diff options
author | Determinant <[email protected]> | 2020-11-17 18:47:40 -0500 |
---|---|---|
committer | Determinant <[email protected]> | 2020-11-17 18:47:40 -0500 |
commit | 3bef51eec2299403467e621ae660cef3f9256ac8 (patch) | |
tree | 9b72aaa95fb6dffacd8b20164699870a32ab6825 /freezed_deps/ecdsa | |
parent | 92b8b8e9628cac41d37226416107adc76b10e01b (diff) |
update frozen deps
Diffstat (limited to 'freezed_deps/ecdsa')
23 files changed, 0 insertions, 8850 deletions
diff --git a/freezed_deps/ecdsa/__init__.py b/freezed_deps/ecdsa/__init__.py deleted file mode 100644 index eef5fe3..0000000 --- a/freezed_deps/ecdsa/__init__.py +++ /dev/null @@ -1,25 +0,0 @@ -from .keys import SigningKey, VerifyingKey, BadSignatureError, BadDigestError,\ - MalformedPointError -from .curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p,\ - SECP256k1, BRAINPOOLP160r1, BRAINPOOLP192r1, BRAINPOOLP224r1,\ - BRAINPOOLP256r1, BRAINPOOLP320r1, BRAINPOOLP384r1, BRAINPOOLP512r1 -from .ecdh import ECDH, NoKeyError, NoCurveError, InvalidCurveError, \ - InvalidSharedSecretError -from .der import UnexpectedDER - -# This code comes from http://github.com/warner/python-ecdsa -from ._version import get_versions -__version__ = get_versions()['version'] -del get_versions - -__all__ = ["curves", "der", "ecdsa", "ellipticcurve", "keys", "numbertheory", - "test_pyecdsa", "util", "six"] - -_hush_pyflakes = [SigningKey, VerifyingKey, BadSignatureError, BadDigestError, - MalformedPointError, UnexpectedDER, InvalidCurveError, - NoKeyError, InvalidSharedSecretError, ECDH, NoCurveError, - NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, SECP256k1, - BRAINPOOLP160r1, BRAINPOOLP192r1, BRAINPOOLP224r1, - BRAINPOOLP256r1, BRAINPOOLP320r1, BRAINPOOLP384r1, - BRAINPOOLP512r1] -del _hush_pyflakes diff --git a/freezed_deps/ecdsa/_compat.py b/freezed_deps/ecdsa/_compat.py deleted file mode 100644 index 965d8c4..0000000 --- a/freezed_deps/ecdsa/_compat.py +++ /dev/null @@ -1,39 +0,0 @@ -""" -Common functions for providing cross-python version compatibility. -""" -import sys -from six import integer_types - - -def str_idx_as_int(string, index): - """Take index'th byte from string, return as integer""" - val = string[index] - if isinstance(val, integer_types): - return val - return ord(val) - - -if sys.version_info < (3, 0): - def normalise_bytes(buffer_object): - """Cast the input into array of bytes.""" - # flake8 runs on py3 where `buffer` indeed doesn't exist... - return buffer(buffer_object) # noqa: F821 - - def hmac_compat(ret): - return ret - -else: - if sys.version_info < (3, 4): - # on python 3.3 hmac.hmac.update() accepts only bytes, on newer - # versions it does accept memoryview() also - def hmac_compat(data): - if not isinstance(data, bytes): - return bytes(data) - return data - else: - def hmac_compat(data): - return data - - def normalise_bytes(buffer_object): - """Cast the input into array of bytes.""" - return memoryview(buffer_object).cast('B') diff --git a/freezed_deps/ecdsa/_rwlock.py b/freezed_deps/ecdsa/_rwlock.py deleted file mode 100644 index e4ef78d..0000000 --- a/freezed_deps/ecdsa/_rwlock.py +++ /dev/null @@ -1,85 +0,0 @@ -# Copyright Mateusz Kobos, (c) 2011 -# https://code.activestate.com/recipes/577803-reader-writer-lock-with-priority-for-writers/ -# released under the MIT licence - -import threading - - -__author__ = "Mateusz Kobos" - - -class RWLock: - """ - Read-Write locking primitive - - Synchronization object used in a solution of so-called second - readers-writers problem. In this problem, many readers can simultaneously - access a share, and a writer has an exclusive access to this share. - Additionally, the following constraints should be met: - 1) no reader should be kept waiting if the share is currently opened for - reading unless a writer is also waiting for the share, - 2) no writer should be kept waiting for the share longer than absolutely - necessary. - - The implementation is based on [1, secs. 4.2.2, 4.2.6, 4.2.7] - with a modification -- adding an additional lock (C{self.__readers_queue}) - -- in accordance with [2]. - - Sources: - [1] A.B. Downey: "The little book of semaphores", Version 2.1.5, 2008 - [2] P.J. Courtois, F. Heymans, D.L. Parnas: - "Concurrent Control with 'Readers' and 'Writers'", - Communications of the ACM, 1971 (via [3]) - [3] http://en.wikipedia.org/wiki/Readers-writers_problem - """ - - def __init__(self): - """ - A lock giving an even higher priority to the writer in certain - cases (see [2] for a discussion). - """ - self.__read_switch = _LightSwitch() - self.__write_switch = _LightSwitch() - self.__no_readers = threading.Lock() - self.__no_writers = threading.Lock() - self.__readers_queue = threading.Lock() - - def reader_acquire(self): - self.__readers_queue.acquire() - self.__no_readers.acquire() - self.__read_switch.acquire(self.__no_writers) - self.__no_readers.release() - self.__readers_queue.release() - - def reader_release(self): - self.__read_switch.release(self.__no_writers) - - def writer_acquire(self): - self.__write_switch.acquire(self.__no_readers) - self.__no_writers.acquire() - - def writer_release(self): - self.__no_writers.release() - self.__write_switch.release(self.__no_readers) - - -class _LightSwitch: - """An auxiliary "light switch"-like object. The first thread turns on the - "switch", the last one turns it off (see [1, sec. 4.2.2] for details).""" - def __init__(self): - self.__counter = 0 - self.__mutex = threading.Lock() - - def acquire(self, lock): - self.__mutex.acquire() - self.__counter += 1 - if self.__counter == 1: - lock.acquire() - self.__mutex.release() - - def release(self, lock): - self.__mutex.acquire() - self.__counter -= 1 - if self.__counter == 0: - lock.release() - self.__mutex.release() diff --git a/freezed_deps/ecdsa/_version.py b/freezed_deps/ecdsa/_version.py deleted file mode 100644 index 038d62a..0000000 --- a/freezed_deps/ecdsa/_version.py +++ /dev/null @@ -1,21 +0,0 @@ - -# This file was generated by 'versioneer.py' (0.17) from -# revision-control system data, or from the parent directory name of an -# unpacked source archive. Distribution tarballs contain a pre-generated copy -# of this file. - -import json - -version_json = ''' -{ - "date": "2020-01-02T17:05:04+0100", - "dirty": false, - "error": null, - "full-revisionid": "93b04ba3ddb7c2716e07761393a179c061718c34", - "version": "0.15" -} -''' # END VERSION_JSON - - -def get_versions(): - return json.loads(version_json) diff --git a/freezed_deps/ecdsa/curves.py b/freezed_deps/ecdsa/curves.py deleted file mode 100644 index 173a2cd..0000000 --- a/freezed_deps/ecdsa/curves.py +++ /dev/null @@ -1,128 +0,0 @@ -from __future__ import division - -from . import der, ecdsa -from .util import orderlen - - -# orderlen was defined in this module previously, so keep it in __all__, -# will need to mark it as deprecated later -__all__ = ["UnknownCurveError", "orderlen", "Curve", "NIST192p", - "NIST224p", "NIST256p", "NIST384p", "NIST521p", "curves", - "find_curve", "SECP256k1", "BRAINPOOLP160r1", "BRAINPOOLP192r1", - "BRAINPOOLP224r1", "BRAINPOOLP256r1", "BRAINPOOLP320r1", - "BRAINPOOLP384r1", "BRAINPOOLP512r1"] - - -class UnknownCurveError(Exception): - pass - - -class Curve: - def __init__(self, name, curve, generator, oid, openssl_name=None): - self.name = name - self.openssl_name = openssl_name # maybe None - self.curve = curve - self.generator = generator - self.order = generator.order() - self.baselen = orderlen(self.order) - self.verifying_key_length = 2*self.baselen - self.signature_length = 2*self.baselen - self.oid = oid - self.encoded_oid = der.encode_oid(*oid) - - def __repr__(self): - return self.name - - -# the NIST curves -NIST192p = Curve("NIST192p", ecdsa.curve_192, - ecdsa.generator_192, - (1, 2, 840, 10045, 3, 1, 1), "prime192v1") - - -NIST224p = Curve("NIST224p", ecdsa.curve_224, - ecdsa.generator_224, - (1, 3, 132, 0, 33), "secp224r1") - - -NIST256p = Curve("NIST256p", ecdsa.curve_256, - ecdsa.generator_256, - (1, 2, 840, 10045, 3, 1, 7), "prime256v1") - - -NIST384p = Curve("NIST384p", ecdsa.curve_384, - ecdsa.generator_384, - (1, 3, 132, 0, 34), "secp384r1") - - -NIST521p = Curve("NIST521p", ecdsa.curve_521, - ecdsa.generator_521, - (1, 3, 132, 0, 35), "secp521r1") - - -SECP256k1 = Curve("SECP256k1", ecdsa.curve_secp256k1, - ecdsa.generator_secp256k1, - (1, 3, 132, 0, 10), "secp256k1") - - -BRAINPOOLP160r1 = Curve("BRAINPOOLP160r1", - ecdsa.curve_brainpoolp160r1, - ecdsa.generator_brainpoolp160r1, - (1, 3, 36, 3, 3, 2, 8, 1, 1, 1), - "brainpoolP160r1") - - -BRAINPOOLP192r1 = Curve("BRAINPOOLP192r1", - ecdsa.curve_brainpoolp192r1, - ecdsa.generator_brainpoolp192r1, - (1, 3, 36, 3, 3, 2, 8, 1, 1, 3), - "brainpoolP192r1") - - -BRAINPOOLP224r1 = Curve("BRAINPOOLP224r1", - ecdsa.curve_brainpoolp224r1, - ecdsa.generator_brainpoolp224r1, - (1, 3, 36, 3, 3, 2, 8, 1, 1, 5), - "brainpoolP224r1") - - -BRAINPOOLP256r1 = Curve("BRAINPOOLP256r1", - ecdsa.curve_brainpoolp256r1, - ecdsa.generator_brainpoolp256r1, - (1, 3, 36, 3, 3, 2, 8, 1, 1, 7), - "brainpoolP256r1") - - -BRAINPOOLP320r1 = Curve("BRAINPOOLP320r1", - ecdsa.curve_brainpoolp320r1, - ecdsa.generator_brainpoolp320r1, - (1, 3, 36, 3, 3, 2, 8, 1, 1, 9), - "brainpoolP320r1") - - -BRAINPOOLP384r1 = Curve("BRAINPOOLP384r1", - ecdsa.curve_brainpoolp384r1, - ecdsa.generator_brainpoolp384r1, - (1, 3, 36, 3, 3, 2, 8, 1, 1, 11), - "brainpoolP384r1") - - -BRAINPOOLP512r1 = Curve("BRAINPOOLP512r1", - ecdsa.curve_brainpoolp512r1, - ecdsa.generator_brainpoolp512r1, - (1, 3, 36, 3, 3, 2, 8, 1, 1, 13), - "brainpoolP512r1") - - -curves = [NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, SECP256k1, - BRAINPOOLP160r1, BRAINPOOLP192r1, BRAINPOOLP224r1, BRAINPOOLP256r1, - BRAINPOOLP320r1, BRAINPOOLP384r1, BRAINPOOLP512r1] - - -def find_curve(oid_curve): - for c in curves: - if c.oid == oid_curve: - return c - raise UnknownCurveError("I don't know about the curve with oid %s." - "I only know about these: %s" % - (oid_curve, [c.name for c in curves])) diff --git a/freezed_deps/ecdsa/der.py b/freezed_deps/ecdsa/der.py deleted file mode 100644 index ad75b37..0000000 --- a/freezed_deps/ecdsa/der.py +++ /dev/null @@ -1,384 +0,0 @@ -from __future__ import division - -import binascii -import base64 -import warnings -from itertools import chain -from six import int2byte, b, text_type -from ._compat import str_idx_as_int - - -class UnexpectedDER(Exception): - pass - - -def encode_constructed(tag, value): - return int2byte(0xa0+tag) + encode_length(len(value)) + value - - -def encode_integer(r): - assert r >= 0 # can't support negative numbers yet - h = ("%x" % r).encode() - if len(h) % 2: - h = b("0") + h - s = binascii.unhexlify(h) - num = str_idx_as_int(s, 0) - if num <= 0x7f: - return b("\x02") + encode_length(len(s)) + s - else: - # DER integers are two's complement, so if the first byte is - # 0x80-0xff then we need an extra 0x00 byte to prevent it from - # looking negative. - return b("\x02") + encode_length(len(s)+1) + b("\x00") + s - - -# sentry object to check if an argument was specified (used to detect -# deprecated calling convention) -_sentry = object() - - -def encode_bitstring(s, unused=_sentry): - """ - Encode a binary string as a BIT STRING using :term:`DER` encoding. - - Note, because there is no native Python object that can encode an actual - bit string, this function only accepts byte strings as the `s` argument. - The byte string is the actual bit string that will be encoded, padded - on the right (least significant bits, looking from big endian perspective) - to the first full byte. If the bit string has a bit length that is multiple - of 8, then the padding should not be included. For correct DER encoding - the padding bits MUST be set to 0. - - Number of bits of padding need to be provided as the `unused` parameter. - In case they are specified as None, it means the number of unused bits - is already encoded in the string as the first byte. - - The deprecated call convention specifies just the `s` parameters and - encodes the number of unused bits as first parameter (same convention - as with None). - - Empty string must be encoded with `unused` specified as 0. - - Future version of python-ecdsa will make specifying the `unused` argument - mandatory. - - :param s: bytes to encode - :type s: bytes like object - :param unused: number of bits at the end of `s` that are unused, must be - between 0 and 7 (inclusive) - :type unused: int or None - - :raises ValueError: when `unused` is too large or too small - - :return: `s` encoded using DER - :rtype: bytes - """ - encoded_unused = b'' - len_extra = 0 - if unused is _sentry: - warnings.warn("Legacy call convention used, unused= needs to be " - "specified", - DeprecationWarning) - elif unused is not None: - if not 0 <= unused <= 7: - raise ValueError("unused must be integer between 0 and 7") - if unused: - if not s: - raise ValueError("unused is non-zero but s is empty") - last = str_idx_as_int(s, -1) - if last & (2 ** unused - 1): - raise ValueError("unused bits must be zeros in DER") - encoded_unused = int2byte(unused) - len_extra = 1 - return b("\x03") + encode_length(len(s) + len_extra) + encoded_unused + s - - -def encode_octet_string(s): - return b("\x04") + encode_length(len(s)) + s - - -def encode_oid(first, second, *pieces): - assert 0 <= first < 2 and 0 <= second <= 39 or first == 2 and 0 <= second - body = b''.join(chain([encode_number(40*first+second)], - (encode_number(p) for p in pieces))) - return b'\x06' + encode_length(len(body)) + body - - -def encode_sequence(*encoded_pieces): - total_len = sum([len(p) for p in encoded_pieces]) - return b('\x30') + encode_length(total_len) + b('').join(encoded_pieces) - - -def encode_number(n): - b128_digits = [] - while n: - b128_digits.insert(0, (n & 0x7f) | 0x80) - n = n >> 7 - if not b128_digits: - b128_digits.append(0) - b128_digits[-1] &= 0x7f - return b('').join([int2byte(d) for d in b128_digits]) - - -def remove_constructed(string): - s0 = str_idx_as_int(string, 0) - if (s0 & 0xe0) != 0xa0: - raise UnexpectedDER("wanted type 'constructed tag' (0xa0-0xbf), " - "got 0x%02x" % s0) - tag = s0 & 0x1f - length, llen = read_length(string[1:]) - body = string[1+llen:1+llen+length] - rest = string[1+llen+length:] - return tag, body, rest - - -def remove_sequence(string): - if not string: - raise UnexpectedDER("Empty string does not encode a sequence") - if string[:1] != b"\x30": - n = str_idx_as_int(string, 0) - raise UnexpectedDER("wanted type 'sequence' (0x30), got 0x%02x" % n) - length, lengthlength = read_length(string[1:]) - if length > len(string) - 1 - lengthlength: - raise UnexpectedDER("Length longer than the provided buffer") - endseq = 1+lengthlength+length - return string[1+lengthlength:endseq], string[endseq:] - - -def remove_octet_string(string): - if string[:1] != b"\x04": - n = str_idx_as_int(string, 0) - raise UnexpectedDER("wanted type 'octetstring' (0x04), got 0x%02x" % n) - length, llen = read_length(string[1:]) - body = string[1+llen:1+llen+length] - rest = string[1+llen+length:] - return body, rest - - -def remove_object(string): - if not string: - raise UnexpectedDER( - "Empty string does not encode an object identifier") - if string[:1] != b"\x06": - n = str_idx_as_int(string, 0) - raise UnexpectedDER("wanted type 'object' (0x06), got 0x%02x" % n) - length, lengthlength = read_length(string[1:]) - body = string[1+lengthlength:1+lengthlength+length] - rest = string[1+lengthlength+length:] - if not body: - raise UnexpectedDER("Empty object identifier") - if len(body) != length: - raise UnexpectedDER( - "Length of object identifier longer than the provided buffer") - numbers = [] - while body: - n, ll = read_number(body) - numbers.append(n) - body = body[ll:] - n0 = numbers.pop(0) - if n0 < 80: - first = n0 // 40 - else: - first = 2 - second = n0 - (40 * first) - numbers.insert(0, first) - numbers.insert(1, second) - return tuple(numbers), rest - - -def remove_integer(string): - if not string: - raise UnexpectedDER("Empty string is an invalid encoding of an " - "integer") - if string[:1] != b"\x02": - n = str_idx_as_int(string, 0) - raise UnexpectedDER("wanted type 'integer' (0x02), got 0x%02x" % n) - length, llen = read_length(string[1:]) - if length > len(string) - 1 - llen: - raise UnexpectedDER("Length longer than provided buffer") - if length == 0: - raise UnexpectedDER("0-byte long encoding of integer") - numberbytes = string[1+llen:1+llen+length] - rest = string[1+llen+length:] - msb = str_idx_as_int(numberbytes, 0) - if not msb < 0x80: - raise UnexpectedDER("Negative integers are not supported") - # check if the encoding is the minimal one (DER requirement) - if length > 1 and not msb: - # leading zero byte is allowed if the integer would have been - # considered a negative number otherwise - smsb = str_idx_as_int(numberbytes, 1) - if smsb < 0x80: - raise UnexpectedDER("Invalid encoding of integer, unnecessary " - "zero padding bytes") - return int(binascii.hexlify(numberbytes), 16), rest - - -def read_number(string): - number = 0 - llen = 0 - if str_idx_as_int(string, 0) == 0x80: - raise UnexpectedDER("Non minimal encoding of OID subidentifier") - # base-128 big endian, with most significant bit set in all but the last - # byte - while True: - if llen >= len(string): - raise UnexpectedDER("ran out of length bytes") - number = number << 7 - d = str_idx_as_int(string, llen) - number += (d & 0x7f) - llen += 1 - if not d & 0x80: - break - return number, llen - - -def encode_length(l): - assert l >= 0 - if l < 0x80: - return int2byte(l) - s = ("%x" % l).encode() - if len(s) % 2: - s = b("0") + s - s = binascii.unhexlify(s) - llen = len(s) - return int2byte(0x80 | llen) + s - - -def read_length(string): - if not string: - raise UnexpectedDER("Empty string can't encode valid length value") - num = str_idx_as_int(string, 0) - if not (num & 0x80): - # short form - return (num & 0x7f), 1 - # else long-form: b0&0x7f is number of additional base256 length bytes, - # big-endian - llen = num & 0x7f - if not llen: - raise UnexpectedDER("Invalid length encoding, length of length is 0") - if llen > len(string)-1: - raise UnexpectedDER("Length of length longer than provided buffer") - # verify that the encoding is minimal possible (DER requirement) - msb = str_idx_as_int(string, 1) - if not msb or llen == 1 and msb < 0x80: - raise UnexpectedDER("Not minimal encoding of length") - return int(binascii.hexlify(string[1:1+llen]), 16), 1+llen - - -def remove_bitstring(string, expect_unused=_sentry): - """ - Remove a BIT STRING object from `string` following :term:`DER`. - - The `expect_unused` can be used to specify if the bit string should - have the amount of unused bits decoded or not. If it's an integer, any - read BIT STRING that has number of unused bits different from specified - value will cause UnexpectedDER exception to be raised (this is especially - useful when decoding BIT STRINGS that have DER encoded object in them; - DER encoding is byte oriented, so the unused bits will always equal 0). - - If the `expect_unused` is specified as None, the first element returned - will be a tuple, with the first value being the extracted bit string - while the second value will be the decoded number of unused bits. - - If the `expect_unused` is unspecified, the decoding of byte with - number of unused bits will not be attempted and the bit string will be - returned as-is, the callee will be required to decode it and verify its - correctness. - - Future version of python will require the `expected_unused` parameter - to be specified. - - :param string: string of bytes to extract the BIT STRING from - :type string: bytes like object - :param expect_unused: number of bits that should be unused in the BIT - STRING, or None, to return it to caller - :type expect_unused: int or None - - :raises UnexpectedDER: when the encoding does not follow DER. - - :return: a tuple with first element being the extracted bit string and - the second being the remaining bytes in the string (if any); if the - `expect_unused` is specified as None, the first element of the returned - tuple will be a tuple itself, with first element being the bit string - as bytes and the second element being the number of unused bits at the - end of the byte array as an integer - :rtype: tuple - """ - if not string: - raise