
-
- :attention: this function performs the plain, primitive RSA decryption
- (*textbook*). In real applications, you always need to use proper
- cryptographic padding, and you should not directly decrypt data with
- this method. Failure to do so may lead to security vulnerabilities.
- It is recommended to use modules
- `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
-
- :Parameter ciphertext: The piece of data to decrypt with RSA. It may
- not be numerically larger than the RSA module (**n**). If a tuple,
- the first item is the actual ciphertext; the second item is ignored.
-
- :Type ciphertext: byte string, long or a 2-item tuple as returned by
- `encrypt`
-
- :Return: A byte string if ciphertext was a byte string or a tuple
- of byte strings. A long otherwise.
- """
- return pubkey.pubkey.decrypt(self, ciphertext)
-
- def sign(self, M, K):
- """Sign a piece of data with RSA.
-
- Signing always takes place with blinding.
-
- :attention: this function performs the plain, primitive RSA decryption
- (*textbook*). In real applications, you always need to use proper
- cryptographic padding, and you should not directly sign data with
- this method. Failure to do so may lead to security vulnerabilities.
- It is recommended to use modules
- `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
-
- :Parameter M: The piece of data to sign with RSA. It may
- not be numerically larger than the RSA module (**n**).
- :Type M: byte string or long
-
- :Parameter K: A random parameter (*for compatibility only. This
- value will be ignored*)
- :Type K: byte string or long
-
- :Return: A 2-item tuple. The first item is the actual signature (a
- long). The second item is always None.
- """
- return pubkey.pubkey.sign(self, M, K)
-
- def verify(self, M, signature):
- """Verify the validity of an RSA signature.
-
- :attention: this function performs the plain, primitive RSA encryption
- (*textbook*). In real applications, you always need to use proper
- cryptographic padding, and you should not directly verify data with
- this method. Failure to do so may lead to security vulnerabilities.
- It is recommended to use modules
- `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
-
- :Parameter M: The expected message.
- :Type M: byte string or long
-
- :Parameter signature: The RSA signature to verify. The first item of
- the tuple is the actual signature (a long not larger than the modulus
- **n**), whereas the second item is always ignored.
- :Type signature: A 2-item tuple as return by `sign`
-
- :Return: True if the signature is correct, False otherwise.
- """
- return pubkey.pubkey.verify(self, M, signature)
-
- def _encrypt(self, c, K):
- return (self.key._encrypt(c),)
-
- def _decrypt(self, c):
- #(ciphertext,) = c
- (ciphertext,) = c[:1] # HACK - We should use the previous line
- # instead, but this is more compatible and we're
- # going to replace the Crypto.PublicKey API soon
- # anyway.
-
- # Blinded RSA decryption (to prevent timing attacks):
- # Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
- r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
- # Step 2: Compute c' = c * r**e mod n
- cp = self.key._blind(ciphertext, r)
- # Step 3: Compute m' = c'**d mod n (ordinary RSA decryption)
- mp = self.key._decrypt(cp)
- # Step 4: Compute m = m**(r-1) mod n
- return self.key._unblind(mp, r)
-
- def _blind(self, m, r):
- return self.key._blind(m, r)
-
- def _unblind(self, m, r):
- return self.key._unblind(m, r)
-
- def _sign(self, m, K=None):
- return (self.key._sign(m),)
-
- def _verify(self, m, sig):
- #(s,) = sig
- (s,) = sig[:1] # HACK - We should use the previous line instead, but
- # this is more compatible and we're going to replace
- # the Crypto.PublicKey API soon anyway.
- return self.key._verify(m, s)
-
- def has_private(self):
- return self.key.has_private()
-
- def size(self):
- return self.key.size()
-
- def can_blind(self):
- return True
-
- def can_encrypt(self):
- return True
-
- def can_sign(self):
- return True
-
- def publickey(self):
- return self.implementation.construct((self.key.n, self.key.e))
-
- def __getstate__(self):
- d = {}
- for k in self.keydata:
- try:
- d[k] = getattr(self.key, k)
- except AttributeError:
- pass
- return d
-
- def __setstate__(self, d):
- if not hasattr(self, 'implementation'):
- self.implementation = RSAImplementation()
- t = []
- for k in self.keydata:
- if k not in d:
- break
- t.append(d[k])
- self.key = self.implementation._math.rsa_construct(*tuple(t))
-
- def __repr__(self):
- attrs = []
- for k in self.keydata:
- if k == 'n':
- attrs.append("n(%d)" % (self.size()+1,))
- elif hasattr(self.key, k):
- attrs.append(k)
- if self.has_private():
- attrs.append("private")
- # PY3K: This is meant to be text, do not change to bytes (data)
- return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
-
- def exportKey(self, format='PEM', passphrase=None, pkcs=1):
- """Export this RSA key.
-
- :Parameter format: The format to use for wrapping the key.
-
- - *'DER'*. Binary encoding, always unencrypted.
- - *'PEM'*. Textual encoding, done according to `RFC1421`_/`RFC1423`_.
- Unencrypted (default) or encrypted.
- - *'OpenSSH'*. Textual encoding, done according to OpenSSH specification.
- Only suitable for public keys (not private keys).
