aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/Crypto/PublicKey/ElGamal.py
diff options
context:
space:
mode:
Diffstat (limited to 'frozen_deps/Crypto/PublicKey/ElGamal.py')
-rw-r--r--frozen_deps/Crypto/PublicKey/ElGamal.py373
1 files changed, 0 insertions, 373 deletions
diff --git a/frozen_deps/Crypto/PublicKey/ElGamal.py b/frozen_deps/Crypto/PublicKey/ElGamal.py
deleted file mode 100644
index 99af71c..0000000
--- a/frozen_deps/Crypto/PublicKey/ElGamal.py
+++ /dev/null
@@ -1,373 +0,0 @@
-#
-# ElGamal.py : ElGamal encryption/decryption and signatures
-#
-# Part of the Python Cryptography Toolkit
-#
-# Originally written by: A.M. Kuchling
-#
-# ===================================================================
-# The contents of this file are dedicated to the public domain. To
-# the extent that dedication to the public domain is not available,
-# everyone is granted a worldwide, perpetual, royalty-free,
-# non-exclusive license to exercise all rights associated with the
-# contents of this file for any purpose whatsoever.
-# No rights are reserved.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
-# ===================================================================
-
-"""ElGamal public-key algorithm (randomized encryption and signature).
-
-Signature algorithm
--------------------
-The security of the ElGamal signature scheme is based (like DSA) on the discrete
-logarithm problem (DLP_). Given a cyclic group, a generator *g*,
-and an element *h*, it is hard to find an integer *x* such that *g^x = h*.
-
-The group is the largest multiplicative sub-group of the integers modulo *p*,
-with *p* prime.
-The signer holds a value *x* (*0<x<p-1*) as private key, and its public
-key (*y* where *y=g^x mod p*) is distributed.
-
-The ElGamal signature is twice as big as *p*.
-
-Encryption algorithm
---------------------
-The security of the ElGamal encryption scheme is based on the computational
-Diffie-Hellman problem (CDH_). Given a cyclic group, a generator *g*,
-and two integers *a* and *b*, it is difficult to find
-the element *g^{ab}* when only *g^a* and *g^b* are known, and not *a* and *b*.
-
-As before, the group is the largest multiplicative sub-group of the integers
-modulo *p*, with *p* prime.
-The receiver holds a value *a* (*0<a<p-1*) as private key, and its public key
-(*b* where *b*=g^a*) is given to the sender.
-
-The ElGamal ciphertext is twice as big as *p*.
-
-Domain parameters
------------------
-For both signature and encryption schemes, the values *(p,g)* are called
-*domain parameters*.
-They are not sensitive but must be distributed to all parties (senders and
-receivers).
-Different signers can share the same domain parameters, as can
-different recipients of encrypted messages.
-
-Security
---------
-Both DLP and CDH problem are believed to be difficult, and they have been proved
-such (and therefore secure) for more than 30 years.
-
-The cryptographic strength is linked to the magnitude of *p*.
-In 2012, a sufficient size for *p* is deemed to be 2048 bits.
-For more information, see the most recent ECRYPT_ report.
-
-Even though ElGamal algorithms are in theory reasonably secure for new designs,
-in practice there are no real good reasons for using them.
-The signature is four times larger than the equivalent DSA, and the ciphertext
-is two times larger than the equivalent RSA.
-
-Functionality
--------------
-This module provides facilities for generating new ElGamal keys and for constructing
-them from known components. ElGamal keys allows you to perform basic signing,
-verification, encryption, and decryption.
-
- >>> from Crypto import Random
- >>> from Crypto.Random import random
- >>> from Crypto.PublicKey import ElGamal
- >>> from Crypto.Util.number import GCD
- >>> from Crypto.Hash import SHA
- >>>
- >>> message = "Hello"
- >>> key = ElGamal.generate(1024, Random.new().read)
- >>> h = SHA.new(message).digest()
- >>> while 1:
- >>> k = random.StrongRandom().randint(1,key.p-1)
- >>> if GCD(k,key.p-1)==1: break
- >>> sig = key.sign(h,k)
- >>> ...