UnexpectedDER("Empty string does not encode a bitstring") - if expect_unused is _sentry: - warnings.warn("Legacy call convention used, expect_unused= needs to be" - " specified", - DeprecationWarning) - num = str_idx_as_int(string, 0) - if string[:1] != b"\x03": - raise UnexpectedDER("wanted bitstring (0x03), got 0x%02x" % num) - length, llen = read_length(string[1:]) - if not length: - raise UnexpectedDER("Invalid length of bit string, can't be 0") - body = string[1+llen:1+llen+length] - rest = string[1+llen+length:] - if expect_unused is not _sentry: - unused = str_idx_as_int(body, 0) - if not 0 <= unused <= 7: - raise UnexpectedDER("Invalid encoding of unused bits") - if expect_unused is not None and expect_unused != unused: - raise UnexpectedDER("Unexpected number of unused bits") - body = body[1:] - if unused: - if not body: - raise UnexpectedDER("Invalid encoding of empty bit string") - last = str_idx_as_int(body, -1) - # verify that all the unused bits are set to zero (DER requirement) - if last & (2 ** unused - 1): - raise UnexpectedDER("Non zero padding bits in bit string") - if expect_unused is None: - body = (body, unused) - return body, rest - -# SEQUENCE([1, STRING(secexp), cont[0], OBJECT(curvename), cont[1], BINTSTRING) - - -# signatures: (from RFC3279) -# ansi-X9-62 OBJECT IDENTIFIER ::= { -# iso(1) member-body(2) us(840) 10045 } -# -# id-ecSigType OBJECT IDENTIFIER ::= { -# ansi-X9-62 signatures(4) } -# ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { -# id-ecSigType 1 } -## so 1,2,840,10045,4,1 -## so 0x42, .. .. - -# Ecdsa-Sig-Value ::= SEQUENCE { -# r INTEGER, -# s INTEGER } - -# id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 } -# -# id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 } - -# I think the secp224r1 identifier is (t=06,l=05,v=2b81040021) -# secp224r1 OBJECT IDENTIFIER ::= { -# iso(1) identified-organization(3) certicom(132) curve(0) 33 } -# and the secp384r1 is (t=06,l=05,v=2b81040022) -# secp384r1 OBJECT IDENTIFIER ::= { -# iso(1) identified-organization(3) certicom(132) curve(0) 34 } - -def unpem(pem): - if isinstance(pem, text_type): - pem = pem.encode() - - d = b("").join([l.strip() for l in pem.split(b("\n")) - if l and not l.startswith(b("-----"))]) - return base64.b64decode(d) - - -def topem(der, name): - b64 = base64.b64encode(der) - lines = [("-----BEGIN %s-----\n" % name).encode()] - lines.extend([b64[start:start+64]+b("\n") - for start in range(0, len(b64), 64)]) - lines.append(("-----END %s-----\n" % name).encode()) - return b("").join(lines) diff --git a/freezed_deps/ecdsa/ecdh.py b/freezed_deps/ecdsa/ecdh.py deleted file mode 100644 index 88848f5..0000000 --- a/freezed_deps/ecdsa/ecdh.py +++ /dev/null @@ -1,306 +0,0 @@ -""" -Class for performing Elliptic-curve Diffie-Hellman (ECDH) operations. -""" - -from .util import number_to_string -from .ellipticcurve import INFINITY -from .keys import SigningKey, VerifyingKey - - -__all__ = ["ECDH", "NoKeyError", "NoCurveError", "InvalidCurveError", - "InvalidSharedSecretError"] - - -class NoKeyError(Exception): - """ECDH. Key not found but it is needed for operation.""" - - pass - - -class NoCurveError(Exception): - """ECDH. Curve not set but it is needed for operation.""" - - pass - - -class InvalidCurveError(Exception): - """ECDH. Raised in case the public and private keys use different curves.""" - - pass - - -class InvalidSharedSecretError(Exception): - """ECDH. Raised in case the shared secret we obtained is an INFINITY.""" - - pass - - -class ECDH(object): - """ - Elliptic-curve Diffie-Hellman (ECDH). A key agreement protocol. - - Allows two parties, each having an elliptic-curve public-private key - pair, to establish a shared secret over an insecure channel - """"" - - def __init__(self, curve=None, private_key=None, public_key=None): - """ - ECDH init. - - Call can be initialised without parameters, then the first operation - (loading either key) will set the used curve. - All parameters must be ultimately set before shared secret - calculation will be allowed. - - :param curve: curve for operations - :type curve: Curve - :param private_key: `my` private key for ECDH - :type private_key: SigningKey - :param public_key: `their` public key for ECDH - :type public_key: VerifyingKey - """ - self.curve = curve - self.private_key = None - self.public_key = None - if private_key: - self.load_private_key(private_key) - if public_key: - self.load_received_public_key(public_key) - - def _get_shared_secret(self, remote_public_key): - if not self.private_key: - raise NoKeyError( - "Private key needs to be set to create shared secret") - if not self.public_key: - raise NoKeyError( - "Public key needs to be set to create shared secret") - if not (self.private_key.curve == self.curve == remote_public_key.curve): - raise InvalidCurveError( - "Curves for public key and private key is not equal.") - - # shared secret = PUBKEYtheirs * PRIVATEKEYours - result = remote_public_key.pubkey.point * self.private_key.privkey.secret_multiplier - if result == INFINITY: - raise InvalidSharedSecretError( - "Invalid shared secret (INFINITY).") - - return result.x() - - def set_curve(self, key_curve): - """ - Set the working curve for ecdh operations. - - :param key_curve: curve from `curves` module - :type key_curve: Curve - """ - self.curve = key_curve - - def generate_private_key(self): - """ - Generate local private key for ecdh operation with curve that was set. - - :raises NoCurveError: Curve must be set before key generation. - - :return: public (verifying) key from this private key. - :rtype: VerifyingKey object - """ - if not self.curve: - raise NoCurveError("Curve must be set prior to key generation.") - return self.load_private_key(SigningKey.generate(curve=self.curve)) - - def load_private_key(self, private_key): - """ - Load private key from SigningKey (keys.py) object. - - Needs to have the same curve as was set with set_curve method. - If curve is not set - it sets from this SigningKey - - :param private_key: Initialised SigningKey class - :type private_key: SigningKey - - :raises InvalidCurveError: private_key curve not the same as self.curve - - :return: public (verifying) key from this private key. - :rtype: VerifyingKey object - """ - if not self.curve: - self.curve = private_key.curve - if self.curve != private_key.curve: - raise InvalidCurveError("Curve mismatch.") - self.private_key = private_key - return self.private_key.get_verifying_key() - - def load_private_key_bytes(self, private_key): - """ - Load private key from byte string. - - Uses current curve and checks if the provided key matches - the curve of ECDH key agreement. - Key loads via from_string method of SigningKey class - - :param private_key: private key in bytes string format - :type private_key: :term:`bytes-like object` - - :raises NoCurveError: Curve must be set before loading. - - :return: public (verifying) key from this private key. - :rtype: VerifyingKey object - """ - if not self.curve: - raise NoCurveError("Curve must be set prior to key load.") - return self.load_private_key( - SigningKey.from_string(private_key, curve=self.curve)) - - def load_private_key_der(self, private_key_der): - """ - Load private key from DER byte string. - - Compares the curve of the DER-encoded key with the ECDH set curve, - uses the former if unset. - - Note, the only DER format supported is the RFC5915 - Look at keys.py:SigningKey.from_der() - - :param private_key_der: string with the DER encoding of private ECDSA key - :type private_key_der: string - - :raises InvalidCurveError: private_key curve not the same as self.curve - - :return: public (verifying) key from this private key. - :rtype: VerifyingKey object - """ - return self.load_private_key(SigningKey.from_der(private_key_der)) - - def load_private_key_pem(self, private_key_pem): - """ - Load private key from PEM string. - - Compares the curve of the DER-encoded key with the ECDH set curve, - uses the former if unset. - - Note, the only PEM format supported is the RFC5915 - Look at keys.py:SigningKey.from_pem() - it needs to have `EC PRIVATE KEY` section - - :param private_key_pem: string with PEM-encoded private ECDSA key - :type private_key_pem: string - - :raises InvalidCurveError: private_key curve not the same as self.curve - - :return: public (verifying) key from this private key. - :rtype: VerifyingKey object - """ - return self.load_private_key(SigningKey.from_pem(private_key_pem)) - - def get_public_key(self): - """ - Provides a public key that matches the local private key. - - Needs to be sent to the remote party. - - :return: public (verifying) key from local private key. - :rtype: VerifyingKey object - """ - return self.private_key.get_verifying_key() - - def load_received_public_key(self, public_key): - """ - Load public key from VerifyingKey (keys.py) object. - - Needs to have the same curve as set as current for ecdh operation. - If curve is not set - it sets it from VerifyingKey. - - :param public_key: Initialised VerifyingKey class - :type public_key: VerifyingKey - - :raises InvalidCurveError: public_key curve not the same as self.curve - """ - if not self.curve: - self.curve = public_key.curve - if self.curve != public_key.curve: - raise InvalidCurveError("Curve mismatch.") - self.public_key = public_key - - def load_received_public_key_bytes(self, public_key_str): - """ - Load public key from byte string. - - Uses current curve and checks if key length corresponds to - the current curve. - Key loads via from_string method of VerifyingKey class - - :param public_key_str: public key in bytes string format - :type public_key_str: :term:`bytes-like object` - """ - return self.load_received_public_key( - VerifyingKey.from_string(public_key_str, self.curve)) - - def load_received_public_key_der(self, public_key_der): - """ - Load public key from DER byte string. - - Compares the curve of the DER-encoded key with the ECDH set curve, - uses the former if unset. - - Note, the only DER format supported is the RFC5912 - Look at keys.py:VerifyingKey.from_der() - - :param public_key_der: string with the DER encoding of public ECDSA key - :type public_key_der: string - - :raises InvalidCurveError: public_key curve not the same as self.curve - """ - return self.load_received_public_key(VerifyingKey.from_der(public_key_der)) - - def load_received_public_key_pem(self, public_key_pem): - """ - Load public key from PEM string. - - Compares the curve of the PEM-encoded key with the ECDH set curve, - uses the former if unset. - - Note, the only PEM format supported is the RFC5912 - Look at keys.py:VerifyingKey.from_pem() - - :param public_key_pem: string with PEM-encoded public ECDSA key - :type public_key_pem: string - - :raises InvalidCurveError: public_key curve not the same as self.curve - """ - return self.load_received_public_key(VerifyingKey.from_pem(public_key_pem)) - - def generate_sharedsecret_bytes(self): - """ - Generate shared secret from local private key and remote public key. - - The objects needs to have both private key and received public key - before generation is allowed. - - :raises InvalidCurveError: public_key curve not the same as self.curve - :raises NoKeyError: public_key or private_key is not set - - :return: shared secret - :rtype: byte string - """ - return number_to_string( - self.generate_sharedsecret(), - self.private_key.curve.order) - - def generate_sharedsecret(self): - """ - Generate shared secret from local private key and remote public key. - - The objects needs to have both private key and received public key - before generation is allowed. - - It's the same for local and remote party. - shared secret(local private key, remote public key ) == - shared secret (local public key, remote private key) - - :raises InvalidCurveError: public_key curve not the same as self.curve - :raises NoKeyError: public_key or private_key is not set - - :return: shared secret - :rtype: int - """ - return self._get_shared_secret(self.public_key) diff --git a/freezed_deps/ecdsa/ecdsa.py b/freezed_deps/ecdsa/ecdsa.py deleted file mode 100644 index 4e9bab0..0000000 --- a/freezed_deps/ecdsa/ecdsa.py +++ /dev/null @@ -1,446 +0,0 @@ -#! /usr/bin/env python - -""" -Implementation of Elliptic-Curve Digital Signatures. - -Classes and methods for elliptic-curve signatures: -private keys, public keys, signatures, -NIST prime-modulus curves with modulus lengths of -192, 224, 256, 384, and 521 bits. - -Example: - - # (In real-life applications, you would probably want to - # protect against defects in SystemRandom.) - from random import SystemRandom - randrange = SystemRandom().randrange - - # Generate a public/private key pair using the NIST Curve P-192: - - g = generator_192 - n = g.order() - secret = randrange( 1, n ) - pubkey = Public_key( g, g * secret ) - privkey = Private_key( pubkey, secret ) - - # Signing a hash value: - - hash = randrange( 1, n ) - signature = privkey.sign( hash, randrange( 1, n ) ) - - # Verifying a signature for a hash value: - - if pubkey.verifies( hash, signature ): - print_("Demo verification succeeded.") - else: - print_("*** Demo verification failed.") - - # Verification fails if the hash value is modified: - - if pubkey.verifies( hash-1, signature ): - print_("**** Demo verification failed to reject tampered hash.") - else: - print_("Demo verification correctly rejected tampered hash.") - -Version of 2009.05.16. - -Revision history: - 2005.12.31 - Initial version. - 2008.11.25 - Substantial revisions introducing new classes. - 2009.05.16 - Warn against using random.randrange in real applications. - 2009.05.17 - Use random.SystemRandom by default. - -Written in 2005 by Peter Pearson and placed in the public domain. -""" - -from six import int2byte, b -from . import ellipticcurve -from . import numbertheory -from .util import bit_length - - -class RSZeroError(RuntimeError): - pass - - -class InvalidPointError(RuntimeError): - pass - - -class Signature(object): - """ECDSA signature. - """ - def __init__(self, r, s): - self.r = r - self.s = s - - def recover_public_keys(self, hash, generator): - """Returns two public keys for which the signature is valid - hash is signed hash - generator is the used generator of the signature - """ - curve = generator.curve() - n = generator.order() - r = self.r - s = self.s - e = hash - x = r - - # Compute the curve point with x as x-coordinate - alpha = (pow(x, 3, curve.p()) + (curve.a() * x) + curve.b()) % curve.p() - beta = numbertheory.square_root_mod_prime(alpha, curve.p()) - y = beta if beta % 2 == 0 else curve.p() - beta - - # Compute the public key - R1 = ellipticcurve.PointJacobi(curve, x, y, 1, n) - Q1 = numbertheory.inverse_mod(r, n) * (s * R1 + (-e % n) * generator) - Pk1 = Public_key(generator, Q1) - - # And the second solution - R2 = ellipticcurve.PointJacobi(curve, x, -y, 1, n) - Q2 = numbertheory.inverse_mod(r, n) * (s * R2 + (-e % n) * generator) - Pk2 = Public_key(generator, Q2) - - return [Pk1, Pk2] - - -class Public_key(object): - """Public key for ECDSA. - """ - - def __init__(self, generator, point, verify=True): - """ - Low level ECDSA public key object. - - :param generator: the Point that generates the group (the base point) - :param point: the Point that defines the public key - :param bool verify: if True check if point is valid point on curve - - :raises InvalidPointError: if the point parameters are invalid or - point does not lie on the curve - """ - - self.curve = generator.curve() - self.generator = generator - self.point = point - n = generator.order() - p = self.curve.p() - if not (0 <= point.x() < p) or not (0 <= point.y() < p): - raise InvalidPointError("The public point has x or y out of range.") - if verify and not self.curve.contains_point(point.x(), point.y()): - raise InvalidPointError("Point does not lie on the curve") - if not n: - raise InvalidPointError("Generator point must have order.") - # for curve parameters with base point with cofactor 1, all points - # that are on the curve are scalar multiples of the base point, so - # verifying that is not necessary. See Section 3.2.2.1 of SEC 1 v2 - if verify and self.curve.cofactor() != 1 and \ - not n * point == ellipticcurve.INFINITY: - raise InvalidPointError("Generator point order is bad.") - - def __eq__(self, other): - if isinstance(other, Public_key): - """Return True if the points are identical, False otherwise.""" - return self.curve == other.curve \ - and self.point == other.point - return NotImplemented - - def verifies(self, hash, signature): - """Verify that signature is a valid signature of hash. - Return True if the signature is valid. - """ - - # From X9.62 J.3.1. - - G = self.generator - n = G.order() - r = signature.r - s = signature.s - if r < 1 or r > n - 1: - return False - if s < 1 or s > n - 1: - return False - c = numbertheory.inverse_mod(s, n) - u1 = (hash * c) % n - u2 = (r * c) % n - if hasattr(G, "mul_add"): - xy = G.mul_add(u1, self.point, u2) - else: - xy = u1 * G + u2 * self.point - v = xy.x() % n - return v == r - - -class Private_key(object): - """Private key for ECDSA. - """ - - def __init__(self, public_key, secret_multiplier): - """public_key is of class Public_key; - secret_multiplier is a large integer. - """ - - self.public_key = public_key - self.secret_multiplier = secret_multiplier - - def __eq__(self, other): - if isinstance(other, Private_key): - """Return True if the points are identical, False otherwise.""" - return self.public_key == other.public_key \ - and self.secret_multiplier == other.secret_multiplier - return NotImplemented - - def sign(self, hash, random_k): - """Return a signature for the provided hash, using the provided - random nonce. It is absolutely vital that random_k be an unpredictable - number in the range [1, self.public_key.point.order()-1]. If - an attacker can guess random_k, he can compute our private key from a - single signature. Also, if an attacker knows a few high-order - bits (or a few low-order bits) of random_k, he can compute our private - key from many signatures. The generation of nonces with adequate - cryptographic strength is very difficult and far beyond the scope - of this comment. - - May raise RuntimeError, in which case retrying with a new - random value k is in order. - """ - - G = self.public_key.generator - n = G.order() - k = random_k % n - # Fix the bit-length of the random nonce, - # so that it doesn't leak via timing. - # This does not change that ks = k mod n - ks = k + n - kt = ks + n - if bit_length(ks) == bit_length(n): - p1 = kt * G - else: - p1 = ks * G - r = p1.x() % n - if r == 0: - raise RSZeroError("amazingly unlucky random number r") - s = (numbertheory.inverse_mod(k, n) - * (hash + (self.secret_multiplier * r) % n)) % n - if s == 0: - raise RSZeroError("amazingly unlucky random number s") - return Signature(r, s) - - -def int_to_string(x): - """Convert integer x into a string of bytes, as per X9.62.""" - assert x >= 0 - if x == 0: - return b('\0') - result = [] - while x: - ordinal = x & 0xFF - result.append(int2byte(ordinal)) - x >>= 8 - - result.reverse() - return b('').join(result) - - -def string_to_int(s): - """Convert a string of bytes into an integer, as per X9.62.""" - result = 0 - for c in s: - if not isinstance(c, int): - c = ord(c) - result = 256 * result + c - return result - - -def digest_integer(m): - """Convert an integer into a string of bytes, compute - its SHA-1 hash, and convert the result to an integer.""" - # - # I don't expect this function to be used much. I wrote - # it in order to be able to duplicate the examples - # in ECDSAVS. - # - from hashlib import sha1 - return string_to_int(sha1(int_to_string(m)).digest()) - - -def point_is_valid(generator, x, y): - """Is (x,y) a valid public key based on the specified generator?""" - - # These are the tests specified in X9.62. - - n = generator.order() - curve = generator.curve() - p = curve.p() - if not (0 <= x < p) or not (0 <= y < p): - return False - if not curve.contains_point(x, y): - return False - if curve.cofactor() != 1 and \ - not n * ellipticcurve.PointJacobi(curve, x, y, 1)\ - == ellipticcurve.INFINITY: - return False - return True - - -# NIST Curve P-192: -_p = 6277101735386680763835789423207666416083908700390324961279 -_r = 6277101735386680763835789423176059013767194773182842284081 -# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L -# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L -_b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 -_Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 -_Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 - -curve_192 = ellipticcurve.CurveFp(_p, -3, _b, 1) -generator_192 = ellipticcurve.PointJacobi( - curve_192, _Gx, _Gy, 1, _r, generator=True) - - -# NIST Curve P-224: -_p = 26959946667150639794667015087019630673557916260026308143510066298881 -_r = 26959946667150639794667015087019625940457807714424391721682722368061 -# s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L -# c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL -_b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4 -_Gx = 0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21 -_Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34 - -curve_224 = ellipticcurve.CurveFp(_p, -3, _b, 1) -generator_224 = ellipticcurve.PointJacobi( - curve_224, _Gx, _Gy, 1, _r, generator=True) - -# NIST Curve P-256: -_p = 115792089210356248762697446949407573530086143415290314195533631308867097853951 -_r = 115792089210356248762697446949407573529996955224135760342422259061068512044369 -# s = 0xc49d360886e704936a6678e1139d26b7819f7e90L -# c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL -_b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b -_Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296 -_Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5 - -curve_256 = ellipticcurve.CurveFp(_p, -3, _b, 1) -generator_256 = ellipticcurve.PointJacobi( - curve_256, _Gx, _Gy, 1, _r, generator=True) - -# NIST Curve P-384: -_p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319 -_r = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643 -# s = 0xa335926aa319a27a1d00896a6773a4827acdac73L -# c = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483L -_b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef -_Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7 -_Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f - -curve_384 = ellipticcurve.CurveFp(_p, -3, _b, 1) -generator_384 = ellipticcurve.PointJacobi( - curve_384, _Gx, _Gy, 1, _r, generator=True) - -# NIST Curve P-521: -_p = 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151 -_r = 6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449 -# s = 0xd09e8800291cb85396cc6717393284aaa0da64baL -# c = 0x0b48bfa5f420a34949539d2bdfc264eeeeb077688e44fbf0ad8f6d0edb37bd6b533281000518e19f1b9ffbe0fe9ed8a3c2200b8f875e523868c70c1e5bf55bad637L -_b = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00 -_Gx = 0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66 -_Gy = 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650 - -curve_521 = ellipticcurve.CurveFp(_p, -3, _b, 1) -generator_521 = ellipticcurve.PointJacobi( - curve_521, _Gx, _Gy, 1, _r, generator=True) - -# Certicom secp256-k1 -_a = 0x0000000000000000000000000000000000000000000000000000000000000000 -_b = 0x0000000000000000000000000000000000000000000000000000000000000007 -_p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f -_Gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 -_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 -_r = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 - -curve_secp256k1 = ellipticcurve.CurveFp(_p, _a, _b, 1) -generator_secp256k1 = ellipticcurve.PointJacobi( - curve_secp256k1, _Gx, _Gy, 1, _r, generator=True) - -# Brainpool P-160-r1 -_a = 0x340E7BE2A280EB74E2BE61BADA745D97E8F7C300 -_b = 0x1E589A8595423412134FAA2DBDEC95C8D8675E58 -_p = 0xE95E4A5F737059DC60DFC7AD95B3D8139515620F -_Gx = 0xBED5AF16EA3F6A4F62938C4631EB5AF7BDBCDBC3 -_Gy = 0x1667CB477A1A8EC338F94741669C976316DA6321 -_q = 0xE95E4A5F737059DC60DF5991D45029409E60FC09 - -curve_brainpoolp160r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) -generator_brainpoolp160r1 = ellipticcurve.PointJacobi( - curve_brainpoolp160r1, _Gx, _Gy, 1, _q, generator=True) - -# Brainpool P-192-r1 -_a = 0x6A91174076B1E0E19C39C031FE8685C1CAE040E5C69A28EF -_b = 0x469A28EF7C28CCA3DC721D044F4496BCCA7EF4146FBF25C9 -_p = 0xC302F41D932A36CDA7A3463093D18DB78FCE476DE1A86297 -_Gx = 0xC0A0647EAAB6A48753B033C56CB0F0900A2F5C4853375FD6 -_Gy = 0x14B690866ABD5BB88B5F4828C1490002E6773FA2FA299B8F -_q = 0xC302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4ACC1 - -curve_brainpoolp192r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) -generator_brainpoolp192r1 = ellipticcurve.PointJacobi( - curve_brainpoolp192r1, _Gx, _Gy, 1, _q, generator=True) - -# Brainpool P-224-r1 -_a = 0x68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43 -_b = 0x2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B -_p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF -_Gx = 0x0D9029AD2C7E5CF4340823B2A87DC68C9E4CE3174C1E6EFDEE12C07D -_Gy = 0x58AA56F772C0726F24C6B89E4ECDAC24354B9E99CAA3F6D3761402CD -_q = 0xD7C134AA264366862A18302575D0FB98D116BC4B6DDEBCA3A5A7939F - -curve_brainpoolp224r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) -generator_brainpoolp224r1 = ellipticcurve.PointJacobi( - curve_brainpoolp224r1, _Gx, _Gy, 1, _q, generator=True) - -# Brainpool P-256-r1 -_a = 0x7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9 -_b = 0x26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6 -_p = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377 -_Gx = 0x8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262 -_Gy = 0x547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997 -_q = 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7 - -curve_brainpoolp256r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) -generator_brainpoolp256r1 = ellipticcurve.PointJacobi( - curve_brainpoolp256r1, _Gx, _Gy, 1, _q, generator=True) - -# Brainpool P-320-r1 -_a = 0x3EE30B568FBAB0F883CCEBD46D3F3BB8A2A73513F5EB79DA66190EB085FFA9F492F375A97D860EB4 -_b = 0x520883949DFDBC42D3AD198640688A6FE13F41349554B49ACC31DCCD884539816F5EB4AC8FB1F1A6 -_p = 0xD35E472036BC4FB7E13C785ED201E065F98FCFA6F6F40DEF4F92B9EC7893EC28FCD412B1F1B32E27 -_Gx = 0x43BD7E9AFB53D8B85289BCC48EE5BFE6F20137D10A087EB6E7871E2A10A599C710AF8D0D39E20611 -_Gy = 0x14FDD05545EC1CC8AB4093247F77275E0743FFED117182EAA9C77877AAAC6AC7D35245D1692E8EE1 -_q = 0xD35E472036BC4FB7E13C785ED201E065F98FCFA5B68F12A32D482EC7EE8658E98691555B44C59311 - -curve_brainpoolp320r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) -generator_brainpoolp320r1 = ellipticcurve.PointJacobi( - curve_brainpoolp320r1, _Gx, _Gy, 1, _q, generator=True) - -# Brainpool P-384-r1 -_a = 0x7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F90F8AA5814A503AD4EB04A8C7DD22CE2826 -_b = 0x04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62D57CB4390295DBC9943AB78696FA504C11 -_p = 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB71123ACD3A729901D1A71874700133107EC53 -_Gx = 0x1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10E8E826E03436D646AAEF87B2E247D4AF1E -_Gy = 0x8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129280E4646217791811142820341263C5315 -_q = 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A7CF3AB6AF6B7FC3103B883202E9046565 - -curve_brainpoolp384r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) -generator_brainpoolp384r1 = ellipticcurve.PointJacobi( - curve_brainpoolp384r1, _Gx, _Gy, 1, _q, generator=True) - -# Brainpool P-512-r1 -_a = 0x7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA -_b = 0x3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723 -_p = 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3 -_Gx = 0x81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822 -_Gy = 0x7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892 -_q = 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA70330870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069 - -curve_brainpoolp512r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) -generator_brainpoolp512r1 = ellipticcurve.PointJacobi( - curve_brainpoolp512r1, _Gx, _Gy, 1, _q, generator=True) diff --git a/freezed_deps/ecdsa/ellipticcurve.py b/freezed_deps/ecdsa/ellipticcurve.py deleted file mode 100644 index 3420454..0000000 --- a/freezed_deps/ecdsa/ellipticcurve.py +++ /dev/null @@ -1,780 +0,0 @@ -#! /usr/bin/env python -# -*- coding: utf-8 -*- -# -# Implementation of elliptic curves, for cryptographic applications. -# -# This module doesn't provide any way to choose a random elliptic -# curve, nor to verify that an elliptic curve was chosen randomly, -# because one can simply use NIST's standard curves. -# -# Notes from X9.62-1998 (draft): -# Nomenclature: -# - Q is a public key. -# The "Elliptic Curve Domain Parameters" include: -# - q is the "field size", which in our case equals p. -# - p is a big prime. -# - G is a point of prime order (5.1.1.1). -# - n is the order of G (5.1.1.1). -# Public-key validation (5.2.2): -# - Verify that Q is not the point at infinity. -# - Verify that X_Q and Y_Q are in [0,p-1]. -# - Verify that Q is on the curve. -# - Verify that nQ is the point at infinity. -# Signature generation (5.3): -# - Pick random k from [1,n-1]. -# Signature checking (5.4.2): -# - Verify that r and s are in [1,n-1]. -# -# Version of 2008.11.25. -# -# Revision history: -# 2005.12.31 - Initial version. -# 2008.11.25 - Change CurveFp.is_on to contains_point. -# -# Written in 2005 by Peter Pearson and placed in the public domain. - -from __future__ import division - -try: - from gmpy2 import mpz - GMPY = True -except ImportError: - try: - from gmpy import mpz - GMPY = True - except ImportError: - GMPY = False - - -from six import python_2_unicode_compatible -from . import numbertheory -from ._rwlock import RWLock - - -@python_2_unicode_compatible -class CurveFp(object): - """Elliptic Curve over the field of integers modulo a prime.""" - - if GMPY: - def __init__(self, p, a, b, h=None): - """ - The curve of points satisfying y^2 = x^3 + a*x + b (mod p). - - h is an integer that is the cofactor of the elliptic curve domain - parameters; it is the number of points satisfying the elliptic curve - equation divided by the order of the base point. It is used for selection - of efficient algorithm for public point verification. - """ - self.__p = mpz(p) - self.__a = mpz(a) - self.__b = mpz(b) - # h is not used in calculations and it can be None, so don't use - # gmpy with it - self.__h = h - else: - def __init__(self, p, a, b, h=None): - """ - The curve of points satisfying y^2 = x^3 + a*x + b (mod p). - - h is an integer that is the cofactor of the elliptic curve domain - parameters; it is the number of points satisfying the elliptic curve - equation divided by the order of the base point. It is used for selection - of efficient algorithm for public point verification. - """ - self.__p = p - self.__a = a - self.__b = b - self.__h = h - - def __eq__(self, other): - if isinstance(other, CurveFp): - """Return True if the curves are identical, False otherwise.""" - return self.__p == other.__p \ - and self.__a == other.__a \ - and self.__b == other.__b - return NotImplemented - - def __hash__(self): - return hash((self.__p, self.__a, self.__b)) - - def p(self): - return self.__p - - def a(self): - return self.__a - - def b(self): - return self.__b - - def cofactor(self): - return self.__h - - def contains_point(self, x, y): - """Is the point (x,y) on this curve?""" - return (y * y - ((x * x + self.__a) * x + self.__b)) % self.__p == 0 - - def __str__(self): - return "CurveFp(p=%d, a=%d, b=%d, h=%d)" % ( - self.__p, self.__a, self.__b, self.__h) - - -class PointJacobi(object): - """ - Point on an elliptic curve. Uses Jacobi coordinates. - - In Jacobian coordinates, there are three parameters, X, Y and Z. - They correspond to affine parameters 'x' and 'y' like so: - - x = X / Z² - y = Y / Z³ - """ - def __init__(self, curve, x, y, z, order=None, generator=False): - """ - Initialise a point that uses Jacobi representation internally. - - :param CurveFp curve: curve on which the point resides - :param int x: the X parameter of Jacobi representation (equal to x when - converting from affine coordinates - :param int y: the Y parameter of Jacobi representation (equal to y when - converting from affine coordinates - :param int z: the Z parameter of Jacobi representation (equal to 1 when - converting from affine coordinates - :param int order: the point order, must be non zero when using - generator=True - :param bool generator: the point provided is a curve generator, as - such, it will be commonly used with scalar multiplication. This will - cause to precompute multiplication table for it - """ - self.__curve = curve - # since it's generally better (faster) to use scaled points vs unscaled - # ones, use writer-biased RWLock for locking: - self._scale_lock = RWLock() - if GMPY: - self.__x = mpz(x) - self.__y = mpz(y) - self.__z = mpz(z) - self.__order = order and mpz(order) - else: - self.__x = x - self.__y = y - self.__z = z - self.__order = order - self.__precompute = [] - if generator: - assert order - i = 1 - order *= 2 - doubler = PointJacobi(curve, x, y, z, order) - order *= 2 - self.__precompute.append((doubler.x(), doubler.y())) - - while i < order: - i *= 2 - doubler = doubler.double().scale() - self.__precompute.append((doubler.x(), doubler.y())) - - def __eq__(self, other): - """Compare two points with each-other.""" - try: - self._scale_lock.reader_acquire() - if other is INFINITY: - return not self.__y or not self.__z - x1, y1, z1 = self.__x, self.__y, self.__z - finally: - self._scale_lock.reader_release() - if isinstance(other, Point): - x2, y2, z2 = other.x(), other.y(), 1 - elif isinstance(other, PointJacobi): - try: - other._scale_lock.reader_acquire() - x2, y2, z2 = other.__x, other.__y, other.__z - finally: - other._scale_lock.reader_release() - else: - return NotImplemented - if self.__curve != other.curve(): - return False - p = self.__curve.p() - - zz1 = z1 * z1 % p - zz2 = z2 * z2 % p - - # compare the fractions by bringing them to the same denominator - # depend on short-circuit to save 4 multiplications in case of inequality - return (x1 * zz2 - x2 * zz1) % p == 0 and \ - (y1 * zz2 * z2 - y2 * zz1 * z1) % p == 0 - - def order(self): - """Return the order of the point. - - None if it is undefined. - """ - return self.__order - - def curve(self): - """Return curve over which the point is defined.""" - return self.__curve - - def x(self): - """ - Return affine x coordinate. - - This method should be used only when the 'y' coordinate is not needed. - It's computationally more efficient to use `to_affine()` and then - call x() and y() on the returned instance. Or call `scale()` - and then x() and y() on the returned instance. - """ - try: - self._scale_lock.reader_acquire() - if self.__z == 1: - return self.__x - x = self.__x - z = self.__z - finally: - self._scale_lock.reader_release() - p = self.__curve.p() - z = numbertheory.inverse_mod(z, p) - return x * z**2 % p - - def y(self): - """ - Return affine y coordinate. - - This method should be used only when the 'x' coordinate is not needed. - It's computationally more efficient to use `to_affine()` and then - call x() and y() on the returned instance. Or call `scale()` - and then x() and y() on the returned instance. - """ - try: - self._scale_lock.reader_acquire() - if self.__z == 1: - return self.__y - y = self.__y - z = self.__z - finally: - self._scale_lock.reader_release() - p = self.__curve.p() - z = numbertheory.inverse_mod(z, p) - return y * z**3 % p - - def scale(self): - """ - Return point scaled so that z == 1. - - Modifies point in place, returns self. - """ - try: - self._scale_lock.reader_acquire() - if self.__z == 1: - return self - finally: - self._scale_lock.reader_release() - - try: - self._scale_lock.writer_acquire() - # scaling already scaled point is safe (as inverse of 1 is 1) and - # quick so we don't need to optimise for the unlikely event when - # two threads hit the lock at the same time - p = self.__curve.p() - z_inv = numbertheory.inverse_mod(self.__z, p) - zz_inv = z_inv * z_inv % p - self.__x = self.__x * zz_inv % p - self.__y = self.__y * zz_inv * z_inv % p - # we are setting the z last so that the check above will return true - # only after all values were already updated - self.__z = 1 - finally: - self._scale_lock.writer_release() - return self - - def to_affine(self): - """Return point in affine form.""" - if not self.__y or not self.__z: - return INFINITY - self.scale() - # after point is scaled, it's immutable, so no need to perform locking - return Point(self.__curve, self.__x, - self.__y, self.__order) - - @staticmethod - def from_affine(point, generator=False): - """Create from an affine point. - - :param bool generator: set to True to make the point to precalculate - multiplication table - useful for public point when verifying many - signatures (around 100 or so) or for generator points of a curve. - """ - return PointJacobi(point.curve(), point.x(), point.y(), 1, - point.order(), generator) - - # plese note that all the methods that use the equations from hyperelliptic - # are formatted in a way to maximise performance. - # Things that make code faster: multiplying instead of taking to the power - # (`xx = x * x; xxxx = xx * xx % p` is faster than `xxxx = x**4 % p` and - # `pow(x, 4, p)`), - # multiple assignments at the same time (`x1, x2 = self.x1, self.x2` is - # faster than `x1 = self.x1; x2 = self.x2`), - # similarly, sometimes the `% p` is skipped if it makes the calculation - # faster and the result of calculation is later reduced modulo `p` - - def _double_with_z_1(self, X1, Y1, p, a): - """Add a point to itself with z == 1.""" - # after: - # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-mdbl-2007-bl - XX, YY = X1 * X1 % p, Y1 * Y1 % p - if not YY: - return 0, 0, 1 - YYYY = YY * YY % p - S = 2 * ((X1 + YY)**2 - XX - YYYY) % p - M = 3 * XX + a - T = (M * M - 2 * S) % p - # X3 = T - Y3 = (M * (S - T) - 8 * YYYY) % p - Z3 = 2 * Y1 % p - return T, Y3, Z3 - - def _double(self, X1, Y1, Z1, p, a): - """Add a point to itself, arbitrary z.""" - if Z1 == 1: - return self._double_with_z_1(X1, Y1, p, a) - if not Z1: - return 0, 0, 1 - # after: - # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl - XX, YY = X1 * X1 % p, Y1 * Y1 % p - if not YY: - return 0, 0, 1 - YYYY = YY * YY % p - ZZ = Z1 * Z1 % p - S = 2 * ((X1 + YY)**2 - XX - YYYY) % p - M = (3 * XX + a * ZZ * ZZ) % p - T = (M * M - 2 * S) % p - # X3 = T - Y3 = (M * (S - T) - 8 * YYYY) % p - Z3 = ((Y1 + Z1)**2 - YY - ZZ) % p - - return T, Y3, Z3 - - def double(self): - """Add a point to itself.""" - if not self.__y: - return INFINITY - - p, a = self.__curve.p(), self.__curve.a() - - try: - self._scale_lock.reader_acquire() - X1, Y1, Z1 = self.__x, self.__y, self.__z - finally: - self._scale_lock.reader_release() - - X3, Y3, Z3 = self._double(X1, Y1, Z1, p, a) - - if not Y3 or not Z3: - return INFINITY - return PointJacobi(self.__curve, X3, Y3, Z3, self.__order) - - def _add_with_z_1(self, X1, Y1, X2, Y2, p): - """add points when both Z1 and Z2 equal 1""" - # after: - # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-mmadd-2007-bl - H = X2 - X1 - HH = H * H - I = 4 * HH % p - J = H * I - r = 2 * (Y2 - Y1) - if not H and not r: - return self._double_with_z_1(X1, Y1, p, self.__curve.a()) - V = X1 * I - X3 = (r**2 - J - 2 * V) % p - Y3 = (r * (V - X3) - 2 * Y1 * J) % p - Z3 = 2 * H % p - return X3, Y3, Z3 - - def _add_with_z_eq(self, X1, Y1, Z1, X2, Y2, p): - """add points when Z1 == Z2""" - # after: - # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-zadd-2007-m - A = (X2 - X1)**2 % p - B = X1 * A % p - C = X2 * A - D = (Y2 - Y1)**2 % p - if not A and not D: - return self._double(X1, Y1, Z1, p, self.__curve.a()) - X3 = (D - B - C) % p - Y3 = ((Y2 - Y1) * (B - X3) - Y1 * (C - B)) % p - Z3 = Z1 * (X2 - X1) % p - return X3, Y3, Z3 - - def _add_with_z2_1(self, X1, Y1, Z1, X2, Y2, p): - """add points when Z2 == 1""" - # after: - # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-madd-2007-bl - Z1Z1 = Z1 * Z1 % p - U2, S2 = X2 * Z1Z1 % p, Y2 * Z1 * Z1Z1 % p - H = (U2 - X1) % p - HH = H * H % p - I = 4 * HH % p - J = H * I - r = 2 * (S2 - Y1) % p - if not r and not H: - return self._double_with_z_1(X2, Y2, p, self.