- :Type format: string
-
- :Parameter passphrase: In case of PEM, the pass phrase to derive the encryption key from.
- :Type passphrase: string
-
- :Parameter pkcs: The PKCS standard to follow for assembling the key.
- You have two choices:
-
- - with **1**, the public key is embedded into an X.509 `SubjectPublicKeyInfo` DER SEQUENCE.
- The private key is embedded into a `PKCS#1`_ `RSAPrivateKey` DER SEQUENCE.
- This mode is the default.
- - with **8**, the private key is embedded into a `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE.
- This mode is not available for public keys.
-
- PKCS standards are not relevant for the *OpenSSH* format.
- :Type pkcs: integer
-
- :Return: A byte string with the encoded public or private half.
- :Raise ValueError:
- When the format is unknown.
-
- .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
- .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
- .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
- .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
- """
- if passphrase is not None:
- passphrase = tobytes(passphrase)
- if format=='OpenSSH':
- eb = long_to_bytes(self.e)
- nb = long_to_bytes(self.n)
- if bord(eb[0]) & 0x80: eb=bchr(0x00)+eb
- if bord(nb[0]) & 0x80: nb=bchr(0x00)+nb
- keyparts = [ 'ssh-rsa', eb, nb ]
- keystring = ''.join([ struct.pack(">I",len(kp))+kp for kp in keyparts])
- return 'ssh-rsa '+binascii.b2a_base64(keystring)[:-1]
-
- # DER format is always used, even in case of PEM, which simply
- # encodes it into BASE64.
- der = DerSequence()
- if self.has_private():
- keyType= { 1: 'RSA PRIVATE', 8: 'PRIVATE' }[pkcs]
- der[:] = [ 0, self.n, self.e, self.d, self.p, self.q,
- self.d % (self.p-1), self.d % (self.q-1),
- inverse(self.q, self.p) ]
- if pkcs==8:
- derkey = der.encode()
- der = DerSequence([0])
- der.append(algorithmIdentifier)
- der.append(DerObject('OCTET STRING', derkey).encode())
- else:
- keyType = "PUBLIC"
- der.append(algorithmIdentifier)
- bitmap = DerObject('BIT STRING')
- derPK = DerSequence( [ self.n, self.e ] )
- bitmap.payload = bchr(0x00) + derPK.encode()
- der.append(bitmap.encode())
- if format=='DER':
- return der.encode()
- if format=='PEM':
- pem = b("-----BEGIN " + keyType + " KEY-----\n")
- objenc = None
- if passphrase and keyType.endswith('PRIVATE'):
- # We only support 3DES for encryption
- import Crypto.Hash.MD5
- from Crypto.Cipher import DES3
- from Crypto.Protocol.KDF import PBKDF1
- salt = self._randfunc(8)
- key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
- key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
- objenc = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
- pem += b('Proc-Type: 4,ENCRYPTED\n')
- pem += b('DEK-Info: DES-EDE3-CBC,') + binascii.b2a_hex(salt).upper() + b('\n\n')
-
- binaryKey = der.encode()
- if objenc:
- # Add PKCS#7-like padding
- padding = objenc.block_size-len(binaryKey)%objenc.block_size
- binaryKey = objenc.encrypt(binaryKey+bchr(padding)*padding)
-
- # Each BASE64 line can take up to 64 characters (=48 bytes of data)
- chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ]
- pem += b('').join(chunks)
- pem += b("-----END " + keyType + " KEY-----")
- return pem
- return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
-
-class RSAImplementation(object):
- """
- An RSA key factory.
-
- This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` module.
-
- :sort: __init__,generate,construct,importKey
- :undocumented: _g*, _i*
- """
-
- def __init__(self, **kwargs):
- """Create a new RSA key factory.
-
- :Keywords:
- use_fast_math : bool
- Specify which mathematic library to use:
-
- - *None* (default). Use fastest math available.
- - *True* . Use fast math.
- - *False* . Use slow math.
- default_randfunc : callable
- Specify how to collect random data:
-
- - *None* (default). Use Random.new().read().
- - not *None* . Use the specified function directly.
- :Raise RuntimeError:
- When **use_fast_math** =True but fast math is not available.
- """
- use_fast_math = kwargs.get('use_fast_math', None)
- if use_fast_math is None: # Automatic
- if _fastmath is not None:
- self._math = _fastmath
- else:
- self._math = _slowmath
-
- elif use_fast_math: # Explicitly select fast math
- if _fastmath is not None:
- self._math = _fastmath
- else:
- raise RuntimeError("fast math module not available")
-
- else: # Explicitly select slow math
- self._math = _slowmath
-
- self.error = self._math.error
-
- self._default_randfunc = kwargs.get('default_randfunc', None)
- self._current_randfunc = None
-
- def _get_randfunc(self, randfunc):
- if randfunc is not None:
- return randfunc
- elif self._current_randfunc is None:
- self._current_randfunc = Random.new().read
- return self._current_randfunc
-
- def generate(self, bits, randfunc=None, progress_func=None, e=65537):
- """Randomly generate a fresh, new RSA key.
-
- :Parameters:
- bits : int
- Key length, or size (in bits) of the RSA modulus.