- >>> if key.verify(h,sig):
- >>> print "OK"
- >>> else:
- >>> print "Incorrect signature"
-
-.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
-.. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption
-.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
-"""
-
-__revision__ = "$Id$"
-
-__all__ = ['generate', 'construct', 'error', 'ElGamalobj']
-
-from Crypto.PublicKey.pubkey import *
-from Crypto.Util import number
-
-class error (Exception):
- pass
-
-# Generate an ElGamal key with N bits
-def generate(bits, randfunc, progress_func=None):
- """Randomly generate a fresh, new ElGamal key.
-
- The key will be safe for use for both encryption and signature
- (although it should be used for **only one** purpose).
-
- :Parameters:
- bits : int
- Key length, or size (in bits) of the modulus *p*.
- Recommended value is 2048.
- randfunc : callable
- Random number generation function; it should accept
- a single integer N and return a string of random data
- N bytes long.
- progress_func : callable
- Optional function that will be called with a short string
- containing the key parameter currently being generated;
- it's useful for interactive applications where a user is
- waiting for a key to be generated.
-
- :attention: You should always use a cryptographically secure random number generator,
- such as the one defined in the ``Crypto.Random`` module; **don't** just use the
- current time and the ``random`` module.
-
- :Return: An ElGamal key object (`ElGamalobj`).
- """
- obj=ElGamalobj()
- # Generate a safe prime p
- # See Algorithm 4.86 in Handbook of Applied Cryptography
- if progress_func:
- progress_func('p\n')
- while 1:
- q = bignum(getPrime(bits-1, randfunc))
- obj.p = 2*q+1
- if number.isPrime(obj.p, randfunc=randfunc):
- break
- # Generate generator g
- # See Algorithm 4.80 in Handbook of Applied Cryptography
- # Note that the order of the group is n=p-1=2q, where q is prime
- if progress_func:
- progress_func('g\n')
- while 1:
- # We must avoid g=2 because of Bleichenbacher's attack described
- # in "Generating ElGamal signatures without knowning the secret key",
- # 1996
- #
- obj.g = number.getRandomRange(3, obj.p, randfunc)
- safe = 1
- if pow(obj.g, 2, obj.p)==1:
- safe=0
- if safe and pow(obj.g, q, obj.p)==1:
- safe=0
- # Discard g if it divides p-1 because of the attack described
- # in Note 11.67 (iii) in HAC
- if safe and divmod(obj.p-1, obj.g)[1]==0:
- safe=0
- # g^{-1} must not divide p-1 because of Khadir's attack
- # described in "Conditions of the generator for forging ElGamal
- # signature", 2011
- ginv = number.inverse(obj.g, obj.p)
- if safe and divmod(obj.p-1, ginv)[1]==0:
- safe=0
- if safe:
- break
- # Generate private key x
- if progress_func:
- progress_func('x\n')
- obj.x=number.getRandomRange(2, obj.p-1, randfunc)
- # Generate public key y
- if progress_func:
- progress_func('y\n')
- obj.y = pow(obj.g, obj.x, obj.p)
- return obj
-
-def construct(tup):
- """Construct an ElGamal key from a tuple of valid ElGamal components.
-
- The modulus *p* must be a prime.
-
- The following conditions must apply:
-
- - 1 < g < p-1
- - g^{p-1} = 1 mod p
- - 1 < x < p-1
- - g^x = y mod p
-
- :Parameters:
- tup : tuple
- A tuple of long integers, with 3 or 4 items
- in the following order:
-
- 1. Modulus (*p*).
- 2. Generator (*g*).
- 3. Public key (*y*).
- 4. Private key (*x*). Optional.
-
- :Return: An ElGamal key object (`ElGamalobj`).
- """
-
- obj=ElGamalobj()
- if len(tup) not in [3,4]:
- raise ValueError('argument for construct() wrong length')
- for i in range(len(tup)):
- field = obj.keydata[i]
- setattr(obj, field, tup[i])
- return obj
-
-class ElGamalobj(pubkey):
- """Class defining an ElGamal key.
-
- :undocumented: __getstate__, __setstate__, __repr__, __getattr__
- """
-
- #: Dictionary of ElGamal parameters.
- #:
- #: A public key will only have the following entries:
- #:
- #: - **y**, the public key.
- #: - **g**, the generator.
- #: - **p**, the modulus.
- #:
- #: A private key will also have:
- #:
- #: - **x**, the private key.