__curve.a()) - V = X1 * I - X3 = (r * r - J - 2 * V) % p - Y3 = (r * (V - X3) - 2 * Y1 * J) % p - Z3 = ((Z1 + H)**2 - Z1Z1 - HH) % p - return X3, Y3, Z3 - - def _add_with_z_ne(self, X1, Y1, Z1, X2, Y2, Z2, p): - """add points with arbitrary z""" - # after: - # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl - Z1Z1 = Z1 * Z1 % p - Z2Z2 = Z2 * Z2 % p - U1 = X1 * Z2Z2 % p - U2 = X2 * Z1Z1 % p - S1 = Y1 * Z2 * Z2Z2 % p - S2 = Y2 * Z1 * Z1Z1 % p - H = U2 - U1 - I = 4 * H * H % p - J = H * I % p - r = 2 * (S2 - S1) % p - if not H and not r: - return self._double(X1, Y1, Z1, p, self.__curve.a()) - V = U1 * I - X3 = (r * r - J - 2 * V) % p - Y3 = (r * (V - X3) - 2 * S1 * J) % p - Z3 = ((Z1 + Z2)**2 - Z1Z1 - Z2Z2) * H % p - - return X3, Y3, Z3 - - def __radd__(self, other): - """Add other to self.""" - return self + other - - def _add(self, X1, Y1, Z1, X2, Y2, Z2, p): - """add two points, select fastest method.""" - if not Y1 or not Z1: - return X2, Y2, Z2 - if not Y2 or not Z2: - return X1, Y1, Z1 - if Z1 == Z2: - if Z1 == 1: - return self._add_with_z_1(X1, Y1, X2, Y2, p) - return self._add_with_z_eq(X1, Y1, Z1, X2, Y2, p) - if Z1 == 1: - return self._add_with_z2_1(X2, Y2, Z2, X1, Y1, p) - if Z2 == 1: - return self._add_with_z2_1(X1, Y1, Z1, X2, Y2, p) - return self._add_with_z_ne(X1, Y1, Z1, X2, Y2, Z2, p) - - def __add__(self, other): - """Add two points on elliptic curve.""" - if self == INFINITY: - return other - if other == INFINITY: - return self - if isinstance(other, Point): - other = PointJacobi.from_affine(other) - if self.__curve != other.__curve: - raise ValueError("The other point is on different curve") - - p = self.__curve.p() - try: - self._scale_lock.reader_acquire() - X1, Y1, Z1 = self.__x, self.__y, self.__z - finally: - self._scale_lock.reader_release() - try: - other._scale_lock.reader_acquire() - X2, Y2, Z2 = other.__x, other.__y, other.__z - finally: - other._scale_lock.reader_release() - X3, Y3, Z3 = self._add(X1, Y1, Z1, X2, Y2, Z2, p) - - if not Y3 or not Z3: - return INFINITY - return PointJacobi(self.__curve, X3, Y3, Z3, self.__order) - - def __rmul__(self, other): - """Multiply point by an integer.""" - return self * other - - def _mul_precompute(self, other): - """Multiply point by integer with precomputation table.""" - X3, Y3, Z3, p = 0, 0, 1, self.__curve.p() - _add = self._add - for X2, Y2 in self.__precompute: - if other % 2: - if other % 4 >= 2: - other = (other + 1)//2 - X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, 1, p) - else: - other = (other - 1)//2 - X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p) - else: - other //= 2 - - if not Y3 or not Z3: - return INFINITY - return PointJacobi(self.__curve, X3, Y3, Z3, self.__order) - - @staticmethod - def _naf(mult): - """Calculate non-adjacent form of number.""" - ret = [] - while mult: - if mult % 2: - nd = mult % 4 - if nd >= 2: - nd = nd - 4 - ret += [nd] - mult -= nd - else: - ret += [0] - mult //= 2 - return ret - - def __mul__(self, other): - """Multiply point by an integer.""" - if not self.__y or not other: - return INFINITY - if other == 1: - return self - if self.__order: - # order*2 as a protection for Minerva - other = other % (self.__order*2) - if self.__precompute: - return self._mul_precompute(other) - - self = self.scale() - # once scaled, point is immutable, not need to lock - X2, Y2 = self.__x, self.__y - X3, Y3, Z3 = 0, 0, 1 - p, a = self.__curve.p(), self.__curve.a() - _double = self._double - _add = self._add - # since adding points when at least one of them is scaled - # is quicker, reverse the NAF order - for i in reversed(self._naf(other)): - X3, Y3, Z3 = _double(X3, Y3, Z3, p, a) - if i < 0: - X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, 1, p) - elif i > 0: - X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p) - - if not Y3 or not Z3: - return INFINITY - - return PointJacobi(self.__curve, X3, Y3, Z3, self.__order) - - @staticmethod - def _leftmost_bit(x): - """Return integer with the same magnitude as x but hamming weight of 1""" - assert x > 0 - result = 1 - while result <= x: - result = 2 * result - return result // 2 - - def mul_add(self, self_mul, other, other_mul): - """ - Do two multiplications at the same time, add results. - - calculates self*self_mul + other*other_mul - """ - if other is INFINITY or other_mul == 0: - return self * self_mul - if self_mul == 0: - return other * other_mul - if not isinstance(other, PointJacobi): - other = PointJacobi.from_affine(other) - # when the points have precomputed answers, then multiplying them alone - # is faster (as it uses NAF) - if self.__precompute and other.__precompute: - return self * self_mul + other * other_mul - - if self.__order: - self_mul = self_mul % self.__order - other_mul = other_mul % self.__order - - i = self._leftmost_bit(max(self_mul, other_mul))*2 - X3, Y3, Z3 = 0, 0, 1 - p, a = self.__curve.p(), self.__curve.a() - self = self.scale() - # after scaling, point is immutable, no need for locking - X1, Y1 = self.__x, self.__y - other = other.scale() - X2, Y2 = other.__x, other.__y - both = (self + other).scale() - X4, Y4 = both.__x, both.__y - _double = self._double - _add = self._add - while i > 1: - X3, Y3, Z3 = _double(X3, Y3, Z3, p, a) - i = i // 2 - - if self_mul & i and other_mul & i: - X3, Y3, Z3 = _add(X3, Y3, Z3, X4, Y4, 1, p) - elif self_mul & i: - X3, Y3, Z3 = _add(X3, Y3, Z3, X1, Y1, 1, p) - elif other_mul & i: - X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p) - - if not Y3 or not Z3: - return INFINITY - - return PointJacobi(self.__curve, X3, Y3, Z3, self.__order) - - def __neg__(self): - """Return negated point.""" - try: - self._scale_lock.reader_acquire() - return PointJacobi(self.__curve, self.__x, -self.__y, self.__z, - self.__order) - finally: - self._scale_lock.reader_release() - - -class Point(object): - """A point on an elliptic curve. Altering x and y is forbidding, - but they can be read by the x() and y() methods.""" - def __init__(self, curve, x, y, order=None): - """curve, x, y, order; order (optional) is the order of this point.""" - self.__curve = curve - if GMPY: - self.__x = x and mpz(x) - self.__y = y and mpz(y) - self.__order = order and mpz(order) - else: - self.__x = x - self.__y = y - self.__order = order - # self.curve is allowed to be None only for INFINITY: - if self.__curve: - assert self.__curve.contains_point(x, y) - # for curves with cofactor 1, all points that are on the curve are scalar - # multiples of the base point, so performing multiplication is not - # necessary to verify that. See Section 3.2.2.1 of SEC 1 v2 - if curve and curve.cofactor() != 1 and order: - assert self * order == INFINITY - - def __eq__(self, other): - """Return True if the points are identical, False otherwise.""" - if isinstance(other, Point): - return self.__curve == other.__curve \ - and self.__x == other.__x \ - and self.__y == other.__y - return NotImplemented - - def __neg__(self): - return Point(self.__curve, self.__x, self.__curve.p() - self.__y) - - def __add__(self, other): - """Add one point to another point.""" - - # X9.62 B.3: - - if not isinstance(other, Point): - return NotImplemented - if other == INFINITY: - return self - if self == INFINITY: - return other - assert self.__curve == other.__curve - if self.__x == other.__x: - if (self.__y + other.__y) % self.__curve.p() == 0: - return INFINITY - else: - return self.double() - - p = self.__curve.p() - - l = ((other.__y - self.__y) * \ - numbertheory.inverse_mod(other.__x - self.__x, p)) % p - - x3 = (l * l - self.__x - other.__x) % p - y3 = (l * (self.__x - x3) - self.__y) % p - - return Point(self.__curve, x3, y3) - - def __mul__(self, other): - """Multiply a point by an integer.""" - - def leftmost_bit(x): - assert x > 0 - result = 1 - while result <= x: - result = 2 * result - return result // 2 - - e = other - if e == 0 or (self.__order and e % self.__order == 0): - return INFINITY - if self == INFINITY: - return INFINITY - if e < 0: - return (-self) * (-e) - - # From X9.62 D.3.2: - - e3 = 3 * e - negative_self = Point(self.__curve, self.__x, -self.__y, self.__order) - i = leftmost_bit(e3) // 2 - result = self - # print_("Multiplying %s by %d (e3 = %d):" % (self, other, e3)) - while i > 1: - result = result.double() - if (e3 & i) != 0 and (e & i) == 0: - result = result + self - if (e3 & i) == 0 and (e & i) != 0: - result = result + negative_self - # print_(". . . i = %d, result = %s" % ( i, result )) - i = i // 2 - - return result - - def __rmul__(self, other): - """Multiply a point by an integer.""" - - return self * other - - def __str__(self): - if self == INFINITY: - return "infinity" - return "(%d,%d)" % (self.__x, self.__y) - - def double(self): - """Return a new point that is twice the old.""" - - if self == INFINITY: - return INFINITY - - # X9.62 B.3: - - p = self.__curve.p() - a = self.__curve.a() - - l = ((3 * self.__x * self.__x + a) * \ - numbertheory.inverse_mod(2 * self.__y, p)) % p - - x3 = (l * l - 2 * self.__x) % p - y3 = (l * (self.__x - x3) - self.__y) % p - - return Point(self.__curve, x3, y3) - - def x(self): - return self.__x - - def y(self): - return self.__y - - def curve(self): - return self.__curve - - def order(self): - return self.__order - - -# This one point is the Point At Infinity for all purposes: -INFINITY = Point(None, None, None) diff --git a/freezed_deps/ecdsa/keys.py b/freezed_deps/ecdsa/keys.py deleted file mode 100644 index 172fdf5..0000000 --- a/freezed_deps/ecdsa/keys.py +++ /dev/null @@ -1,1219 +0,0 @@ -""" -Primary classes for performing signing and verification operations. - -.. glossary:: - - raw encoding - Conversion of public, private keys and signatures (which in - mathematical sense are integers or pairs of integers) to strings of - bytes that does not use any special tags or encoding rules. - For any given curve, all keys of the same type or signatures will be - encoded to byte strings of the same length. In more formal sense, - the integers are encoded as big-endian, constant length byte strings, - where the string length is determined by the curve order (e.g. - for NIST256p the order is 256 bits long, so the private key will be 32 - bytes long while public key will be 64 bytes long). The encoding of a - single integer is zero-padded on the left if the numerical value is - low. In case of public keys and signatures, which are comprised of two - integers, the integers are simply concatenated. - - uncompressed - The most common formatting specified in PKIX standards. Specified in - X9.62 and SEC1 standards. The only difference between it and - :term:`raw encoding` is the prepending of a 0x04 byte. Thus an - uncompressed NIST256p public key encoding will be 65 bytes long. - - compressed - The public point representation that uses half of bytes of the - :term:`uncompressed` encoding (rounded up). It uses the first byte of - the encoding to specify the sign of the y coordinate and encodes the - x coordinate as-is. The first byte of the encoding is equal to - 0x02 or 0x03. Compressed encoding of NIST256p public key will be 33 - bytes long. - - hybrid - A combination of :term:`uncompressed` and :term:`compressed` encodings. - Both x and y coordinates are stored just as in :term:`compressed` - encoding, but the first byte reflects the sign of the y coordinate. The - first byte of the encoding will be equal to 0x06 or 0x7. Hybrid - encoding of NIST256p public key will be 65 bytes long. - - PEM - The acronym stands for Privacy Enhanced Email, but currently it is used - primarily as the way to encode :term:`DER` objects into text that can - be either easily copy-pasted or transferred over email. - It uses headers like ``-----BEGIN <type of contents>-----`` and footers - like ``-----END <type of contents>-----`` to separate multiple - types of objects in the same file or the object from the surrounding - comments. The actual object stored is base64 encoded. - - DER - Distinguished Encoding Rules, the way to encode :term:`ASN.1` objects - deterministically and uniquely into byte strings. - - ASN.1 - Abstract Syntax Notation 1 is a standard description language for - specifying serialisation and deserialisation of data structures in a - portable and cross-platform way. - - bytes-like object - All the types that implement the buffer protocol. That includes - ``str`` (only on python2), ``bytes``, ``bytesarray``, ``array.array` - and ``memoryview`` of those objects. - Please note that ``array.array` serialisation (converting it to byte - string) is endianess dependant! Signature computed over ``array.array`` - of integers on a big-endian system will not be verified on a - little-endian system and vice-versa. -""" - -import binascii -from hashlib import sha1 -from six import PY3, b -from . import ecdsa -from . import der -from . import rfc6979 -from . import ellipticcurve -from .curves import NIST192p, find_curve -from .numbertheory import square_root_mod_prime, SquareRootError -from .ecdsa import RSZeroError -from .util import string_to_number, number_to_string, randrange -from .util import sigencode_string, sigdecode_string -from .util import oid_ecPublicKey, encoded_oid_ecPublicKey, MalformedSignature -from ._compat import normalise_bytes - - -__all__ = ["BadSignatureError", "BadDigestError", "VerifyingKey", "SigningKey", - "MalformedPointError"] - - -class BadSignatureError(Exception): - """ - Raised when verification of signature failed. - - Will be raised irrespective of reason of the failure: - - * the calculated or provided hash does not match the signature - * the signature does not match the curve/public key - * the encoding of the signature is malformed - * the size of the signature does not match the curve of the VerifyingKey - """ - - pass - - -class BadDigestError(Exception): - """Raised in case the selected hash is too large for the curve.""" - - pass - - -class MalformedPointError(AssertionError): - """Raised in case the encoding of private or public key is malformed.""" - - pass - - -class VerifyingKey(object): - """ - Class for handling keys that can verify signatures (public keys). - - :ivar ecdsa.curves.Curve curve: The Curve over which all the cryptographic - operations will take place - :ivar default_hashfunc: the function that will be used for hashing the - data. Should implement the same API as hashlib.sha1 - :vartype default_hashfunc: callable - :ivar pubkey: the actual public key - :vartype pubkey: ecdsa.ecdsa.Public_key - """ - - def __init__(self, _error__please_use_generate=None): - """Unsupported, please use one of the classmethods to initialise.""" - if not _error__please_use_generate: - raise TypeError("Please use VerifyingKey.generate() to " - "construct me") - self.curve = None - self.default_hashfunc = None - self.pubkey = None - - def __repr__(self): - pub_key = self.to_string("compressed") - return "VerifyingKey.from_string({0!r}, {1!r}, {2})".format( - pub_key, self.curve, self.default_hashfunc().name) - - def __eq__(self, other): - """Return True if the points are identical, False otherwise.""" - if isinstance(other, VerifyingKey): - return self.curve == other.curve \ - and self.pubkey == other.pubkey - return NotImplemented - - @classmethod - def from_public_point(cls, point, curve=NIST192p, hashfunc=sha1, - validate_point=True): - """ - Initialise the object from a Point object. - - This is a low-level method, generally you will not want to use it. - - :param point: The point to wrap around, the actual public key - :type point: ecdsa.ellipticcurve.Point - :param curve: The curve on which the point needs to reside, defaults - to NIST192p - :type curve: ecdsa.curves.Curve - :param hashfunc: The default hash function that will be used for - verification, needs to implement the same interface - as hashlib.sha1 - :type hashfunc: callable - :type bool validate_point: whether to check if the point lies on curve - should always be used if the public point is not a result - of our own calculation - - :raises MalformedPointError: if the public point does not lie on the - curve - - :return: Initialised VerifyingKey object - :rtype: VerifyingKey - """ - self = cls(_error__please_use_generate=True) - if not isinstance(point, ellipticcurve.PointJacobi): - point = ellipticcurve.PointJacobi.from_affine(point) - self.curve = curve - self.default_hashfunc = hashfunc - try: - self.pubkey = ecdsa.Public_key(curve.generator, point, - validate_point) - except ecdsa.InvalidPointError: - raise MalformedPointError("Point does not lie on the curve") - self.pubkey.order = curve.order - return self - - def precompute(self): - self.pubkey.point = ellipticcurve.PointJacobi.from_affine( - self.pubkey.point, True) - - @staticmethod - def _from_raw_encoding(string, curve): - """ - Decode public point from :term:`raw encoding`. - - :term:`raw encoding` is the same as the :term:`uncompressed` encoding, - but without the 0x04 byte at the beginning. - """ - order = curve.order - # real assert, from_string() should not call us with different length - assert len(string) == curve.verifying_key_length - xs = string[:curve.baselen] - ys = string[curve.baselen:] - if len(xs) != curve.baselen: - raise MalformedPointError("Unexpected length of encoded x") - if len(ys) != curve.baselen: - raise MalformedPointError("Unexpected length of encoded y") - x = string_to_number(xs) - y = string_to_number(ys) - - return ellipticcurve.PointJacobi(curve.curve, x, y, 1, order) - - @staticmethod - def _from_compressed(string, curve): - """Decode public point from compressed encoding.""" - if string[:1] not in (b('\x02'), b('\x03')): - raise MalformedPointError("Malformed compressed point encoding") - - is_even = string[:1] == b('\x02') - x = string_to_number(string[1:]) - order = curve.order - p = curve.curve.p() - alpha = (pow(x, 3, p) + (curve.curve.a() * x) + curve.curve.b()) % p - try: - beta = square_root_mod_prime(alpha, p) - except SquareRootError as e: - raise MalformedPointError( - "Encoding does not correspond to a point on curve", e) - if is_even == bool(beta & 1): - y = p - beta - else: - y = beta - return ellipticcurve.PointJacobi(curve.curve, x, y, 1, order) - - @classmethod - def _from_hybrid(cls, string, curve, validate_point): - """Decode public point from hybrid encoding.""" - # real assert, from_string() should not call us with different types - assert string[:1] in (b('\x06'), b('\x07')) - - # primarily use the uncompressed as it's easiest to handle - point = cls._from_raw_encoding(string[1:], curve) - - # but validate if it's self-consistent if we're asked to do that - if validate_point \ - and (point.y() & 1 and string[:1] != b('\x07') - or (not point.y() & 1) and string[:1] != b('\x06')): - raise MalformedPointError("Inconsistent hybrid point encoding") - - return point - - @classmethod - def from_string(cls, string, curve=NIST192p, hashfunc=sha1, - validate_point=True): - """ - Initialise the object from byte encoding of public key. - - The method does accept and automatically detect the type of point - encoding used. It supports the :term:`raw encoding`, - :term:`uncompressed`, :term:`compressed` and :term:`hybrid` encodings. - - Note, while the method is named "from_string" it's a misnomer from - Python 2 days when there were no binary strings. In Python 3 the - input needs to be a bytes-like object. - - :param string: single point encoding of the public key - :type string: :term:`bytes-like object` - :param curve: the curve on which the public key is expected to lie - :type curve: ecdsa.curves.Curve - :param hashfunc: The default hash function that will be used for - verification, needs to implement the same interface as hashlib.sha1 - :type hashfunc: callable - :param validate_point: whether to verify that the point lies on the - provided curve or not, defaults to True - :type validate_point: bool - - :raises MalformedPointError: if the public point does not lie on the - curve or the encoding is invalid - - :return: Initialised VerifyingKey object - :rtype: VerifyingKey - """ - string = normalise_bytes(string) - sig_len = len(string) - if sig_len == curve.verifying_key_length: - point = cls._from_raw_encoding(string, curve) - elif sig_len == curve.verifying_key_length + 1: - if string[:1] in (b('\x06'), b('\x07')): - point = cls._from_hybrid(string, curve, validate_point) - elif string[:1] == b('\x04'): - point = cls._from_raw_encoding(string[1:], curve) - else: - raise MalformedPointError( - "Invalid X9.62 encoding of the public point") - elif sig_len == curve.baselen + 1: - point = cls._from_compressed(string, curve) - else: - raise MalformedPointError( - "Length of string does not match lengths of " - "any of the supported encodings of {0} " - "curve.".format(curve.name)) - return cls.from_public_point(point, curve, hashfunc, - validate_point) - - @classmethod - def from_pem(cls, string, hashfunc=sha1): - """ - Initialise from public key stored in :term:`PEM` format. - - The PEM header of the key should be ``BEGIN PUBLIC KEY``. - - See the :func:`~VerifyingKey.from_der()` method for details of the - format supported. - - Note: only a single PEM object encoding is supported in provided - string. - - :param string: text with PEM-encoded public ECDSA key - :type string: str - - :return: Initialised VerifyingKey object - :rtype: VerifyingKey - """ - return cls.from_der(der.unpem(string), hashfunc=hashfunc) - - @classmethod - def from_der(cls, string, hashfunc=sha1): - """ - Initialise the key stored in :term:`DER` format. - - The expected format of the key is the SubjectPublicKeyInfo structure - from RFC5912 (for RSA keys, it's known as the PKCS#1 format):: - - SubjectPublicKeyInfo {PUBLIC-KEY: IOSet} ::= SEQUENCE { - algorithm AlgorithmIdentifier {PUBLIC-KEY, {IOSet}}, - subjectPublicKey BIT STRING - } - - Note: only public EC keys are supported by this method. The - SubjectPublicKeyInfo.algorithm.algorithm field must specify - id-ecPublicKey (see RFC3279). - - Only the named curve encoding is supported, thus the - SubjectPublicKeyInfo.algorithm.parameters field needs to be an - object identifier. A sequence in that field indicates an explicit - parameter curve encoding, this format is not supported. A NULL object - in that field indicates an "implicitlyCA" encoding, where the curve - parameters come from CA certificate, those, again, are not supported. - - :param string: binary string with the DER encoding of public ECDSA key - :type string: bytes-like object - - :return: Initialised VerifyingKey object - :rtype: VerifyingKey - """ - string = normalise_bytes(string) - # [[oid_ecPublicKey,oid_curve], point_str_bitstring] - s1, empty = der.remove_sequence(string) - if empty != b"": - raise der.UnexpectedDER("trailing junk after DER pubkey: %s" % - binascii.hexlify(empty)) - s2, point_str_bitstring = der.remove_sequence(s1) - # s2 = oid_ecPublicKey,oid_curve - oid_pk, rest = der.remove_object(s2) - oid_curve, empty = der.remove_object(rest) - if empty != b"": - raise der.UnexpectedDER("trailing junk after DER pubkey objects: %s" % - binascii.hexlify(empty)) - if not oid_pk == oid_ecPublicKey: - raise der.UnexpectedDER("Unexpected object identifier in DER " - "encoding: {0!r}".format(oid_pk)) - curve = find_curve(oid_curve) - point_str, empty = der.remove_bitstring(point_str_bitstring, 0) - if empty != b"": - raise der.UnexpectedDER("trailing junk after pubkey pointstring: %s" % - binascii.hexlify(empty)) - # raw encoding of point is invalid in DER files - if len(point_str) == curve.verifying_key_length: - raise der.UnexpectedDER("Malformed encoding of public point") - return cls.from_string(point_str, curve, hashfunc=hashfunc) - - @classmethod - def from_public_key_recovery(cls, signature, data, curve, hashfunc=sha1, - sigdecode=sigdecode_string): - """ - Return keys that can be used as verifiers of the provided signature. - - Tries to recover the public key that can be used to verify the - signature, usually returns two keys like that. - - :param signature: the byte string with the encoded signature - :type signature: bytes-like object - :param data: the data to be hashed for signature verification - :type data: bytes-like object - :param curve: the curve over which the signature was performed - :type curve: ecdsa.curves.Curve - :param hashfunc: The default hash function that will be used for - verification, needs to implement the same interface as hashlib.sha1 - :type hashfunc: callable - :param sigdecode: Callable to define the way the signature needs to - be decoded to an object, needs to handle `signature` as the - first parameter, the curve order (an int) as the second and return - a tuple with two integers, "r" as the first one and "s" as the - second one. See :func:`ecdsa.util.sigdecode_string` and - :func:`ecdsa.util.sigdecode_der` for examples. - :type sigdecode: callable - - :return: Initialised VerifyingKey objects - :rtype: list of VerifyingKey - """ - data = normalise_bytes(data) - digest = hashfunc(data).digest() - return cls.from_public_key_recovery_with_digest( - signature, digest, curve, hashfunc=hashfunc, - sigdecode=sigdecode) - - @classmethod - def from_public_key_recovery_with_digest( - cls, signature, digest, curve, - hashfunc=sha1, sigdecode=sigdecode_string): - """ - Return keys that can be used as verifiers of the provided signature. - - Tries to recover the public key that can be used to verify the - signature, usually returns two keys like that. - - :param signature: the byte string with the encoded signature - :type signature: bytes-like object - :param digest: the hash value of the message signed by the signature - :type digest: bytes-like object - :param curve: the curve over which the signature was performed - :type curve: ecdsa.curves.Curve - :param hashfunc: The default hash function that will be used for - verification, needs to implement the same interface as hashlib.sha1 - :type hashfunc: callable - :param sigdecode: Callable to define the way the signature needs to - be decoded to an object, needs to handle `signature` as the - first parameter, the curve order (an int) as the second and return - a tuple with two integers, "r" as the first one and "s" as the - second one. See :func:`ecdsa.util.sigdecode_string` and - :func:`ecdsa.util.sigdecode_der` for examples. - :type sigdecode: callable - - - :return: Initialised VerifyingKey object - :rtype: VerifyingKey - """ - generator = curve.generator - r, s = sigdecode(signature, generator.order()) - sig = ecdsa.Signature(r, s) - - digest = normalise_bytes(digest) - digest_as_number = string_to_number(digest) - pks = sig.recover_public_keys(digest_as_number, generator) - - # Transforms the ecdsa.Public_key object into a VerifyingKey - verifying_keys = [cls.from_public_point(pk.point, curve, hashfunc) - for pk in pks] - return verifying_keys - - def _raw_encode(self): - """Convert the public key to the :term:`raw encoding`.""" - order = self.pubkey.order - x_str = number_to_string(self.pubkey.point.x(), order) - y_str = number_to_string(self.pubkey.point.y(), order) - return x_str + y_str - - def _compressed_encode(self): - """Encode the public point into the compressed form.""" - order = self.pubkey.order - x_str = number_to_string(self.pubkey.point.x(), order) - if self.pubkey.point.y() & 1: - return b('\x03') + x_str - else: - return b('\x02') + x_str - - def _hybrid_encode(self): - """Encode the public point into the hybrid form.""" - raw_enc = self._raw_encode() - if self.pubkey.point.y() & 1: - return b('\x07') + raw_enc - else: - return b('\x06') + raw_enc - - def to_string(self, encoding="raw"): - """ - Convert the public key to a byte string. - - The method by default uses the :term:`raw encoding` (specified - by `encoding="raw"`. It can also output keys in :term:`uncompressed`, - :term:`compressed` and :term:`hybrid` formats. - - Remember that the curve identification is not part of the encoding - so to decode the point using :func:`~VerifyingKey.from_string`, curve - needs to be specified. - - Note: while the method is called "to_string", it's a misnomer from - Python 2 days when character strings and byte strings shared type. - On Python 3 the returned type will be `bytes`. - - :return: :term:`raw encoding` of the public key (public point) on the - curve - :rtype: bytes - """ - assert encoding in ("raw", "uncompressed", "compressed", "hybrid") - if encoding == "raw": - return self._raw_encode() - elif encoding == "uncompressed": - return b('\x04') + self._raw_encode() - elif encoding == "hybrid": - return self._hybrid_encode() - else: - return self._compressed_encode() - - def to_pem(self, point_encoding="uncompressed"): - """ - Convert the public key to the :term:`PEM` format. - - The PEM header of the key will be ``BEGIN PUBLIC KEY``. - - The format of the key is described in the - :func:`~VerifyingKey.from_der()` method. - This method supports only "named curve" encoding of keys. - - :param str point_encoding: specification of the encoding format - of public keys. "uncompressed" is most portable, "compressed" is - smallest. "hybrid" is uncommon and unsupported by most - implementations, it is as big as "uncompressed". - - :return: portable encoding of the public key - :rtype: str - """ - return der.topem(self.to_der(point_encoding), "PUBLIC KEY") - - def to_der(self, point_encoding="uncompressed"): - """ - Convert the public key to the :term:`DER` format. - - The format of the key is described in the - :func:`~VerifyingKey.from_der()` method. - This method supports only "named curve" encoding of keys. - - :param str point_encoding: specification of the encoding format - of public keys. "uncompressed" is most portable, "compressed" is - smallest. "hybrid" is uncommon and unsupported by most - implementations, it is as big as "uncompressed". - - :return: DER encoding of the public key - :rtype: bytes - """ - if point_encoding == "raw": - raise ValueError("raw point_encoding not allowed in DER") - point_str = self.to_string(point_encoding) - return der.encode_sequence(der.encode_sequence(encoded_oid_ecPublicKey, - self.curve.encoded_oid), - # 0 is the number of unused bits in the - # bit string - der.encode_bitstring(point_str, 0)) - - def verify(self, signature, data, hashfunc=None, - sigdecode=sigdecode_string): - """ - Verify a signature made over provided data. - - Will hash `data` to verify the signature. - - By default expects signature in :term:`raw encoding`. Can also be used - to verify signatures in ASN.1 DER encoding by using - :func:`ecdsa.util.sigdecode_der` - as the `sigdecode` parameter. - - :param signature: encoding of the signature - :type signature: sigdecode method dependant - :param data: data signed by the `signature`, will be hashed using - `hashfunc`, if specified, or default hash function - :type data: bytes like object - :param hashfunc: The default hash function that will be used for - verification, needs to implement the same interface as hashlib.sha1 - :type hashfunc: callable - :param sigdecode: Callable to define the way the signature needs to - be decoded to an object, needs to handle `signature` as the - first parameter, the curve order (an int) as the second and return - a tuple with two integers, "r" as the first one and "s" as the - second one. See :func:`ecdsa.util.sigdecode_string` and - :func:`ecdsa.util.sigdecode_der` for examples. - :type sigdecode: callable - - :raises BadSignatureError: if the signature is invalid or malformed - - :return: True if the verification was successful - :rtype: bool - """ - # signature doesn't have to be a bytes-like-object so don't normalise - # it, the decoders will do that - data = normalise_bytes(data) - - hashfunc = hashfunc or self.default_hashfunc - digest = hashfunc(data).digest() - return self.verify_digest(signature, digest, sigdecode, True) - - def verify_digest(self, signature, digest, sigdecode=sigdecode_string, - allow_truncate=False): - """ - Verify a signature made over provided hash value. - - By default expects signature in :term:`raw encoding`. Can also be used - to verify signatures in ASN.1 DER encoding by using - :func:`ecdsa.util.sigdecode_der` - as the `sigdecode` parameter. - - :param signature: encoding of the signature - :type signature: sigdecode method dependant - :param digest: raw hash value that the signature authenticates. - :type digest: bytes like object - :param sigdecode: Callable to define the way the signature needs to - be decoded to an object, needs to handle `signature` as the - first parameter, the curve order (an int) as the second and return - a tuple with two integers, "r" as the first one and "s" as the - second one. See :func:`ecdsa.util.sigdecode_string` and - :func:`ecdsa.util.sigdecode_der` for examples. - :type sigdecode: callable - :param bool allow_truncate: if True, the provided digest can have - bigger bit-size than the order of the curve, the extra bits (at - the end of the digest) will be truncated. Use it when verifying - SHA-384 output using NIST256p or in similar situations. - - :raises BadSignatureError: if the signature is invalid or malformed - :raises BadDigestError: if the provided digest is too big for the curve - associated with this VerifyingKey and allow_truncate was not set - - :return: True if the verification was successful - :rtype: bool - """ - # signature doesn't have to be a bytes-like-object so don't normalise - # it, the decoders will do that - digest = normalise_bytes(digest) - if allow_truncate: - digest = digest[:self.curve.baselen] - if len(digest) > self.curve.baselen: - raise BadDigestError("this curve (%s) is too short " - "for your digest (%d)" % (self.curve.name, - 8 * len(digest))) - number = string_to_number(digest) - try: - r, s = sigdecode(signature, self.pubkey.order) - except (der.UnexpectedDER, MalformedSignature) as e: - raise BadSignatureError("Malformed formatting of signature", e) - sig = ecdsa.Signature(r, s) - if self.pubkey.verifies(number, sig): - return True - raise BadSignatureError("Signature verification failed") - - -class SigningKey(object): - """ - Class for handling keys that can create signatures (private keys). - - :ivar ecdsa.curves.Curve curve: The Curve over which all the cryptographic - operations will take place - :ivar default_hashfunc: the function that will be used for hashing the - data. Should implement the same API as hashlib.sha1 - :ivar int baselen: the length of a :term:`raw encoding` of private key - :ivar ecdsa.keys.VerifyingKey verifying_key: the public key - associated with this private key - :ivar ecdsa.ecdsa.Private_key privkey: the actual private key - """ - - def __init__(self, _error__please_use_generate=None): - """Unsupported, please use one of the classmethods to initialise.""" - if not _error__please_use_generate: - raise TypeError("Please use SigningKey.generate() to construct me") - self.curve = None - self.default_hashfunc = None - self.baselen = None - self.verifying_key = None - self.privkey = None - - def __eq__(self, other): - """Return True if the points are identical, False otherwise.""" - if isinstance(other, SigningKey): - return self.curve == other.curve \ - and self.verifying_key == other.verifying_key \ - and self.privkey == other.privkey - return NotImplemented - - @classmethod - def generate(cls, curve=NIST192p, entropy=None, hashfunc=sha1): - """ - Generate a random private key. - - :param curve: The curve on which the point needs to reside, defaults - to NIST192p - :type curve: ecdsa.curves.Curve - :param entropy: Source of randomness for generating the private keys, - should provide cryptographically secure random numbers if the keys - need to be secure. Uses os.urandom() by default. - :type entropy: callable - :param hashfunc: The default hash function that will be used for - signing, needs to implement the same interface - as hashlib.sha1 - :type hashfunc: callable - - :return: Initialised SigningKey object - :rtype: SigningKey - """ - secexp = randrange(curve.order, entropy) - return cls.from_secret_exponent(secexp, curve, hashfunc) - - @classmethod - def from_secret_exponent(cls, secexp, curve=NIST192p, hashfunc=sha1): - """ - Create a private key from a random integer. - - Note: it's a low level method, it's recommended to use the - :func:`~SigningKey.generate` method to create private keys. - - :param int secexp: secret multiplier (the actual private key in ECDSA). - Needs to be an integer between 1 and the curve order. - :param curve: The curve on which the point needs to reside - :type curve: ecdsa.curves.Curve - :param hashfunc: The default hash function that will be used for - signing, needs to implement the same interface - as hashlib.sha1 - :type hashfunc: callable - - :raises MalformedPointError: when the provided secexp is too large - or too small for the curve selected - :raises RuntimeError: if the generation of public key from private - key failed - - :return: Initialised SigningKey object - :rtype: SigningKey - """ - self = cls(_error__please_use_generate=True) - self.curve = curve - self.default_hashfunc = hashfunc - self.baselen = curve.baselen - n = curve.order - if not 1 <= secexp < n: - raise MalformedPointError( - "Invalid value for secexp, expected integer between 1 and {0}" - .format(n)) - pubkey_point = curve.generator * secexp - if hasattr(pubkey_point, "scale"): - pubkey_point = pubkey_point.scale() - self.verifying_key = VerifyingKey.from_public_point(pubkey_point, curve, - hashfunc, False) - pubkey = self.verifying_key.pubkey - self.privkey = ecdsa.Private_key(pubkey, secexp) - self.privkey.order = n - return self - - @classmethod - def from_string(cls, string, curve=NIST192p, hashfunc=sha1): - """ - Decode the private key from :term:`raw encoding`. - - Note: the name of this method is a misnomer coming from days of - Python 2, when binary strings and character strings shared a type. - In Python 3, the expected type is `bytes`. - - :param string: the raw encoding of the private key - :type string: bytes like object - :param curve: The curve on which the point needs to reside - :type curve: ecdsa.curves.Curve - :param hashfunc: The default hash function that will be used for - signing, needs to implement the same interface - as hashlib.sha1 - :type hashfunc: callable - - :raises MalformedPointError: if the length of encoding doesn't match - the provided curve or the encoded values is too large - :raises RuntimeError: if the generation of public key from private - key failed - - :return: Initialised SigningKey object - :rtype: SigningKey - """ - string = normalise_bytes(string) - if len(string) != curve.baselen: - raise MalformedPointError( - "Invalid length of private key, received {0}, expected {1}" - .format(len(string), curve.baselen)) - secexp = string_to_number(string) - return cls.from_secret_exponent(secexp, curve, hashfunc) - - @classmethod - def from_pem(cls, string, hashfunc=sha1): - """ - Initialise from key stored in :term:`PEM` format. - - Note, the only PEM format supported is the un-encrypted RFC5915 - (the sslay format) supported by OpenSSL, the more common PKCS#8 format - is NOT supported (see: - https://github.com/warner/python-ecdsa/issues/113 ) - - ``openssl ec -in pkcs8.pem -out sslay.pem`` can be used to - convert PKCS#8 file to this legacy format. - - The legacy format files have the header with the string - ``BEGIN EC PRIVATE KEY``. - Encrypted files (ones that include the string - ``Proc-Type: 4,ENCRYPTED`` - right after the PEM header) are not supported. - - See :func:`~SigningKey.from_der` for ASN.1 syntax of the objects in - this files. - - :param string: text with PEM-encoded private ECDSA key - :type string: str - - :raises MalformedPointError: if the length of encoding doesn't match - the provided curve or the encoded values is too large - :raises RuntimeError: if the generation of public key from private - key failed - :raises UnexpectedDER: if the encoding of the PEM file is incorrect - - :return: Initialised VerifyingKey object - :rtype: VerifyingKey - """ - # the privkey pem may have multiple sections, commonly it also has - # "EC PARAMETERS", we need just "EC PRIVATE KEY". - if PY3 and isinstance(string, str): - string = string.encode() - privkey_pem = string[string.index(b("-----BEGIN EC PRIVATE KEY-----")):] - return cls.from_der(der.unpem(privkey_pem), hashfunc) - - @classmethod - def from_der(cls, string, hashfunc=sha1): - """ - Initialise from key stored in :term:`DER` format. - - Note, the only DER format supported is the RFC5915 - (the sslay format) supported by OpenSSL, the more common PKCS#8 format - is NOT supported (see: - https://github.com/warner/python-ecdsa/issues/113 ) - - ``openssl ec -in pkcs8.pem -outform der -out sslay.der`` can be - used to convert PKCS#8 file to this legacy format. - - The encoding of the ASN.1 object in those files follows following - syntax specified in RFC5915:: - - ECPrivateKey ::= SEQUENCE { - version INTEGER { ecPrivkeyVer1(1) }} (ecPrivkeyVer1), - privateKey