- It must be a multiple of 256, and no smaller than 1024.
-
- randfunc : callable
- Random number generation function; it should accept
- a single integer N and return a string of random data
- N bytes long.
- If not specified, a new one will be instantiated
- from ``Crypto.Random``.
-
- progress_func : callable
- Optional function that will be called with a short string
- containing the key parameter currently being generated;
- it's useful for interactive applications where a user is
- waiting for a key to be generated.
-
- e : int
- Public RSA exponent. It must be an odd positive integer.
- It is typically a small number with very few ones in its
- binary representation.
- The default value 65537 (= ``0b10000000000000001`` ) is a safe
- choice: other common values are 5, 7, 17, and 257.
-
- :attention: You should always use a cryptographically secure random number generator,
- such as the one defined in the ``Crypto.Random`` module; **don't** just use the
- current time and the ``random`` module.
-
- :attention: Exponent 3 is also widely used, but it requires very special care when padding
- the message.
-
- :Return: An RSA key object (`_RSAobj`).
-
- :Raise ValueError:
- When **bits** is too little or not a multiple of 256, or when
- **e** is not odd or smaller than 2.
- """
- if bits < 1024 or (bits & 0xff) != 0:
- # pubkey.getStrongPrime doesn't like anything that's not a multiple of 256 and >= 1024
- raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
- if e%2==0 or e<3:
- raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
- rf = self._get_randfunc(randfunc)
- obj = _RSA.generate_py(bits, rf, progress_func, e) # TODO: Don't use legacy _RSA module
- key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
- return _RSAobj(self, key)
-
- def construct(self, tup):
- """Construct an RSA key from a tuple of valid RSA components.
-
- The modulus **n** must be the product of two primes.
- The public exponent **e** must be odd and larger than 1.
-
- In case of a private key, the following equations must apply:
-
- - e != 1
- - p*q = n
- - e*d = 1 mod (p-1)(q-1)
- - p*u = 1 mod q
-
- :Parameters:
- tup : tuple
- A tuple of long integers, with at least 2 and no
- more than 6 items. The items come in the following order:
-
- 1. RSA modulus (n).
- 2. Public exponent (e).
- 3. Private exponent (d). Only required if the key is private.
- 4. First factor of n (p). Optional.
- 5. Second factor of n (q). Optional.
- 6. CRT coefficient, (1/p) mod q (u). Optional.
-
- :Return: An RSA key object (`_RSAobj`).
- """
- key = self._math.rsa_construct(*tup)
- return _RSAobj(self, key)
-
- def _importKeyDER(self, externKey):
- """Import an RSA key (public or private half), encoded in DER form."""
-
- try:
-
- der = DerSequence()
- der.decode(externKey, True)
-
- # Try PKCS#1 first, for a private key
- if len(der)==9 and der.hasOnlyInts() and der[0]==0:
- # ASN.1 RSAPrivateKey element
- del der[6:] # Remove d mod (p-1), d mod (q-1), and q^{-1} mod p
- der.append(inverse(der[4],der[5])) # Add p^{-1} mod q
- del der[0] # Remove version
- return self.construct(der[:])
-
- # Keep on trying PKCS#1, but now for a public key
- if len(der)==2:
- # The DER object is an RSAPublicKey SEQUENCE with two elements
- if der.hasOnlyInts():
- return self.construct(der[:])
- # The DER object is a SubjectPublicKeyInfo SEQUENCE with two elements:
- # an 'algorithm' (or 'algorithmIdentifier') SEQUENCE and a 'subjectPublicKey' BIT STRING.
- # 'algorithm' takes the value given a few lines above.
- # 'subjectPublicKey' encapsulates the actual ASN.1 RSAPublicKey element.
- if der[0]==algorithmIdentifier:
- bitmap = DerObject()
- bitmap.decode(der[1], True)
- if bitmap.isType('BIT STRING') and bord(bitmap.payload[0])==0x00:
- der.decode(bitmap.payload[1:], True)
- if len(der)==2 and der.hasOnlyInts():
- return self.construct(der[:])
-
- # Try unencrypted PKCS#8
- if der[0]==0:
- # The second element in the SEQUENCE is algorithmIdentifier.
- # It must say RSA (see above for description).
- if der[1]==algorithmIdentifier:
- privateKey = DerObject()
- privateKey.decode(der[2], True)
- if privateKey.isType('OCTET STRING'):
- return self._importKeyDER(privateKey.payload)
-
- except ValueError as IndexError:
- pass
-
- raise ValueError("RSA key format is not supported")
-
- def importKey(self, externKey, passphrase=None):
- """Import an RSA key (public or private half), encoded in standard form.
-
- :Parameter externKey:
- The RSA key to import, encoded as a string.
-
- An RSA public key can be in any of the following formats:
-
- - X.509 `subjectPublicKeyInfo` DER SEQUENCE (binary or PEM encoding)
- - `PKCS#1`_ `RSAPublicKey` DER SEQUENCE (binary or PEM encoding)
- - OpenSSH (textual public key only)
-
- An RSA private key can be in any of the following formats:
-
- - PKCS#1 `RSAPrivateKey` DER SEQUENCE (binary or PEM encoding)
- - `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE (binary or PEM encoding)
- - OpenSSH (textual public key only)
-
- For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
-
- In case of PEM encoding, the private key can be encrypted with DES or 3TDES according to a certain ``pass phrase``.