- keydata=['p', 'g', 'y', 'x']
-
- def encrypt(self, plaintext, K):
- """Encrypt a piece of data with ElGamal.
-
- :Parameter plaintext: The piece of data to encrypt with ElGamal.
- It must be numerically smaller than the module (*p*).
- :Type plaintext: byte string or long
-
- :Parameter K: A secret number, chosen randomly in the closed
- range *[1,p-2]*.
- :Type K: long (recommended) or byte string (not recommended)
-
- :Return: A tuple with two items. Each item is of the same type as the
- plaintext (string or long).
-
- :attention: selection of *K* is crucial for security. Generating a
- random number larger than *p-1* and taking the modulus by *p-1* is
- **not** secure, since smaller values will occur more frequently.
- Generating a random number systematically smaller than *p-1*
- (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
- In general, it shall not be possible for an attacker to know
- the value of any bit of K.
-
- :attention: The number *K* shall not be reused for any other
- operation and shall be discarded immediately.
- """
- return pubkey.encrypt(self, plaintext, K)
-
- def decrypt(self, ciphertext):
- """Decrypt a piece of data with ElGamal.
-
- :Parameter ciphertext: The piece of data to decrypt with ElGamal.
- :Type ciphertext: byte string, long or a 2-item tuple as returned
- by `encrypt`
-
- :Return: A byte string if ciphertext was a byte string or a tuple
- of byte strings. A long otherwise.
- """
- return pubkey.decrypt(self, ciphertext)
-
- def sign(self, M, K):
- """Sign a piece of data with ElGamal.
-
- :Parameter M: The piece of data to sign with ElGamal. It may
- not be longer in bit size than *p-1*.
- :Type M: byte string or long
-
- :Parameter K: A secret number, chosen randomly in the closed
- range *[1,p-2]* and such that *gcd(k,p-1)=1*.
- :Type K: long (recommended) or byte string (not recommended)
-
- :attention: selection of *K* is crucial for security. Generating a
- random number larger than *p-1* and taking the modulus by *p-1* is
- **not** secure, since smaller values will occur more frequently.
- Generating a random number systematically smaller than *p-1*
- (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
- In general, it shall not be possible for an attacker to know
- the value of any bit of K.
-
- :attention: The number *K* shall not be reused for any other
- operation and shall be discarded immediately.
-
- :attention: M must be be a cryptographic hash, otherwise an
- attacker may mount an existential forgery attack.
-
- :Return: A tuple with 2 longs.
- """
- return pubkey.sign(self, M, K)
-
- def verify(self, M, signature):
- """Verify the validity of an ElGamal signature.
-
- :Parameter M: The expected message.
- :Type M: byte string or long
-
- :Parameter signature: The ElGamal signature to verify.
- :Type signature: A tuple with 2 longs as return by `sign`
-
- :Return: True if the signature is correct, False otherwise.
- """
- return pubkey.verify(self, M, signature)
-
- def _encrypt(self, M, K):
- a=pow(self.g, K, self.p)
- b=( M*pow(self.y, K, self.p) ) % self.p
- return ( a,b )
-
- def _decrypt(self, M):
- if (not hasattr(self, 'x')):
- raise TypeError('Private key not available in this object')
- ax=pow(M[0], self.x, self.p)
- plaintext=(M[1] * inverse(ax, self.p ) ) % self.p
- return plaintext
-
- def _sign(self, M, K):
- if (not hasattr(self, 'x')):
- raise TypeError('Private key not available in this object')
- p1=self.p-1
- if (GCD(K, p1)!=1):
- raise ValueError('Bad K value: GCD(K,p-1)!=1')
- a=pow(self.g, K, self.p)
- t=(M-self.x*a) % p1
- while t<0: t=t+p1
- b=(t*inverse(K, p1)) % p1
- return (a, b)
-
- def _verify(self, M, sig):
- if sig[0]<1 or sig[0]>self.p-1:
- return 0
- v1=pow(self.y, sig[0], self.p)
- v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
- v2=pow(self.g, M, self.p)
- if v1==v2:
- return 1
- return 0
-
- def size(self):
- return number.size(self.p) - 1
-
- def has_private(self):
- if hasattr(self, 'x'):
- return 1
- else:
- return 0
-
- def publickey(self):
- return construct((self.p, self.g, self.y))
-
-
-object=ElGamalobj