OCTET STRING, - parameters [0] ECParameters {{ NamedCurve }} OPTIONAL, - publicKey [1] BIT STRING OPTIONAL - } - - The only format supported for the `parameters` field is the named - curve method. Explicit encoding of curve parameters is not supported. - - While `parameters` field is defined as optional, this implementation - requires its presence for correct parsing of the keys. - - `publicKey` field is ignored completely (errors, if any, in it will - be undetected). - - :param string: binary string with DER-encoded private ECDSA key - :type string: bytes like object - - :raises MalformedPointError: if the length of encoding doesn't match - the provided curve or the encoded values is too large - :raises RuntimeError: if the generation of public key from private - key failed - :raises UnexpectedDER: if the encoding of the DER file is incorrect - - :return: Initialised VerifyingKey object - :rtype: VerifyingKey - """ - string = normalise_bytes(string) - s, empty = der.remove_sequence(string) - if empty != b(""): - raise der.UnexpectedDER("trailing junk after DER privkey: %s" % - binascii.hexlify(empty)) - one, s = der.remove_integer(s) - if one != 1: - raise der.UnexpectedDER("expected '1' at start of DER privkey," - " got %d" % one) - privkey_str, s = der.remove_octet_string(s) - tag, curve_oid_str, s = der.remove_constructed(s) - if tag != 0: - raise der.UnexpectedDER("expected tag 0 in DER privkey," - " got %d" % tag) - curve_oid, empty = der.remove_object(curve_oid_str) - if empty != b(""): - raise der.UnexpectedDER("trailing junk after DER privkey " - "curve_oid: %s" % binascii.hexlify(empty)) - curve = find_curve(curve_oid) - - # we don't actually care about the following fields - # - # tag, pubkey_bitstring, s = der.remove_constructed(s) - # if tag != 1: - # raise der.UnexpectedDER("expected tag 1 in DER privkey, got %d" - # % tag) - # pubkey_str = der.remove_bitstring(pubkey_bitstring, 0) - # if empty != "": - # raise der.UnexpectedDER("trailing junk after DER privkey " - # "pubkeystr: %s" % binascii.hexlify(empty)) - - # our from_string method likes fixed-length privkey strings - if len(privkey_str) < curve.baselen: - privkey_str = b("\x00") * (curve.baselen - len(privkey_str)) + privkey_str - return cls.from_string(privkey_str, curve, hashfunc) - - def to_string(self): - """ - Convert the private key to :term:`raw encoding`. - - Note: while the method is named "to_string", its name comes from - Python 2 days, when binary and character strings used the same type. - The type used in Python 3 is `bytes`. - - :return: raw encoding of private key - :rtype: bytes - """ - secexp = self.privkey.secret_multiplier - s = number_to_string(secexp, self.privkey.order) - return s - - def to_pem(self, point_encoding="uncompressed"): - """ - Convert the private key to the :term:`PEM` format. - - See :func:`~SigningKey.from_pem` method for format description. - - Only the named curve format is supported. - The public key will be included in generated string. - - The PEM header will specify ``BEGIN EC PRIVATE KEY`` - - :param str point_encoding: format to use for encoding public point - - :return: PEM encoded private key - :rtype: str - """ - # TODO: "BEGIN ECPARAMETERS" - return der.topem(self.to_der(point_encoding), "EC PRIVATE KEY") - - def to_der(self, point_encoding="uncompressed"): - """ - Convert the private key to the :term:`DER` format. - - See :func:`~SigningKey.from_der` method for format specification. - - Only the named curve format is supported. - The public key will be included in the generated string. - - :param str point_encoding: format to use for encoding public point - - :return: DER encoded private key - :rtype: bytes - """ - # SEQ([int(1), octetstring(privkey),cont[0], oid(secp224r1), - # cont[1],bitstring]) - if point_encoding == "raw": - raise ValueError("raw encoding not allowed in DER") - encoded_vk = self.get_verifying_key().to_string(point_encoding) - # the 0 in encode_bitstring specifies the number of unused bits - # in the `encoded_vk` string - return der.encode_sequence( - der.encode_integer(1), - der.encode_octet_string(self.to_string()), - der.encode_constructed(0, self.curve.encoded_oid), - der.encode_constructed(1, der.encode_bitstring(encoded_vk, 0))) - - def get_verifying_key(self): - """ - Return the VerifyingKey associated with this private key. - - Equivalent to reading the `verifying_key` field of an instance. - - :return: a public key that can be used to verify the signatures made - with this SigningKey - :rtype: VerifyingKey - """ - return self.verifying_key - - def sign_deterministic(self, data, hashfunc=None, - sigencode=sigencode_string, - extra_entropy=b''): - """ - Create signature over data using the deterministic RFC6679 algorithm. - - The data will be hashed using the `hashfunc` function before signing. - - This is the recommended method for performing signatures when hashing - of data is necessary. - - :param data: data to be hashed and computed signature over - :type data: bytes like object - :param hashfunc: hash function to use for computing the signature, - if unspecified, the default hash function selected during - object initialisation will be used (see - `VerifyingKey.default_hashfunc`). The object needs to implement - the same interface as hashlib.sha1. - :type hashfunc: callable - :param sigencode: function used to encode the signature. - The function needs to accept three parameters: the two integers - that are the signature and the order of the curve over which the - signature was computed. It needs to return an encoded signature. - See `ecdsa.util.sigencode_string` and `ecdsa.util.sigencode_der` - as examples of such functions. - :type sigencode: callable - :param extra_entropy: additional data that will be fed into the random - number generator used in the RFC6979 process. Entirely optional. - :type extra_entropy: bytes like object - - :return: encoded signature over `data` - :rtype: bytes or sigencode function dependant type - """ - hashfunc = hashfunc or self.default_hashfunc - data = normalise_bytes(data) - extra_entropy = normalise_bytes(extra_entropy) - digest = hashfunc(data).digest() - - return self.sign_digest_deterministic( - digest, hashfunc=hashfunc, sigencode=sigencode, - extra_entropy=extra_entropy, allow_truncate=True) - - def sign_digest_deterministic(self, digest, hashfunc=None, - sigencode=sigencode_string, - extra_entropy=b'', allow_truncate=False): - """ - Create signature for digest using the deterministic RFC6679 algorithm. - - `digest` should be the output of cryptographically secure hash function - like SHA256 or SHA-3-256. - - This is the recommended method for performing signatures when no - hashing of data is necessary. - - :param digest: hash of data that will be signed - :type digest: bytes like object - :param hashfunc: hash function to use for computing the random "k" - value from RFC6979 process, - if unspecified, the default hash function selected during - object initialisation will be used (see - `VerifyingKey.default_hashfunc`). The object needs to implement - the same interface as hashlib.sha1. - :type hashfunc: callable - :param sigencode: function used to encode the signature. - The function needs to accept three parameters: the two integers - that are the signature and the order of the curve over which the - signature was computed. It needs to return an encoded signature. - See `ecdsa.util.sigencode_string` and `ecdsa.util.sigencode_der` - as examples of such functions. - :type sigencode: callable - :param extra_entropy: additional data that will be fed into the random - number generator used in the RFC6979 process. Entirely optional. - :type extra_entropy: bytes like object - :param bool allow_truncate: if True, the provided digest can have - bigger bit-size than the order of the curve, the extra bits (at - the end of the digest) will be truncated. Use it when signing - SHA-384 output using NIST256p or in similar situations. - - :return: encoded signature for the `digest` hash - :rtype: bytes or sigencode function dependant type - """ - secexp = self.privkey.secret_multiplier - hashfunc = hashfunc or self.default_hashfunc - digest = normalise_bytes(digest) - extra_entropy = normalise_bytes(extra_entropy) - - def simple_r_s(r, s, order): - return r, s, order - - retry_gen = 0 - while True: - k = rfc6979.generate_k( - self.curve.generator.order(), secexp, hashfunc, digest, - retry_gen=retry_gen, extra_entropy=extra_entropy) - try: - r, s, order = self.sign_digest(digest, - sigencode=simple_r_s, - k=k, - allow_truncate=allow_truncate) - break - except RSZeroError: - retry_gen += 1 - - return sigencode(r, s, order) - - def sign(self, data, entropy=None, hashfunc=None, - sigencode=sigencode_string, k=None): - """ - Create signature over data using the probabilistic ECDSA algorithm. - - This method uses the standard ECDSA algorithm that requires a - cryptographically secure random number generator. - - It's recommended to use the :func:`~SigningKey.sign_deterministic` - method instead of this one. - - :param data: data that will be hashed for signing - :type data: bytes like object - :param callable entropy: randomness source, os.urandom by default - :param hashfunc: hash function to use for hashing the provided `data`. - If unspecified the default hash function selected during - object initialisation will be used (see - `VerifyingKey.default_hashfunc`). - Should behave like hashlib.sha1. The output length of the - hash (in bytes) must not be longer than the length of the curve - order (rounded up to the nearest byte), so using SHA256 with - NIST256p is ok, but SHA256 with NIST192p is not. (In the 2**-96ish - unlikely event of a hash output larger than the curve order, the - hash will effectively be wrapped mod n). - Use hashfunc=hashlib.sha1 to match openssl's -ecdsa-with-SHA1 mode, - or hashfunc=hashlib.sha256 for openssl-1.0.0's -ecdsa-with-SHA256. - :type hashfunc: callable - :param sigencode: function used to encode the signature. - The function needs to accept three parameters: the two integers - that are the signature and the order of the curve over which the - signature was computed. It needs to return an encoded signature. - See `ecdsa.util.sigencode_string` and `ecdsa.util.sigencode_der` - as examples of such functions. - :type sigencode: callable - :param int k: a pre-selected nonce for calculating the signature. - In typical use cases, it should be set to None (the default) to - allow its generation from an entropy source. - - :raises RSZeroError: in the unlikely event when "r" parameter or - "s" parameter is equal 0 as that would leak the key. Calee should - try a better entropy source or different 'k' in such case. - - :return: encoded signature of the hash of `data` - :rtype: bytes or sigencode function dependant type - """ - hashfunc = hashfunc or self.default_hashfunc - data = normalise_bytes(data) - h = hashfunc(data).digest() - return self.sign_digest(h, entropy, sigencode, k, allow_truncate=True) - - def sign_digest(self, digest, entropy=None, sigencode=sigencode_string, - k=None, allow_truncate=False): - """ - Create signature over digest using the probabilistic ECDSA algorithm. - - This method uses the standard ECDSA algorithm that requires a - cryptographically secure random number generator. - - This method does not hash the input. - - It's recommended to use the - :func:`~SigningKey.sign_digest_deterministic` method - instead of this one. - - :param digest: hash value that will be signed - :type digest: bytes like object - :param callable entropy: randomness source, os.urandom by default - :param sigencode: function used to encode the signature. - The function needs to accept three parameters: the two integers - that are the signature and the order of the curve over which the - signature was computed. It needs to return an encoded signature. - See `ecdsa.util.sigencode_string` and `ecdsa.util.sigencode_der` - as examples of such functions. - :type sigencode: callable - :param int k: a pre-selected nonce for calculating the signature. - In typical use cases, it should be set to None (the default) to - allow its generation from an entropy source. - :param bool allow_truncate: if True, the provided digest can have - bigger bit-size than the order of the curve, the extra bits (at - the end of the digest) will be truncated. Use it when signing - SHA-384 output using NIST256p or in similar situations. - - :raises RSZeroError: in the unlikely event when "r" parameter or - "s" parameter is equal 0 as that would leak the key. Calee should - try a better entropy source in such case. - - :return: encoded signature for the `digest` hash - :rtype: bytes or sigencode function dependant type - """ - digest = normalise_bytes(digest) - if allow_truncate: - digest = digest[:self.curve.baselen] - if len(digest) > self.curve.baselen: - raise BadDigestError("this curve (%s) is too short " - "for your digest (%d)" % (self.curve.name, - 8 * len(digest))) - number = string_to_number(digest) - r, s = self.sign_number(number, entropy, k) - return sigencode(r, s, self.privkey.order) - - def sign_number(self, number, entropy=None, k=None): - """ - Sign an integer directly. - - Note, this is a low level method, usually you will want to use - :func:`~SigningKey.sign_deterministic` or - :func:`~SigningKey.sign_digest_deterministic`. - - :param int number: number to sign using the probabilistic ECDSA - algorithm. - :param callable entropy: entropy source, os.urandom by default - :param int k: pre-selected nonce for signature operation. If unset - it will be selected at random using the entropy source. - - :raises RSZeroError: in the unlikely event when "r" parameter or - "s" parameter is equal 0 as that would leak the key. Calee should - try a different 'k' in such case. - - :return: the "r" and "s" parameters of the signature - :rtype: tuple of ints - """ - order = self.privkey.order - - if k is not None: - _k = k - else: - _k = randrange(order, entropy) - - assert 1 <= _k < order - sig = self.privkey.sign(number, _k) - return sig.r, sig.s diff --git a/freezed_deps/ecdsa/numbertheory.py b/freezed_deps/ecdsa/numbertheory.py deleted file mode 100644 index b300440..0000000 --- a/freezed_deps/ecdsa/numbertheory.py +++ /dev/null @@ -1,600 +0,0 @@ -#! /usr/bin/env python -# -# Provide some simple capabilities from number theory. -# -# Version of 2008.11.14. -# -# Written in 2005 and 2006 by Peter Pearson and placed in the public domain. -# Revision history: -# 2008.11.14: Use pow(base, exponent, modulus) for modular_exp. -# Make gcd and lcm accept arbitrarly many arguments. - -from __future__ import division - -from six import integer_types, PY3 -from six.moves import reduce -try: - xrange -except NameError: - xrange = range -try: - from gmpy2 import powmod - GMPY2 = True - GMPY = False -except ImportError: - GMPY2 = False - try: - from gmpy import mpz - GMPY = True - except ImportError: - GMPY = False - -import math -import warnings - - -class Error(Exception): - """Base class for exceptions in this module.""" - pass - - -class SquareRootError(Error): - pass - - -class NegativeExponentError(Error): - pass - - -def modular_exp(base, exponent, modulus): # pragma: no cover - """Raise base to exponent, reducing by modulus""" - # deprecated in 0.14 - warnings.warn("Function is unused in library code. If you use this code, " - "change to pow() builtin.", DeprecationWarning) - if exponent < 0: - raise NegativeExponentError("Negative exponents (%d) not allowed" - % exponent) - return pow(base, exponent, modulus) - - -def polynomial_reduce_mod(poly, polymod, p): - """Reduce poly by polymod, integer arithmetic modulo p. - - Polynomials are represented as lists of coefficients - of increasing powers of x.""" - - # This module has been tested only by extensive use - # in calculating modular square roots. - - # Just to make this easy, require a monic polynomial: - assert polymod[-1] == 1 - - assert len(polymod) > 1 - - while len(poly) >= len(polymod): - if poly[-1] != 0: - for i in xrange(2, len(polymod) + 1): - poly[-i] = (poly[-i] - poly[-1] * polymod[-i]) % p - poly = poly[0:-1] - - return poly - - -def polynomial_multiply_mod(m1, m2, polymod, p): - """Polynomial multiplication modulo a polynomial over ints mod p. - - Polynomials are represented as lists of coefficients - of increasing powers of x.""" - - # This is just a seat-of-the-pants implementation. - - # This module has been tested only by extensive use - # in calculating modular square roots. - - # Initialize the product to zero: - - prod = (len(m1) + len(m2) - 1) * [0] - - # Add together all the cross-terms: - - for i in xrange(len(m1)): - for j in xrange(len(m2)): - prod[i + j] = (prod[i + j] + m1[i] * m2[j]) % p - - return polynomial_reduce_mod(prod, polymod, p) - - -def polynomial_exp_mod(base, exponent, polymod, p): - """Polynomial exponentiation modulo a polynomial over ints mod p. - - Polynomials are represented as lists of coefficients - of increasing powers of x.""" - - # Based on the Handbook of Applied Cryptography, algorithm 2.227. - - # This module has been tested only by extensive use - # in calculating modular square roots. - - assert exponent < p - - if exponent == 0: - return [1] - - G = base - k = exponent - if k % 2 == 1: - s = G - else: - s = [1] - - while k > 1: - k = k // 2 - G = polynomial_multiply_mod(G, G, polymod, p) - if k % 2 == 1: - s = polynomial_multiply_mod(G, s, polymod, p) - - return s - - -def jacobi(a, n): - """Jacobi symbol""" - - # Based on the Handbook of Applied Cryptography (HAC), algorithm 2.149. - - # This function has been tested by comparison with a small - # table printed in HAC, and by extensive use in calculating - # modular square roots. - - assert n >= 3 - assert n % 2 == 1 - a = a % n - if a == 0: - return 0 - if a == 1: - return 1 - a1, e = a, 0 - while a1 % 2 == 0: - a1, e = a1 // 2, e + 1 - if e % 2 == 0 or n % 8 == 1 or n % 8 == 7: - s = 1 - else: - s = -1 - if a1 == 1: - return s - if n % 4 == 3 and a1 % 4 == 3: - s = -s - return s * jacobi(n % a1, a1) - - -def square_root_mod_prime(a, p): - """Modular square root of a, mod p, p prime.""" - - # Based on the Handbook of Applied Cryptography, algorithms 3.34 to 3.39. - - # This module has been tested for all values in [0,p-1] for - # every prime p from 3 to 1229. - - assert 0 <= a < p - assert 1 < p - - if a == 0: - return 0 - if p == 2: - return a - - jac = jacobi(a, p) - if jac == -1: - raise SquareRootError("%d has no square root modulo %d" \ - % (a, p)) - - if p % 4 == 3: - return pow(a, (p + 1) // 4, p) - - if p % 8 == 5: - d = pow(a, (p - 1) // 4, p) - if d == 1: - return pow(a, (p + 3) // 8, p) - if d == p - 1: - return (2 * a * pow(4 * a, (p - 5) // 8, p)) % p - raise RuntimeError("Shouldn't get here.") - - if PY3: - range_top = p - else: - # xrange on python2 can take integers representable as C long only - range_top = min(0x7fffffff, p) - for b in xrange(2, range_top): - if jacobi(b * b - 4 * a, p) == -1: - f = (a, -b, 1) - ff = polynomial_exp_mod((0, 1), (p + 1) // 2, f, p) - assert ff[1] == 0 - return ff[0] - raise RuntimeError("No b found.") - - -if GMPY2: - def inverse_mod(a, m): - """Inverse of a mod m.""" - if a == 0: - return 0 - return powmod(a, -1, m) -elif GMPY: - def inverse_mod(a, m): - """Inverse of a mod m.""" - # while libgmp likely does support inverses modulo, it is accessible - # only using the native `pow()` function, and `pow()` sanity checks - # the parameters before passing them on to underlying implementation - # on Python2 - if a == 0: - return 0 - a = mpz(a) - m = mpz(m) - - lm, hm = mpz(1), mpz(0) - low, high = a % m, m - while low > 1: - r = high // low - lm, low, hm, high = hm - lm * r, high - low * r, lm, low - - return lm % m -else: - def inverse_mod(a, m): - """Inverse of a mod m.""" - - if a == 0: - return 0 - - lm, hm = 1, 0 - low, high = a % m, m - while low > 1: - r = high // low - lm, low, hm, high = hm - lm * r, high - low * r, lm, low - - return lm % m - - -try: - gcd2 = math.gcd -except AttributeError: - def gcd2(a, b): - """Greatest common divisor using Euclid's algorithm.""" - while a: - a, b = b % a, a - return b - - -def gcd(*a): - """Greatest common divisor. - - Usage: gcd([ 2, 4, 6 ]) - or: gcd(2, 4, 6) - """ - - if len(a) > 1: - return reduce(gcd2, a) - if hasattr(a[0], "__iter__"): - return