- Only OpenSSL-compatible pass phrases are supported.
- :Type externKey: string
-
- :Parameter passphrase:
- In case of an encrypted PEM key, this is the pass phrase from which the encryption key is derived.
- :Type passphrase: string
-
- :Return: An RSA key object (`_RSAobj`).
-
- :Raise ValueError/IndexError/TypeError:
- When the given key cannot be parsed (possibly because the pass phrase is wrong).
-
- .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
- .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
- .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
- .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
- """
- externKey = tobytes(externKey)
- if passphrase is not None:
- passphrase = tobytes(passphrase)
-
- if externKey.startswith(b('-----')):
- # This is probably a PEM encoded key
- lines = externKey.replace(b(" "),b('')).split()
- keyobj = None
-
- # The encrypted PEM format
- if lines[1].startswith(b('Proc-Type:4,ENCRYPTED')):
- DEK = lines[2].split(b(':'))
- if len(DEK)!=2 or DEK[0]!=b('DEK-Info') or not passphrase:
- raise ValueError("PEM encryption format not supported.")
- algo, salt = DEK[1].split(b(','))
- salt = binascii.a2b_hex(salt)
- import Crypto.Hash.MD5
- from Crypto.Cipher import DES, DES3
- from Crypto.Protocol.KDF import PBKDF1
- if algo==b("DES-CBC"):
- # This is EVP_BytesToKey in OpenSSL
- key = PBKDF1(passphrase, salt, 8, 1, Crypto.Hash.MD5)
- keyobj = DES.new(key, Crypto.Cipher.DES.MODE_CBC, salt)
- elif algo==b("DES-EDE3-CBC"):
- # Note that EVP_BytesToKey is note exactly the same as PBKDF1
- key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
- key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
- keyobj = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
- else:
- raise ValueError("Unsupport PEM encryption algorithm.")
- lines = lines[2:]
-
- der = binascii.a2b_base64(b('').join(lines[1:-1]))
- if keyobj:
- der = keyobj.decrypt(der)
- padding = bord(der[-1])
- der = der[:-padding]
- return self._importKeyDER(der)
-
- if externKey.startswith(b('ssh-rsa ')):
- # This is probably an OpenSSH key
- keystring = binascii.a2b_base64(externKey.split(b(' '))[1])
- keyparts = []
- while len(keystring)>4:
- l = struct.unpack(">I",keystring[:4])[0]
- keyparts.append(keystring[4:4+l])
- keystring = keystring[4+l:]
- e = bytes_to_long(keyparts[1])
- n = bytes_to_long(keyparts[2])
- return self.construct([n, e])
- if bord(externKey[0])==0x30:
- # This is probably a DER encoded key
- return self._importKeyDER(externKey)
-
- raise ValueError("RSA key format is not supported")
-
-#: This is the ASN.1 DER object that qualifies an algorithm as
-#: compliant to PKCS#1 (that is, the standard RSA).
-# It is found in all 'algorithm' fields (also called 'algorithmIdentifier').
-# It is a SEQUENCE with the oid assigned to RSA and with its parameters (none).
-# 0x06 0x09 OBJECT IDENTIFIER, 9 bytes of payload
-# 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01
-# rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1)
-# 0x05 0x00 NULL
-algorithmIdentifier = DerSequence(
- [ b('\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01'),
- DerNull().encode() ]
- ).encode()
-
-_impl = RSAImplementation()
-#:
-#: Randomly generate a fresh, new RSA key object.
-#:
-#: See `RSAImplementation.generate`.
-#:
-generate = _impl.generate
-#:
-#: Construct an RSA key object from a tuple of valid RSA components.
-#:
-#: See `RSAImplementation.construct`.
-#:
-construct = _impl.construct
-#:
-#: Import an RSA key (public or private half), encoded in standard form.
-#:
-#: See `RSAImplementation.importKey`.
-#:
-importKey = _impl.importKey
-error = _impl.error
-
-# vim:set ts=4 sw=4 sts=4 expandtab:
-
diff --git a/frozen_deps/Crypto/PublicKey/_DSA.py b/frozen_deps/Crypto/PublicKey/_DSA.py
deleted file mode 100644
index 1787ced..0000000
--- a/frozen_deps/Crypto/PublicKey/_DSA.py
+++ /dev/null
@@ -1,115 +0,0 @@
-
-#
-# DSA.py : Digital Signature Algorithm
-#
-# Part of the Python Cryptography Toolkit
-#
-# Written by Andrew Kuchling, Paul Swartz, and others
-#
-# ===================================================================
-# The contents of this file are dedicated to the public domain. To
-# the extent that dedication to the public domain is not available,
-# everyone is granted a worldwide, perpetual, royalty-free,
-# non-exclusive license to exercise all rights associated with the
-# contents of this file for any purpose whatsoever.
-# No rights are reserved.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
-# ===================================================================
-#
-
-__revision__ = "$Id$"
-
-from Crypto.PublicKey.pubkey import *
-from Crypto.Util import number
-from Crypto.Util.number import bytes_to_long, long_to_bytes
-from Crypto.Hash import SHA
-from Crypto.Util.py3compat import *
-
-class error (Exception):
- pass
-
-def generateQ(randfunc):
- S=randfunc(20)
- hash1=SHA.new(S).digest()
- hash2=SHA.new(long_to_bytes(bytes_to_long(S)+1)).digest()
- q = bignum(0)
- for i in range(0,20):
- c=bord(hash1[i])^bord(hash2[i])
- if i==0:
- c=c | 128
- if i==19:
- c= c | 1
- q=q*256+c
- while (not isPrime(q)):
- q=q+2
- if pow(2,159) < q < pow(2,160):
- return S, q
- raise RuntimeError('Bad q value generated')
-
-def generate_py(bits, randfunc, progress_func=None):
- """generate(bits:int, randfunc:callable, progress_func:callable)
-
- Generate a DSA key of length 'bits', using 'randfunc' to get
- random data and 'progress_func', if present, to display
- the progress of the key generation.
- """
-
- if bits<160:
- raise ValueError('Key length < 160 bits')
- obj=DSAobj()
- # Generate string S and prime q
- if progress_func:
- progress_func('p,q\n')
- while (1):
- S, obj.q = generateQ(randfunc)
- n=divmod(bits-1, 160)[0]
- C, N, V = 0, 2, {}
- b=(obj.q >> 5) & 15
- powb=pow(bignum(2), b)
- powL1=pow(bignum(2), bits-1)
- while C<4096:
- for k in range(0, n+1):
- V[k]=bytes_to_long(SHA.new(S+bstr(N)+bstr(k)).digest())
- W=V[n] % powb
- for k in range(n-1, -1, -1):
- W=(W<<160)+V[k]
- X=W+powL1
- p=X-(X%(2*obj.q)-1)
- if powL1<=p and isPrime(p):
- break
- C, N = C+1, N+n+1
- if C<4096:
- break
- if progress_func:
- progress_func('4096 multiples failed\n')
-
- obj.p = p
- power=divmod(p-1, obj.q)[0]
- if progress_func:
- progress_func('h,g\n')
- while (1):
- h=bytes_to_long(randfunc(bits)) % (p-1)
- g=pow(h, power, p)
- if 1<h<p-1 and g>1:
- break
- obj.g=g
- if progress_func:
- progress_func('x,y\n')
- while (1):
- x=bytes_to_long(randfunc(20))
- if 0 < x < obj.q:
- break
- obj.x, obj.y = x, pow(g, x, p)
- return obj
-
-class DSAobj:
- pass
-
diff --git a/frozen_deps/Crypto/PublicKey/_RSA.py b/frozen_deps/Crypto/PublicKey/_RSA.py
deleted file mode 100644
index 601ab7c..0000000
--- a/frozen_deps/Crypto/PublicKey/_RSA.py
+++ /dev/null
@@ -1,81 +0,0 @@
-#
-# RSA.py : RSA encryption/decryption
-#
-# Part of the Python Cryptography Toolkit
-#
-# Written by Andrew Kuchling, Paul Swartz, and others
-#
-# ===================================================================
-# The contents of this file are dedicated to the public domain. To
-# the extent that dedication to the public domain is not available,
-# everyone is granted a worldwide, perpetual, royalty-free,
-# non-exclusive license to exercise all rights associated with the
-# contents of this file for any purpose whatsoever.
-# No rights are reserved.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
-# ===================================================================
-#
-
-__revision__ = "$Id$"
-
-from Crypto.PublicKey import pubkey
-from Crypto.Util import number
-
-def generate_py(bits, randfunc, progress_func=None, e=65537):
- """generate(bits:int, randfunc:callable, progress_func:callable, e:int)
-
- Generate an RSA key of length 'bits', public exponent 'e'(which must be
- odd), using 'randfunc' to get random data and 'progress_func',
- if present, to display the progress of the key generation.
- """
- obj=RSAobj()
- obj.e = int(e)
-
- # Generate the prime factors of n
- if progress_func:
- progress_func('p,q\n')
- p = q = 1
- while number.size(p*q) < bits:
- # Note that q might be one bit longer than p if somebody specifies an odd
- # number of bits for the key. (Why would anyone do that? You don't get
- # more security.)
- p = pubkey.getStrongPrime(bits>>1, obj.e, 1e-12, randfunc)
- q = pubkey.getStrongPrime(bits - (bits>>1), obj.e, 1e-12, randfunc)
-
- # It's OK for p to be larger than q, but let's be
- # kind to the function that will invert it for
- # th calculation of u.
- if p > q:
- (p, q)=(q, p)
- obj.p = p
- obj.q = q
-
- if progress_func:
- progress_func('u\n')
- obj.u = pubkey.inverse(obj.p, obj.q)
- obj.n = obj.p*obj.q
-
- if progress_func:
- progress_func('d\n')
- obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1))
-
- assert bits <= 1+obj.size(), "Generated key is too small"
-
- return obj
-
-class RSAobj(pubkey.pubkey):
-
- def size(self):
- """size() : int
- Return the maximum number of bits that can be handled by this key.