reduce(gcd2, a[0]) - return a[0] - - -def lcm2(a, b): - """Least common multiple of two integers.""" - - return (a * b) // gcd(a, b) - - -def lcm(*a): - """Least common multiple. - - Usage: lcm([ 3, 4, 5 ]) - or: lcm(3, 4, 5) - """ - - if len(a) > 1: - return reduce(lcm2, a) - if hasattr(a[0], "__iter__"): - return reduce(lcm2, a[0]) - return a[0] - - -def factorization(n): - """Decompose n into a list of (prime,exponent) pairs.""" - - assert isinstance(n, integer_types) - - if n < 2: - return [] - - result = [] - d = 2 - - # Test the small primes: - - for d in smallprimes: - if d > n: - break - q, r = divmod(n, d) - if r == 0: - count = 1 - while d <= n: - n = q - q, r = divmod(n, d) - if r != 0: - break - count = count + 1 - result.append((d, count)) - - # If n is still greater than the last of our small primes, - # it may require further work: - - if n > smallprimes[-1]: - if is_prime(n): # If what's left is prime, it's easy: - result.append((n, 1)) - else: # Ugh. Search stupidly for a divisor: - d = smallprimes[-1] - while 1: - d = d + 2 # Try the next divisor. - q, r = divmod(n, d) - if q < d: # n < d*d means we're done, n = 1 or prime. - break - if r == 0: # d divides n. How many times? - count = 1 - n = q - while d <= n: # As long as d might still divide n, - q, r = divmod(n, d) # see if it does. - if r != 0: - break - n = q # It does. Reduce n, increase count. - count = count + 1 - result.append((d, count)) - if n > 1: - result.append((n, 1)) - - return result - - -def phi(n): # pragma: no cover - """Return the Euler totient function of n.""" - # deprecated in 0.14 - warnings.warn("Function is unused by library code. If you use this code, " - "please open an issue in " - "https://github.com/warner/python-ecdsa", - DeprecationWarning) - - assert isinstance(n, integer_types) - - if n < 3: - return 1 - - result = 1 - ff = factorization(n) - for f in ff: - e = f[1] - if e > 1: - result = result * f[0] ** (e - 1) * (f[0] - 1) - else: - result = result * (f[0] - 1) - return result - - -def carmichael(n): # pragma: no cover - """Return Carmichael function of n. - - Carmichael(n) is the smallest integer x such that - m**x = 1 mod n for all m relatively prime to n. - """ - # deprecated in 0.14 - warnings.warn("Function is unused by library code. If you use this code, " - "please open an issue in " - "https://github.com/warner/python-ecdsa", - DeprecationWarning) - - return carmichael_of_factorized(factorization(n)) - - -def carmichael_of_factorized(f_list): # pragma: no cover - """Return the Carmichael function of a number that is - represented as a list of (prime,exponent) pairs. - """ - # deprecated in 0.14 - warnings.warn("Function is unused by library code. If you use this code, " - "please open an issue in " - "https://github.com/warner/python-ecdsa", - DeprecationWarning) - - if len(f_list) < 1: - return 1 - - result = carmichael_of_ppower(f_list[0]) - for i in xrange(1, len(f_list)): - result = lcm(result, carmichael_of_ppower(f_list[i])) - - return result - - -def carmichael_of_ppower(pp): # pragma: no cover - """Carmichael function of the given power of the given prime. - """ - # deprecated in 0.14 - warnings.warn("Function is unused by library code. If you use this code, " - "please open an issue in " - "https://github.com/warner/python-ecdsa", - DeprecationWarning) - - p, a = pp - if p == 2 and a > 2: - return 2**(a - 2) - else: - return (p - 1) * p**(a - 1) - - -def order_mod(x, m): # pragma: no cover - """Return the order of x in the multiplicative group mod m. - """ - # deprecated in 0.14 - warnings.warn("Function is unused by library code. If you use this code, " - "please open an issue in " - "https://github.com/warner/python-ecdsa", - DeprecationWarning) - - # Warning: this implementation is not very clever, and will - # take a long time if m is very large. - - if m <= 1: - return 0 - - assert gcd(x, m) == 1 - - z = x - result = 1 - while z != 1: - z = (z * x) % m - result = result + 1 - return result - - -def largest_factor_relatively_prime(a, b): # pragma: no cover - """Return the largest factor of a relatively prime to b. - """ - # deprecated in 0.14 - warnings.warn("Function is unused by library code. If you use this code, " - "please open an issue in " - "https://github.com/warner/python-ecdsa", - DeprecationWarning) - - while 1: - d = gcd(a, b) - if d <= 1: - break - b = d - while 1: - q, r = divmod(a, d) - if r > 0: - break - a = q - return a - - -def kinda_order_mod(x, m): # pragma: no cover - """Return the order of x in the multiplicative group mod m', - where m' is the largest factor of m relatively prime to x. - """ - # deprecated in 0.14 - warnings.warn("Function is unused by library code. If you use this code, " - "please open an issue in " - "https://github.com/warner/python-ecdsa", - DeprecationWarning) - - return order_mod(x, largest_factor_relatively_prime(m, x)) - - -def is_prime(n): - """Return True if x is prime, False otherwise. - - We use the Miller-Rabin test, as given in Menezes et al. p. 138. - This test is not exact: there are composite values n for which - it returns True. - - In testing the odd numbers from 10000001 to 19999999, - about 66 composites got past the first test, - 5 got past the second test, and none got past the third. - Since factors of 2, 3, 5, 7, and 11 were detected during - preliminary screening, the number of numbers tested by - Miller-Rabin was (19999999 - 10000001)*(2/3)*(4/5)*(6/7) - = 4.57 million. - """ - - # (This is used to study the risk of false positives:) - global miller_rabin_test_count - - miller_rabin_test_count = 0 - - if n <= smallprimes[-1]: - if n in smallprimes: - return True - else: - return False - - if gcd(n, 2 * 3 * 5 * 7 * 11) != 1: - return False - - # Choose a number of iterations sufficient to reduce the - # probability of accepting a composite below 2**-80 - # (from Menezes et al. Table 4.4): - - t = 40 - n_bits = 1 + int(math.log(n, 2)) - for k, tt in ((100, 27), - (150, 18), - (200, 15), - (250, 12), - (300, 9), - (350, 8), - (400, 7), - (450, 6), - (550, 5), - (650, 4), - (850, 3), - (1300, 2), - ): - if n_bits < k: - break - t = tt - - # Run the test t times: - - s = 0 - r = n - 1 - while (r % 2) == 0: - s = s + 1 - r = r // 2 - for i in xrange(t): - a = smallprimes[i] - y = pow(a, r, n) - if y != 1 and y != n - 1: - j = 1 - while j <= s - 1 and y != n - 1: - y = pow(y, 2, n) - if y == 1: - miller_rabin_test_count = i + 1 - return False - j = j + 1 - if y != n - 1: - miller_rabin_test_count = i + 1 - return False - return True - - -def next_prime(starting_value): - "Return the smallest prime larger than the starting value." - - if starting_value < 2: - return 2 - result = (starting_value + 1) | 1 - while not is_prime(result): - result = result + 2 - return result - - -smallprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, - 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, - 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, - 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, - 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, - 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, - 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, - 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, - 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, - 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, - 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, - 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, - 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, - 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, - 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, - 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, - 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, - 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, - 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, - 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229] - -miller_rabin_test_count = 0 diff --git a/freezed_deps/ecdsa/rfc6979.py b/freezed_deps/ecdsa/rfc6979.py deleted file mode 100644 index a489381..0000000 --- a/freezed_deps/ecdsa/rfc6979.py +++ /dev/null @@ -1,107 +0,0 @@ -''' -RFC 6979: - Deterministic Usage of the Digital Signature Algorithm (DSA) and - Elliptic Curve Digital Signature Algorithm (ECDSA) - - http://tools.ietf.org/html/rfc6979 - -Many thanks to Coda Hale for his implementation in Go language: - https://github.com/codahale/rfc6979 -''' - -import hmac -from binascii import hexlify -from .util import number_to_string, number_to_string_crop, bit_length -from ._compat import hmac_compat - - -# bit_length was defined in this module previously so keep it for backwards -# compatibility, will need to deprecate and remove it later -__all__ = ["bit_length", "bits2int", "bits2octets", "generate_k"] - - -def bits2int(data, qlen): - x = int(hexlify(data), 16) - l = len(data) * 8 - - if l > qlen: - return x >> (l - qlen) - return x - - -def bits2octets(data, order): - z1 = bits2int(data, bit_length(order)) - z2 = z1 - order - - if z2 < 0: - z2 = z1 - - return number_to_string_crop(z2, order) - - -# https://tools.ietf.org/html/rfc6979#section-3.2 -def generate_k(order, secexp, hash_func, data, retry_gen=0, extra_entropy=b''): - ''' - order - order of the DSA generator used in the signature - secexp - secure exponent (private key) in numeric form - hash_func - reference to the same hash function used for generating hash - data - hash in binary form of the signing data - retry_gen - int - how many good 'k' values to skip before returning - extra_entropy - extra added data in binary form as per section-3.6 of - rfc6979 - ''' - - qlen = bit_length(order) - holen = hash_func().digest_size - rolen = (qlen + 7) / 8 - bx = (hmac_compat(number_to_string(secexp, order)), - hmac_compat(bits2octets(data, order)), - hmac_compat(extra_entropy)) - - # Step B - v = b'\x01' * holen - - # Step C - k = b'\x00' * holen - - # Step D - - k = hmac.new(k, digestmod=hash_func) - k.update(v + b'\x00') - for i in bx: - k.update(i) - k = k.digest() - - # Step E - v = hmac.new(k, v, hash_func).digest() - - # Step F - k = hmac.new(k, digestmod=hash_func) - k.update(v + b'\x01') - for i in bx: - k.update(i) - k = k.digest() - - # Step G - v = hmac.new(k, v, hash_func).digest() - - # Step H - while True: - # Step H1 - t = b'' - - # Step H2 - while len(t) < rolen: - v = hmac.new(k, v, hash_func).digest() - t += v - - # Step H3 - secret = bits2int(t, qlen) - - if 1 <= secret < order: - if retry_gen <= 0: - return secret - retry_gen -= 1 - - k = hmac.new(k, v + b'\x00', hash_func).digest() - v = hmac.new(k, v, hash_func).digest() diff --git a/freezed_deps/ecdsa/test_der.py b/freezed_deps/ecdsa/test_der.py deleted file mode 100644 index e6cd593..0000000 --- a/freezed_deps/ecdsa/test_der.py +++ /dev/null @@ -1,384 +0,0 @@ - -# compatibility with Python 2.6, for that we need unittest2 package, -# which is not available on 3.3 or 3.4 -import warnings -from binascii import hexlify -try: - import unittest2 as unittest -except ImportError: - import unittest -from six import b -import hypothesis.strategies as st -from hypothesis import given, example -import pytest -from ._compat import str_idx_as_int -from .curves import NIST256p, NIST224p -from .der import remove_integer, UnexpectedDER, read_length, encode_bitstring,\ - remove_bitstring, remove_object, encode_oid - - -class TestRemoveInteger(unittest.TestCase): - # DER requires the integers to be 0-padded only if they would be - # interpreted as negative, check if those errors are detected - def test_non_minimal_encoding(self): - with self.assertRaises(UnexpectedDER): - remove_integer(b('\x02\x02\x00\x01')) - - def test_negative_with_high_bit_set(self): - with self.assertRaises(UnexpectedDER): - remove_integer(b('\x02\x01\x80')) - - def test_minimal_with_high_bit_set(self): - val, rem = remove_integer(b('\x02\x02\x00\x80')) - - self.assertEqual(val, 0x80) - self.assertFalse(rem) - - def test_two_zero_bytes_with_high_bit_set(self): - with self.assertRaises(UnexpectedDER): - remove_integer(b('\x02\x03\x00\x00\xff')) - - def test_zero_length_integer(self): - with self.assertRaises(UnexpectedDER): - remove_integer(b('\x02\x00')) - - def test_empty_string(self): - with self.assertRaises(UnexpectedDER): - remove_integer(b('')) - - def test_encoding_of_zero(self): - val, rem = remove_integer(b('\x02\x01\x00')) - - self.assertEqual(val, 0) - self.assertFalse(rem) - - def test_encoding_of_127(self): - val, rem = remove_integer(b('\x02\x01\x7f')) - - self.assertEqual(val, 127) - self.assertFalse(rem) - - def test_encoding_of_128(self): - val, rem = remove_integer(b('\x02\x02\x00\x80')) - - self.assertEqual(val, 128) - self.assertFalse(rem) - - -class TestReadLength(unittest.TestCase): - # DER requires the lengths between 0 and 127 to be encoded using the short - # form and lengths above that encoded with minimal number of bytes - # necessary - def test_zero_length(self): - self.assertEqual((0, 1), read_length(b('\x00'))) - - def test_two_byte_zero_length(self): - with self.assertRaises(UnexpectedDER): - read_length(b('\x81\x00')) - - def test_two_byte_small_length(self): - with self.assertRaises(UnexpectedDER): - read_length(b('\x81\x7f')) - - def test_long_form_with_zero_length(self): - with self.assertRaises(UnexpectedDER): - read_length(b('\x80')) - - def test_smallest_two_byte_length(self): - self.assertEqual((128, 2), read_length(b('\x81\x80'))) - - def test_zero_padded_length(self): - with self.assertRaises(UnexpectedDER): - read_length(b('\x82\x00\x80')) - - def test_two_three_byte_length(self): - self.assertEqual((256, 3), read_length(b'\x82\x01\x00')) - - def test_empty_string(self): - with self.assertRaises(UnexpectedDER): - read_length(b('')) - - def test_length_overflow(self): - with self.assertRaises(UnexpectedDER): - read_length(b('\x83\x01\x00')) - - -class TestEncodeBitstring(unittest.TestCase): - # DER requires BIT STRINGS to include a number of padding bits in the - # encoded byte string, that padding must be between 0 and 7 - - def test_old_call_convention(self): - """This is the old way to use the function.""" - warnings.simplefilter('always') - with pytest.warns(DeprecationWarning) as warns: - der = encode_bitstring(b'\x00\xff') - - self.assertEqual(len(warns), 1) - self.assertIn("unused= needs to be specified", - warns[0].message.args[0]) - - self.assertEqual(der, b'\x03\x02\x00\xff') - - def test_new_call_convention(self): - """This is how it should be called now.""" - warnings.simplefilter('always') - with pytest.warns(None) as warns: - der = encode_bitstring(b'\xff', 0) - - # verify that new call convention doesn't raise Warnings - self.assertEqual(len(warns), 0) - - self.assertEqual(der, b'\x03\x02\x00\xff') - - def test_implicit_unused_bits(self): - """ - Writing bit string with already included the number of unused bits. - """ - warnings.simplefilter('always') - with pytest.warns(None) as warns: - der = encode_bitstring(b'\x00\xff', None) - - # verify that new call convention doesn't raise Warnings - self.assertEqual(len(warns), 0) - - self.assertEqual(der, b'\x03\x02\x00\xff') - - def test_explicit_unused_bits(self): - der = encode_bitstring(b'\xff\xf0', 4) - - self.assertEqual(der, b'\x03\x03\x04\xff\xf0') - - def test_empty_string(self): - self.assertEqual(encode_bitstring(b'', 0), b'\x03\x01\x00') - - def test_invalid_unused_count(self): - with self.assertRaises(ValueError): - encode_bitstring(b'\xff\x00', 8) - - def test_invalid_unused_with_empty_string(self): - with self.assertRaises(ValueError): - encode_bitstring(b'', 1) - - def test_non_zero_padding_bits(self): - with self.assertRaises(ValueError): - encode_bitstring(b'\xff', 2) - - -class TestRemoveBitstring(unittest.TestCase): - def test_old_call_convention(self): - """This is the old way to call the function.""" - warnings.simplefilter('always') - with pytest.warns(DeprecationWarning) as warns: - bits, rest = remove_bitstring(b'\x03\x02\x00\xff') - - self.assertEqual(len(warns), 1) - self.assertIn("expect_unused= needs to be specified", - warns[0].message.args[0]) - - self.assertEqual(bits, b'\x00\xff') - self.assertEqual(rest, b'') - - def test_new_call_convention(self): - warnings.simplefilter('always') - with pytest.warns(None) as warns: - bits, rest = remove_bitstring(b'\x03\x02\x00\xff', 0) - - self.assertEqual(len(warns), 0) - - self.assertEqual(bits, b'\xff') - self.assertEqual(rest, b'') - - def test_implicit_unexpected_unused(self): - warnings.simplefilter('always') - with pytest.warns(None) as warns: - bits, rest = remove_bitstring(b'\x03\x02\x00\xff', None) - - self.assertEqual(len(warns), 0) - - self.assertEqual(bits, (b'\xff', 0)) - self.assertEqual(rest, b'') - - def test_with_padding(self): - ret, rest = remove_bitstring(b'\x03\x02\x04\xf0', None) - - self.assertEqual(ret, (b'\xf0', 4)) - self.assertEqual(rest, b'') - - def test_not_a_bitstring(self): - with self.assertRaises(UnexpectedDER): - remove_bitstring(b'\x02\x02\x00\xff', None) - - def test_empty_encoding(self): - with self.assertRaises(UnexpectedDER): - remove_bitstring(b'\x03\x00', None) - - def test_empty_string(self): - with self.assertRaises(UnexpectedDER): - remove_bitstring(b'', None) - - def test_no_length(self): - with self.assertRaises(UnexpectedDER): - remove_bitstring(b'\x03', None) - - def test_unexpected_number_of_unused_bits(self): - with self.assertRaises(UnexpectedDER): - remove_bitstring(b'\x03\x02\x00\xff', 1) - - def test_invalid_encoding_of_unused_bits(self): - with self.assertRaises(UnexpectedDER): - remove_bitstring(b'\x03\x03\x08\xff\x00', None) - - def test_invalid_encoding_of_empty_string(self): - with self.assertRaises(UnexpectedDER): - remove_bitstring(b'\x03\x01\x01', None) - - def test_invalid_padding_bits(self): - with self.assertRaises(UnexpectedDER): - remove_bitstring(b'\x03\x02\x01\xff', None) - - -class TestStrIdxAsInt(unittest.TestCase): - def test_str(self): - self.assertEqual(115, str_idx_as_int('str', 0)) - - def test_bytes(self): - self.assertEqual(115, str_idx_as_int(b'str', 0)) - - def test_bytearray(self): - self.assertEqual(115, str_idx_as_int(bytearray(b'str'), 0)) - - -class TestEncodeOid(unittest.TestCase): - def test_pub_key_oid(self): - oid_ecPublicKey = encode_oid(1, 2, 840, 10045, 2, 1) - self.assertEqual(hexlify(oid_ecPublicKey), b("06072a8648ce3d0201")) - - def test_nist224p_oid(self): - self.assertEqual(hexlify(NIST224p.encoded_oid), b("06052b81040021")) - - def test_nist256p_oid(self): - self.assertEqual(hexlify(NIST256p.encoded_oid), - b"06082a8648ce3d030107") - - def test_large_second_subid(self): - # from X.690, section 8.19.5 - oid = encode_oid(2, 999, 3) - self.assertEqual(oid, b'\x06\x03\x88\x37\x03') - - def test_with_two_subids(self): - oid = encode_oid(2, 999) - self.assertEqual(oid, b'\x06\x02\x88\x37') - - def test_zero_zero(self): - oid = encode_oid(0, 0) - self.assertEqual(oid, b'\x06\x01\x00') - - def test_with_wrong_types(self): - with self.assertRaises((TypeError, AssertionError)): - encode_oid(0, None) - - def test_with_small_first_large_second(self): - with self.assertRaises(AssertionError): - encode_oid(1, 40) - - def test_small_first_max_second(self): - oid = encode_oid(1, 39) - self.assertEqual(oid, b'\x06\x01\x4f') - - def test_with_invalid_first(self): - with self.assertRaises(AssertionError): - encode_oid(3, 39) - - -class TestRemoveObject(unittest.TestCase): - @classmethod - def setUpClass(cls): - cls.oid_ecPublicKey = encode_oid(1, 2, 840, 10045, 2, 1) - - def test_pub_key_oid(self): - oid, rest = remove_object(self.oid_ecPublicKey) - self.assertEqual(rest, b'') - self.assertEqual(oid, (1, 2, 840, 10045, 2, 1)) - - def test_with_extra_bytes(self): - oid, rest = remove_object(self.oid_ecPublicKey + b'more') - self.assertEqual(rest, b'more') - self.assertEqual(oid, (1, 2, 840, 10045, 2, 1)) - - def test_with_large_second_subid(self): - # from X.690, section 8.19.5 - oid, rest = remove_object(b'\x06\x03\x88\x37\x03') - self.assertEqual(rest, b'') - self.assertEqual(oid, (2, 999, 3)) - - def test_with_padded_first_subid(self): - with self.assertRaises(UnexpectedDER): - remove_object(b'\x06\x02\x80\x00') - - def test_with_padded_second_subid(self): - with self.assertRaises(UnexpectedDER): - remove_object(b'\x06\x04\x88\x37\x80\x01') - - def test_with_missing_last_byte_of_multi_byte(self): - with