- """
- return number.size(self.n) - 1
-
diff --git a/frozen_deps/Crypto/PublicKey/__init__.py b/frozen_deps/Crypto/PublicKey/__init__.py
deleted file mode 100644
index 503809f..0000000
--- a/frozen_deps/Crypto/PublicKey/__init__.py
+++ /dev/null
@@ -1,41 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# ===================================================================
-# The contents of this file are dedicated to the public domain. To
-# the extent that dedication to the public domain is not available,
-# everyone is granted a worldwide, perpetual, royalty-free,
-# non-exclusive license to exercise all rights associated with the
-# contents of this file for any purpose whatsoever.
-# No rights are reserved.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
-# ===================================================================
-
-"""Public-key encryption and signature algorithms.
-
-Public-key encryption uses two different keys, one for encryption and
-one for decryption. The encryption key can be made public, and the
-decryption key is kept private. Many public-key algorithms can also
-be used to sign messages, and some can *only* be used for signatures.
-
-======================== =============================================
-Module Description
-======================== =============================================
-Crypto.PublicKey.DSA Digital Signature Algorithm (Signature only)
-Crypto.PublicKey.ElGamal (Signing and encryption)
-Crypto.PublicKey.RSA (Signing, encryption, and blinding)
-======================== =============================================
-
-:undocumented: _DSA, _RSA, _fastmath, _slowmath, pubkey
-"""
-
-__all__ = ['RSA', 'DSA', 'ElGamal']
-__revision__ = "$Id$"
-
diff --git a/frozen_deps/Crypto/PublicKey/_fastmath.cpython-38-x86_64-linux-gnu.so b/frozen_deps/Crypto/PublicKey/_fastmath.cpython-38-x86_64-linux-gnu.so
deleted file mode 100755
index f0fe708..0000000
--- a/frozen_deps/Crypto/PublicKey/_fastmath.cpython-38-x86_64-linux-gnu.so
+++ /dev/null
Binary files differ
diff --git a/frozen_deps/Crypto/PublicKey/_slowmath.py b/frozen_deps/Crypto/PublicKey/_slowmath.py
deleted file mode 100644
index c87bdd2..0000000
--- a/frozen_deps/Crypto/PublicKey/_slowmath.py
+++ /dev/null
@@ -1,187 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# PubKey/RSA/_slowmath.py : Pure Python implementation of the RSA portions of _fastmath
-#
-# Written in 2008 by Dwayne C. Litzenberger <[email protected]>
-#
-# ===================================================================
-# The contents of this file are dedicated to the public domain. To
-# the extent that dedication to the public domain is not available,
-# everyone is granted a worldwide, perpetual, royalty-free,
-# non-exclusive license to exercise all rights associated with the
-# contents of this file for any purpose whatsoever.
-# No rights are reserved.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
-# ===================================================================
-
-"""Pure Python implementation of the RSA-related portions of Crypto.PublicKey._fastmath."""
-
-__revision__ = "$Id$"
-
-__all__ = ['rsa_construct']
-
-import sys
-
-if sys.version_info[0] == 2 and sys.version_info[1] == 1:
- from Crypto.Util.py21compat import *
-from Crypto.Util.number import size, inverse, GCD
-
-class error(Exception):
- pass
-
-class _RSAKey(object):
- def _blind(self, m, r):
- # compute r**e * m (mod n)
- return m * pow(r, self.e, self.n)
-
- def _unblind(self, m, r):
- # compute m / r (mod n)
- return inverse(r, self.n) * m % self.n
-
- def _decrypt(self, c):
- # compute c**d (mod n)
- if not self.has_private():
- raise TypeError("No private key")
- if (hasattr(self,'p') and hasattr(self,'q') and hasattr(self,'u')):
- m1 = pow(c, self.d % (self.p-1), self.p)
- m2 = pow(c, self.d % (self.q-1), self.q)
- h = m2 - m1
- if (h<0):
- h = h + self.q
- h = h*self.u % self.q
- return h*self.p+m1
- return pow(c, self.d, self.n)
-
- def _encrypt(self, m):
- # compute m**d (mod n)
- return pow(m, self.e, self.n)
-
- def _sign(self, m): # alias for _decrypt
- if not self.has_private():
- raise TypeError("No private key")
- return self._decrypt(m)
-
- def _verify(self, m, sig):
- return self._encrypt(sig) == m
-
- def has_private(self):
- return hasattr(self, 'd')
-
- def size(self):
- """Return the maximum number of bits that can be encrypted"""
- return size(self.n) - 1
-
-def rsa_construct(n, e, d=None, p=None, q=None, u=None):
- """Construct an RSAKey object"""
- assert isinstance(n, int)
- assert isinstance(e, int)
- assert isinstance(d, (int, type(None)))
- assert isinstance(p, (int, type(None)))
- assert isinstance(q, (int, type(None)))
- assert isinstance(u, (int, type(None)))
- obj = _RSAKey()
- obj.n = n
- obj.e = e
- if d is None:
- return obj
- obj.d = d
- if p is not None and q is not None:
- obj.p = p
- obj.q = q
- else:
- # Compute factors p and q from the private exponent d.
- # We assume that n has no more than two factors.
- # See 8.2.2(i) in Handbook of Applied Cryptography.
- ktot = d*e-1
- # The quantity d*e-1 is a multiple of phi(n), even,
- # and can be represented as t*2^s.
- t = ktot
- while t%2==0:
- t=divmod(t,2)[0]
- # Cycle through all multiplicative inverses in Zn.
- # The algorithm is non-deterministic, but there is a 50% chance
- # any candidate a leads to successful factoring.
- # See "Digitalized Signatures and Public Key Functions as Intractable
- # as Factorization", M. Rabin, 1979
- spotted = 0
- a = 2
- while not spotted and a<100:
- k = t
- # Cycle through all values a^{t*2^i}=a^k
- while k<ktot:
- cand = pow(a,k,n)
- # Check if a^k is a non-trivial root of unity (mod n)
- if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
- # We have found a number such that (cand-1)(cand+1)=0 (mod n).
- # Either of the terms divides n.
- obj.p = GCD(cand+1,n)
- spotted = 1
- break
- k = k*2
- # This value was not any good... let's try another!
- a = a+2
- if not spotted:
- raise ValueError("Unable to compute factors p and q from exponent d.")
- # Found !
- assert ((n % obj.p)==0)
- obj.q = divmod(n,obj.p)[0]
- if u is not None:
- obj.u = u
- else:
- obj.u = inverse(obj.p, obj.q)
- return obj
-
-class _DSAKey(object):
- def size(self):
- """Return the maximum number of bits that can be encrypted"""
- return size(self.p) - 1
-
- def has_private(self):
- return hasattr(self, 'x')
-
- def _sign(self, m, k): # alias for _decrypt
- # SECURITY TODO - We _should_ be computing SHA1(m), but we don't because that's the API.
- if not self.has_private():
- raise TypeError("No private key")
- if not (1 < k < self.q):
- raise ValueError("k is not between 2 and q-1")
- inv_k = inverse(k, self.q) # Compute k**-1 mod q
- r = pow(self.g, k, self.p) % self.q # r = (g**k mod p) mod q
- s = (inv_k * (m + self.x * r)) % self.q
- return (r, s)
-
- def _verify(self, m, r, s):
- # SECURITY TODO - We _should_ be computing SHA1(m), but we don't because that's the API.
- if not (0 < r < self.q) or not (0 < s < self.q):
- return False
- w = inverse(s, self.q)
- u1 = (m*w) % self.q
- u2 = (r*w) % self.q
- v = (pow(self.g, u1, self.p) * pow(self.y, u2, self.p) % self.p) % self.q
- return v == r
-
-def dsa_construct(y, g, p, q, x=None):
- assert isinstance(y, int)
- assert isinstance(g, int)
- assert isinstance(p, int)
- assert isinstance(q, int)
- assert isinstance(x, (int, type(None)))
- obj = _DSAKey()
- obj.y = y
- obj.g = g
- obj.p = p
- obj.q = q
- if x is not None: obj.x = x
- return obj
-
-
-# vim:set ts=4 sw=4 sts=4 expandtab:
-
diff --git a/frozen_deps/Crypto/PublicKey/pubkey.py b/frozen_deps/Crypto/PublicKey/pubkey.py
deleted file mode 100644
index e46b076..0000000
--- a/frozen_deps/Crypto/PublicKey/pubkey.py
+++ /dev/null
@@ -1,240 +0,0 @@
-#
-# pubkey.py : Internal functions for public key operations
-#
-# Part of the Python Cryptography Toolkit
-#
-# Written by Andrew Kuchling, Paul Swartz, and others
-#
-# ===================================================================
-# The contents of this file are dedicated to the public domain. To
-# the extent that dedication to the public domain is not available,
-# everyone is granted a worldwide, perpetual, royalty-free,
-# non-exclusive license to exercise all rights associated with the
-# contents of this file for any purpose whatsoever.
-# No rights are reserved.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
-# ===================================================================
-#
-
-__revision__ = "$Id$"
-
-import types, warnings
-from Crypto.Util.number import *
-
-# Basic public key class
-class pubkey:
- """An abstract class for a public key object.
-
- :undocumented: __getstate__, __setstate__, __eq__, __ne__, validate
- """
- def __init__(self):
- pass
-
- def __getstate__(self):
- """To keep key objects platform-independent, the key data is
- converted to standard Python long integers before being
- written out. It will then be reconverted as necessary on
- restoration."""
- d=self.__dict__
- for key in self.keydata:
- if key in d: d[key]=int(d[key])
- return d
-
- def __setstate__(self, d):
- """On unpickling a key object, the key data is converted to the big
-number representation being used, whether that is Python long
-integers, MPZ objects, or whatever."""
- for key in self.keydata:
- if key in d: self.__dict__[key]=bignum(d[key])
-
- def encrypt(self, plaintext, K):
- """Encrypt a piece of data.
-
- :Parameter plaintext: The piece of data to encrypt.
- :Type plaintext: byte string or long
-
- :Parameter K: A random parameter required by some algorithms
- :Type K: byte string or long
-
- :Return: A tuple with two items. Each item is of the same type as the
- plaintext (string or long).
- """
- wasString=0
- if isinstance(plaintext, bytes):
- plaintext=bytes_to_long(plaintext) ; wasString=1
- if isinstance(K, bytes):
- K=bytes_to_long(K)
- ciphertext=self._encrypt(plaintext, K)
- if wasString: return tuple(map(long_to_bytes, ciphertext))
- else: return ciphertext
-
- def decrypt(self, ciphertext):
- """Decrypt a piece of data.
-
- :Parameter ciphertext: The piece of data to decrypt.
- :Type ciphertext: byte string, long or a 2-item tuple as returned by `encrypt`
-
- :Return: A byte string if ciphertext was a byte string or a tuple
- of byte strings. A long otherwise.
- """
- wasString=0
- if not isinstance(ciphertext, tuple):
- ciphertext=(ciphertext,)
- if isinstance(ciphertext[0], bytes):
- ciphertext=tuple(map(bytes_to_long, ciphertext)) ; wasString=1
- plaintext=self._decrypt(ciphertext)
- if wasString: return long_to_bytes(plaintext)
- else: return plaintext
-
- def sign(self, M, K):
- """Sign a piece of data.
-
- :Parameter M: The piece of data to encrypt.
- :Type M: byte string or long
-
- :Parameter K: A random parameter required by some algorithms
- :Type K: byte string or long
-
- :Return: A tuple with two items.
- """
- if (not self.has_private()):
- raise TypeError('Private key not available in this object')
- if isinstance(M, bytes): M=bytes_to_long(M)
- if isinstance(K, bytes): K=bytes_to_long(K)
- return self._sign(M, K)
-
- def verify (self, M, signature):
- """Verify the validity of a signature.
-
- :Parameter M: The expected message.
- :Type M: byte string or long
-
- :Parameter signature: The signature to verify.
- :Type signature: tuple with two items, as return by `sign`
-
- :Return: True if the signature is correct, False otherwise.
- """
- if isinstance(M, bytes): M=bytes_to_long(M)
- return self._verify(M, signature)
-
- # alias to compensate for the old validate() name
- def validate (self, M, signature):
- warnings.warn("validate() method name is obsolete; use verify()",
- DeprecationWarning)
-
- def blind(self, M, B):
- """Blind a message to prevent certain side-channel attacks.
-
- :Parameter M: The message to blind.
- :Type M: byte string or long
-
- :Parameter B: Blinding factor.
- :Type B: byte string or long
-
- :Return: A byte string if M was so. A long otherwise.
- """
- wasString=0
- if isinstance(M, bytes):
- M=bytes_to_long(M) ; wasString=1
- if isinstance(B, bytes): B=bytes_to_long(B)
- blindedmessage=self._blind(M, B)
- if wasString: return long_to_bytes(blindedmessage)
- else: return blindedmessage
-
- def unblind(self, M, B):
- """Unblind a message after cryptographic processing.
-
- :Parameter M: The encoded message to unblind.
- :Type M: byte string or long
-
- :Parameter B: Blinding factor.
- :Type B: byte string or long
- """
- wasString=0
- if isinstance(M, bytes):
- M=bytes_to_long(M) ; wasString=1
- if isinstance(B, bytes): B=bytes_to_long(B)
- unblindedmessage=self._unblind(M, B)
- if wasString: return long_to_bytes(unblindedmessage)
- else: return unblindedmessage
-
-
- # The following methods will usually be left alone, except for
- # signature-only algorithms. They both return Boolean values
- # recording whether this key's algorithm can sign and encrypt.
- def can_sign (self):
- """Tell if the algorithm can deal with cryptographic signatures.
-
- This property concerns the *algorithm*, not the key itself.
- It may happen that this particular key object hasn't got
- the private information required to generate a signature.
-
- :Return: boolean
- """
- return 1
-
- def can_encrypt (self):
- """Tell if the algorithm can deal with data encryption.
-
- This property concerns the *algorithm*, not the key itself.
- It may happen that this particular key object hasn't got
- the private information required to decrypt data.
-
- :Return: boolean
- """
- return 1
-
- def can_blind (self):
- """Tell if the algorithm can deal with data blinding.
-
- This property concerns the *algorithm*, not the key itself.
- It may happen that this particular key object hasn't got
- the private information required carry out blinding.
-
- :Return: boolean
- """
- return 0
-
- # The following methods will certainly be overridden by
- # subclasses.
-
- def size (self):
- """Tell the maximum number of bits that can be handled by this key.
-
- :Return: int
- """
- return 0
-
- def has_private (self):
- """Tell if the key object contains private components.
-
- :Return: bool
- """
- return 0
-
- def publickey (self):
- """Construct a new key carrying only the public information.
-
- :Return: A new `pubkey` object.
- """
- return self
-
- def __eq__ (self, other):
- """__eq__(other): 0, 1
- Compare us to other for equality.
- """
- return self.__getstate__() == other.__getstate__()
-
- def __ne__ (self, other):
- """__ne__(other): 0, 1
- Compare us to other for inequality.
- """
- return not self.__eq__(other)