self.assertRaises(UnexpectedDER): - remove_object(b'\x06\x03\x88\x37\x83') - - def test_with_two_subids(self): - oid, rest = remove_object(b'\x06\x02\x88\x37') - self.assertEqual(rest, b'') - self.assertEqual(oid, (2, 999)) - - def test_zero_zero(self): - oid, rest = remove_object(b'\x06\x01\x00') - self.assertEqual(rest, b'') - self.assertEqual(oid, (0, 0)) - - def test_empty_string(self): - with self.assertRaises(UnexpectedDER): - remove_object(b'') - - def test_missing_length(self): - with self.assertRaises(UnexpectedDER): - remove_object(b'\x06') - - def test_empty_oid(self): - with self.assertRaises(UnexpectedDER): - remove_object(b'\x06\x00') - - def test_empty_oid_overflow(self): - with self.assertRaises(UnexpectedDER): - remove_object(b'\x06\x01') - - def test_with_wrong_type(self): - with self.assertRaises(UnexpectedDER): - remove_object(b'\x04\x02\x88\x37') - - def test_with_too_long_length(self): - with self.assertRaises(UnexpectedDER): - remove_object(b'\x06\x03\x88\x37') - - -def st_oid(draw, max_value=2**512, max_size=50): - """ - Hypothesis strategy that returns valid OBJECT IDENTIFIERs as tuples - - :param max_value: maximum value of any single sub-identifier - :param max_size: maximum length of the generated OID - """ - first = draw(st.integers(min_value=0, max_value=2)) - if first < 2: - second = draw(st.integers(min_value=0, max_value=39)) - else: - second = draw(st.integers(min_value=0, max_value=max_value)) - rest = draw(st.lists(st.integers(min_value=0, max_value=max_value), - max_size=max_size)) - return (first, second) + tuple(rest) - - -@given(st_oid()) -def test_oids(ids): - encoded_oid = encode_oid(*ids) - decoded_oid, rest = remove_object(encoded_oid) - assert rest == b'' - assert decoded_oid == ids diff --git a/freezed_deps/ecdsa/test_ecdh.py b/freezed_deps/ecdsa/test_ecdh.py deleted file mode 100644 index 74c8bba..0000000 --- a/freezed_deps/ecdsa/test_ecdh.py +++ /dev/null @@ -1,350 +0,0 @@ - -import os -import shutil -import subprocess -import pytest -from binascii import hexlify, unhexlify - -from .curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p -from .curves import curves -from .ecdh import ECDH, InvalidCurveError, \ - InvalidSharedSecretError, NoKeyError -from .keys import SigningKey, VerifyingKey - - [email protected]("vcurve", curves, ids=[curve.name for curve in curves]) -def test_ecdh_each(vcurve): - ecdh1 = ECDH(curve=vcurve) - ecdh2 = ECDH(curve=vcurve) - - ecdh2.generate_private_key() - ecdh1.load_received_public_key(ecdh2.get_public_key()) - ecdh2.load_received_public_key(ecdh1.generate_private_key()) - - secret1 = ecdh1.generate_sharedsecret_bytes() - secret2 = ecdh2.generate_sharedsecret_bytes() - assert secret1 == secret2 - - -def test_ecdh_no_public_key(): - ecdh1 = ECDH(curve=NIST192p) - - with pytest.raises(NoKeyError): - ecdh1.generate_sharedsecret_bytes() - - ecdh1.generate_private_key() - - with pytest.raises(NoKeyError): - ecdh1.generate_sharedsecret_bytes() - - -def test_ecdh_wrong_public_key_curve(): - ecdh1 = ECDH(curve=NIST192p) - ecdh1.generate_private_key() - ecdh2 = ECDH(curve=NIST256p) - ecdh2.generate_private_key() - - with pytest.raises(InvalidCurveError): - ecdh1.load_received_public_key(ecdh2.get_public_key()) - - with pytest.raises(InvalidCurveError): - ecdh2.load_received_public_key(ecdh1.get_public_key()) - - ecdh1.public_key = ecdh2.get_public_key() - ecdh2.public_key = ecdh1.get_public_key() - - with pytest.raises(InvalidCurveError): - ecdh1.generate_sharedsecret_bytes() - - with pytest.raises(InvalidCurveError): - ecdh2.generate_sharedsecret_bytes() - - -def test_ecdh_invalid_shared_secret_curve(): - ecdh1 = ECDH(curve=NIST256p) - ecdh1.generate_private_key() - - ecdh1.load_received_public_key(SigningKey.generate(NIST256p).get_verifying_key()) - - ecdh1.private_key.privkey.secret_multiplier = ecdh1.private_key.curve.order - - with pytest.raises(InvalidSharedSecretError): - ecdh1.generate_sharedsecret_bytes() - - -# https://github.com/scogliani/ecc-test-vectors/blob/master/ecdh_kat/secp192r1.txt -# https://github.com/scogliani/ecc-test-vectors/blob/master/ecdh_kat/secp256r1.txt -# https://github.com/coruus/nist-testvectors/blob/master/csrc.nist.gov/groups/STM/cavp/documents/components/ecccdhtestvectors/KAS_ECC_CDH_PrimitiveTest.txt - "curve,privatekey,pubkey,secret", - [ - pytest.param( - NIST192p, - "f17d3fea367b74d340851ca4270dcb24c271f445bed9d527", - "42ea6dd9969dd2a61fea1aac7f8e98edcc896c6e55857cc0" - "dfbe5d7c61fac88b11811bde328e8a0d12bf01a9d204b523", - "803d8ab2e5b6e6fca715737c3a82f7ce3c783124f6d51cd0", - id="NIST192p-1" - ), - pytest.param( - NIST192p, - "56e853349d96fe4c442448dacb7cf92bb7a95dcf574a9bd5", - "deb5712fa027ac8d2f22c455ccb73a91e17b6512b5e030e7" - "7e2690a02cc9b28708431a29fb54b87b1f0c14e011ac2125", - "c208847568b98835d7312cef1f97f7aa298283152313c29d", - id="NIST192p-2" - ), - pytest.param( - NIST192p, - "c6ef61fe12e80bf56f2d3f7d0bb757394519906d55500949", - "4edaa8efc5a0f40f843663ec5815e7762dddc008e663c20f" - "0a9f8dc67a3e60ef6d64b522185d03df1fc0adfd42478279", - "87229107047a3b611920d6e3b2c0c89bea4f49412260b8dd", - id="NIST192p-3" - ), - pytest.param( - NIST192p, - "e6747b9c23ba7044f38ff7e62c35e4038920f5a0163d3cda", - "8887c276edeed3e9e866b46d58d895c73fbd80b63e382e88" - "04c5097ba6645e16206cfb70f7052655947dd44a17f1f9d5", - "eec0bed8fc55e1feddc82158fd6dc0d48a4d796aaf47d46c", - id="NIST192p-4" - ), - pytest.param( - NIST192p, - "beabedd0154a1afcfc85d52181c10f5eb47adc51f655047d", - "0d045f30254adc1fcefa8a5b1f31bf4e739dd327cd18d594" - "542c314e41427c08278a08ce8d7305f3b5b849c72d8aff73", - "716e743b1b37a2cd8479f0a3d5a74c10ba2599be18d7e2f4", - id="NIST192p-5" - ), - pytest.param( - NIST192p, - "cf70354226667321d6e2baf40999e2fd74c7a0f793fa8699", - "fb35ca20d2e96665c51b98e8f6eb3d79113508d8bccd4516" - "368eec0d5bfb847721df6aaff0e5d48c444f74bf9cd8a5a7", - "f67053b934459985a315cb017bf0302891798d45d0e19508", - id="NIST192p-6" - ), - pytest.param( - NIST224p, - "8346a60fc6f293ca5a0d2af68ba71d1dd389e5e40837942df3e43cbd", - "af33cd0629bc7e996320a3f40368f74de8704fa37b8fab69abaae280" - "882092ccbba7930f419a8a4f9bb16978bbc3838729992559a6f2e2d7", - "7d96f9a3bd3c05cf5cc37feb8b9d5209d5c2597464dec3e9983743e8", - id="NIST224p" - ), - pytest.param( - NIST256p, - "7d7dc5f71eb29ddaf80d6214632eeae03d9058af1fb6d22ed80badb62bc1a534", - "700c48f77f56584c5cc632ca65640db91b6bacce3a4df6b42ce7cc838833d287" - "db71e509e3fd9b060ddb20ba5c51dcc5948d46fbf640dfe0441782cab85fa4ac", - "46fc62106420ff012e54a434fbdd2d25ccc5852060561e68040dd7778997bd7b", - id="NIST256p-1" - ), - pytest.param( - NIST256p, - "38f65d6dce47676044d58ce5139582d568f64bb16098d179dbab07741dd5caf5", - "809f04289c64348c01515eb03d5ce7ac1a8cb9498f5caa50197e58d43a86a7ae" - "b29d84e811197f25eba8f5194092cb6ff440e26d4421011372461f579271cda3", - "057d636096cb80b67a8c038c890e887d1adfa4195e9b3ce241c8a778c59cda67", - id="NIST256p-2" - ), - pytest.param( - NIST256p, - "1accfaf1b97712b85a6f54b148985a1bdc4c9bec0bd258cad4b3d603f49f32c8", - "a2339c12d4a03c33546de533268b4ad667debf458b464d77443636440ee7fec3" - "ef48a3ab26e20220bcda2c1851076839dae88eae962869a497bf73cb66faf536", - "2d457b78b4614132477618a5b077965ec90730a8c81a1c75d6d4ec68005d67ec", - id="NIST256p-3" - ), - pytest.param( - NIST256p, - "207c43a79bfee03db6f4b944f53d2fb76cc49ef1c9c4d34d51b6c65c4db6932d", - "df3989b9fa55495719b3cf46dccd28b5153f7808191dd518eff0c3cff2b705ed" - "422294ff46003429d739a33206c8752552c8ba54a270defc06e221e0feaf6ac4", - "96441259534b80f6aee3d287a6bb17b5094dd4277d9e294f8fe73e48bf2a0024", - id="NIST256p-4" - ), - pytest.param( - NIST256p, - "59137e38152350b195c9718d39673d519838055ad908dd4757152fd8255c09bf", - "41192d2813e79561e6a1d6f53c8bc1a433a199c835e141b05a74a97b0faeb922" - "1af98cc45e98a7e041b01cf35f462b7562281351c8ebf3ffa02e33a0722a1328", - "19d44c8d63e8e8dd12c22a87b8cd4ece27acdde04dbf47f7f27537a6999a8e62", - id="NIST256p-5" - ), - pytest.param( - NIST256p, - "f5f8e0174610a661277979b58ce5c90fee6c9b3bb346a90a7196255e40b132ef", - "33e82092a0f1fb38f5649d5867fba28b503172b7035574bf8e5b7100a3052792" - "f2cf6b601e0a05945e335550bf648d782f46186c772c0f20d3cd0d6b8ca14b2f", - "664e45d5bba4ac931cd65d52017e4be9b19a515f669bea4703542a2c525cd3d3", - id="NIST256p-6" - ), - pytest.param( - NIST384p, - "3cc3122a68f0d95027ad38c067916ba0eb8c38894d22e1b1" - "5618b6818a661774ad463b205da88cf699ab4d43c9cf98a1", - "a7c76b970c3b5fe8b05d2838ae04ab47697b9eaf52e76459" - "2efda27fe7513272734466b400091adbf2d68c58e0c50066" - "ac68f19f2e1cb879aed43a9969b91a0839c4c38a49749b66" - "1efedf243451915ed0905a32b060992b468c64766fc8437a", - "5f9d29dc5e31a163060356213669c8ce132e22f57c9a04f4" - "0ba7fcead493b457e5621e766c40a2e3d4d6a04b25e533f1", - id="NIST384p" - ), - pytest.param( - NIST521p, - "017eecc07ab4b329068fba65e56a1f8890aa935e57134ae0ffcce802735151f4ea" - "c6564f6ee9974c5e6887a1fefee5743ae2241bfeb95d5ce31ddcb6f9edb4d6fc47", - "00685a48e86c79f0f0875f7bc18d25eb5fc8c0b07e5da4f4370f3a949034085433" - "4b1e1b87fa395464c60626124a4e70d0f785601d37c09870ebf176666877a2046d" - "01ba52c56fc8776d9e8f5db4f0cc27636d0b741bbe05400697942e80b739884a83" - "bde99e0f6716939e632bc8986fa18dccd443a348b6c3e522497955a4f3c302f676", - "005fc70477c3e63bc3954bd0df3ea0d1f41ee21746ed95fc5e1fdf90930d5e1366" - "72d72cc770742d1711c3c3a4c334a0ad9759436a4d3c5bf6e74b9578fac148c831", - id="NIST521p" - ), - ], -) -def test_ecdh_NIST(curve,privatekey,pubkey,secret): - ecdh = ECDH(curve=curve) - ecdh.load_private_key_bytes(unhexlify(privatekey)) - ecdh.load_received_public_key_bytes(unhexlify(pubkey)) - - sharedsecret = ecdh.generate_sharedsecret_bytes() - - assert sharedsecret == unhexlify(secret) - - -pem_local_private_key = ( - "-----BEGIN EC PRIVATE KEY-----\n" - "MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n" - "BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n" - "bA==\n" - "-----END EC PRIVATE KEY-----\n") -der_local_private_key = ( - "305f02010104185ec8420bd6ef9252a942e989043ca29f561fa525770eb1c5a00a06082a864" - "8ce3d030101a13403320004b88177d084ef17f5e45639408028360f9f59b4a4d7264e62da06" - "51dce47a35a4c5b45cf51593423a8b557b9c2099f36c") -pem_remote_public_key = ( - "-----BEGIN PUBLIC KEY-----\n" - "MEkwEwYHKoZIzj0CAQYIKoZIzj0DAQEDMgAEuIF30ITvF/XkVjlAgCg2D59ZtKTX\n" - "Jk5i2gZR3OR6NaTFtFz1FZNCOotVe5wgmfNs\n" - "-----END PUBLIC KEY-----\n") -der_remote_public_key = ( - "3049301306072a8648ce3d020106082a8648ce3d03010103320004b88177d084ef17f5e4563" - "9408028360f9f59b4a4d7264e62da0651dce47a35a4c5b45cf51593423a8b557b9c2099f36c") -gshared_secret = "8f457e34982478d1c34b9cd2d0c15911b72dd60d869e2cea" - - -def test_ecdh_pem(): - ecdh = ECDH() - ecdh.load_private_key_pem(pem_local_private_key) - ecdh.load_received_public_key_pem(pem_remote_public_key) - - sharedsecret = ecdh.generate_sharedsecret_bytes() - - assert sharedsecret == unhexlify(gshared_secret) - - -def test_ecdh_der(): - ecdh = ECDH() - ecdh.load_private_key_der(unhexlify(der_local_private_key)) - ecdh.load_received_public_key_der(unhexlify(der_remote_public_key)) - - sharedsecret = ecdh.generate_sharedsecret_bytes() - - assert sharedsecret == unhexlify(gshared_secret) - - -# Exception classes used by run_openssl. -class RunOpenSslError(Exception): - pass - - -def run_openssl(cmd): - OPENSSL = "openssl" - p = subprocess.Popen([OPENSSL] + cmd.split(), - stdout=subprocess.PIPE, - stderr=subprocess.STDOUT) - stdout, ignored = p.communicate() - if p.returncode != 0: - raise RunOpenSslError( - "cmd '%s %s' failed: rc=%s, stdout/err was %s" % - (OPENSSL, cmd, p.returncode, stdout)) - return stdout.decode() - - -OPENSSL_SUPPORTED_CURVES = set(c.split(':')[0].strip() for c in - run_openssl("ecparam -list_curves") - .split('\n')) - - [email protected]("vcurve", curves, ids=[curve.name for curve in curves]) -def test_ecdh_with_openssl(vcurve): - assert vcurve.openssl_name - - if vcurve.openssl_name not in OPENSSL_SUPPORTED_CURVES: - pytest.skip("system openssl does not support " + vcurve.openssl_name) - return - - try: - hlp = run_openssl("pkeyutl -help") - if hlp.find("-derive") == 0: - pytest.skip("system openssl does not support `pkeyutl -derive`") - return - except RunOpenSslError: - pytest.skip("system openssl does not support `pkeyutl -derive`") - return - - if os.path.isdir("t"): - shutil.rmtree("t") - os.mkdir("t") - run_openssl("ecparam -name %s -genkey -out t/privkey1.pem" % vcurve.openssl_name) - run_openssl("ecparam -name %s -genkey -out t/privkey2.pem" % vcurve.openssl_name) - run_openssl("ec -in t/privkey1.pem -pubout -out t/pubkey1.pem") - - ecdh1 = ECDH(curve=vcurve) - ecdh2 = ECDH(curve=vcurve) - with open("t/privkey1.pem") as e: - key = e.read() - ecdh1.load_private_key_pem(key) - with open("t/privkey2.pem") as e: - key = e.read() - ecdh2.load_private_key_pem(key) - - with open("t/pubkey1.pem") as e: - key = e.read() - vk1 = VerifyingKey.from_pem(key) - assert vk1.to_string() == ecdh1.get_public_key().to_string() - vk2 = ecdh2.get_public_key() - with open("t/pubkey2.pem", "wb") as e: - e.write(vk2.to_pem()) - - ecdh1.load_received_public_key(vk2) - ecdh2.load_received_public_key(vk1) - secret1 = ecdh1.generate_sharedsecret_bytes() - secret2 = ecdh2.generate_sharedsecret_bytes() - - assert secret1 == secret2 - - try: - run_openssl("pkeyutl -derive -inkey t/privkey1.pem -peerkey t/pubkey2.pem -out t/secret1") - run_openssl("pkeyutl -derive -inkey t/privkey2.pem -peerkey t/pubkey1.pem -out t/secret2") - except RunOpenSslError: - pytest.skip("system openssl does not support `pkeyutl -derive`") - return - - with open("t/secret1", "rb") as e: - ssl_secret1 = e.read() - with open("t/secret1", "rb") as e: - ssl_secret2 = e.read() - - if len(ssl_secret1) != vk1.curve.baselen: - pytest.skip("system openssl does not support `pkeyutl -derive`") - return - - assert ssl_secret1 == ssl_secret2 - assert secret1 == ssl_secret1 diff --git a/freezed_deps/ecdsa/test_ecdsa.py b/freezed_deps/ecdsa/test_ecdsa.py deleted file mode 100644 index 71c6891..0000000 --- a/freezed_deps/ecdsa/test_ecdsa.py +++ /dev/null @@ -1,448 +0,0 @@ -from __future__ import print_function -import sys -import hypothesis.strategies as st -from hypothesis import given, settings, note, example -try: - import unittest2 as unittest -except ImportError: - import unittest -import pytest -from .ecdsa import Private_key, Public_key, Signature, \ - generator_192, digest_integer, ellipticcurve, point_is_valid, \ - generator_224, generator_256, generator_384, generator_521, \ - generator_secp256k1 - - -HYP_SETTINGS = {} -# old hypothesis doesn't have the "deadline" setting -if sys.version_info > (2, 7): # pragma: no branch - # SEC521p is slow, allow long execution for it - HYP_SETTINGS["deadline"] = 5000 - - -class TestP192FromX9_62(unittest.TestCase): - """Check test vectors from X9.62""" - @classmethod - def setUpClass(cls): - cls.d = 651056770906015076056810763456358567190100156695615665659 - cls.Q = cls.d * generator_192 - cls.k = 6140507067065001063065065565667405560006161556565665656654 - cls.R = cls.k * generator_192 - - cls.msg = 968236873715988614170569073515315707566766479517 - cls.pubk = Public_key(generator_192, generator_192 * cls.d) - cls.privk = Private_key(cls.pubk, cls.d) - cls.sig = cls.privk.sign(cls.msg, cls.k) - - def test_point_multiplication(self): - assert self.Q.x() == 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5 - - def test_point_multiplication_2(self): - assert self.R.x() == 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD - assert self.R.y() == 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835 - - def test_mult_and_addition(self): - u1 = 2563697409189434185194736134579731015366492496392189760599 - u2 = 6266643813348617967186477710235785849136406323338782220568 - temp = u1 * generator_192 + u2 * self.Q - assert temp.x() == 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD - assert temp.y() == 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835 - - def test_signature(self): - r, s = self.sig.r, self.sig.s - assert r == 3342403536405981729393488334694600415596881826869351677613 - assert s == 5735822328888155254683894997897571951568553642892029982342 - - def test_verification(self): - assert self.pubk.verifies(self.msg, self.sig) - - def test_rejection(self): - assert not self.pubk.verifies(self.msg - 1, self.sig) - - -class TestPublicKey(unittest.TestCase): - - def test_equality_public_keys(self): - gen = generator_192 - x = 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6 - y = 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f - point = ellipticcurve.Point(gen.curve(), x, y) - pub_key1 = Public_key(gen, point) - pub_key2 = Public_key(gen, point) - self.assertEqual(pub_key1, pub_key2) - - def test_inequality_public_key(self): - gen = generator_192 - x1 = 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6 - y1 = 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f - point1 = ellipticcurve.Point(gen.curve(), x1, y1) - - x2 = 0x6a223d00bd22c52833409a163e057e5b5da1def2a197dd15 - y2 = 0x7b482604199367f1f303f9ef627f922f97023e90eae08abf - point2 = ellipticcurve.Point(gen.curve(), x2, y2) - - pub_key1 = Public_key(gen, point1) - pub_key2 = Public_key(gen, point2) - self.assertNotEqual(pub_key1, pub_key2) - - def test_inequality_public_key_not_implemented(self): - gen = generator_192 - x = 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6 - y = 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f - point = ellipticcurve.Point(gen.curve(), x, y) - pub_key = Public_key(gen, point) - self.assertNotEqual(pub_key, None) - - -class TestPrivateKey(unittest.TestCase): - - @classmethod - def setUpClass(cls): - gen = generator_192 - x = 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6 - y = 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f - point = ellipticcurve.Point(gen.curve(), x, y) - cls.pub_key = Public_key(gen, point) - - def test_equality_private_keys(self): - pr_key1 = Private_key(self.pub_key, 100) - pr_key2 = Private_key(self.pub_key, 100) - self.assertEqual(pr_key1, pr_key2) - - def test_inequality_private_keys(self): - pr_key1 = Private_key(self.pub_key, 100) - pr_key2 = Private_key(self.pub_key, 200) - self.assertNotEqual(pr_key1, pr_key2) - - def test_inequality_private_keys_not_implemented(self): - pr_key = Private_key(self.pub_key, 100) - self.assertNotEqual(pr_key, None) - - -# Testing point validity, as per ECDSAVS.pdf B.2.2: -P192_POINTS = [ - (generator_192, - 0xcd6d0f029a023e9aaca429615b8f577abee685d8257cc83a, - 0x00019c410987680e9fb6c0b6ecc01d9a2647c8bae27721bacdfc, - False), - - (generator_192, - 0x00017f2fce203639e9eaf9fb50b81fc32776b30e3b02af16c73b, - 0x95da95c5e72dd48e229d4748d4eee658a9a54111b23b2adb, - False), - - (generator_192, - 0x4f77f8bc7fccbadd5760f4938746d5f253ee2168c1cf2792, - 0x000147156ff824d131629739817edb197717c41aab5c2a70f0f6, - False), - - (generator_192, - 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6, - 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f, - True), - - (generator_192, - 0xcdf56c1aa3d8afc53c521adf3ffb96734a6a630a4a5b5a70, - 0x97c1c44a5fb229007b5ec5d25f7413d170068ffd023caa4e, - True), - - (generator_192, - 0x89009c0dc361c81e99280c8e91df578df88cdf4b0cdedced, - 0x27be44a529b7513e727251f128b34262a0fd4d8ec82377b9, - True), - - (generator_192, - 0x6a223d00bd22c52833409a163e057e5b5da1def2a197dd15, - 0x7b482604199367f1f303f9ef627f922f97023e90eae08abf, - True), - - (generator_192, - 0x6dccbde75c0948c98dab32ea0bc59fe125cf0fb1a3798eda, - 0x0001171a3e0fa60cf3096f4e116b556198de430e1fbd330c8835, - False), - - (generator_192, - 0xd266b39e1f491fc4acbbbc7d098430931cfa66d55015af12, - 0x193782eb909e391a3148b7764e6b234aa94e48d30a16dbb2, - False), - - (generator_192, - 0x9d6ddbcd439baa0c6b80a654091680e462a7d1d3f1ffeb43, - 0x6ad8efc4d133ccf167c44eb4691c80abffb9f82b932b8caa, - False), - - (generator_192, - 0x146479d944e6bda87e5b35818aa666a4c998a71f4e95edbc, - 0xa86d6fe62bc8fbd88139693f842635f687f132255858e7f6, - False), - - (generator_192, - 0xe594d4a598046f3598243f50fd2c7bd7d380edb055802253, - 0x509014c0c4d6b536e3ca750ec09066af39b4c8616a53a923, - False)] - - [email protected]("generator,x,y,expected", P192_POINTS) -def test_point_validity(generator, x, y, expected): - """ - `generator` defines the curve; is `(x, y)` a point on - this curve? `expected` is True if the right answer is Yes. - """ - assert point_is_valid(generator, x, y) == expected - - -# Trying signature-verification tests from ECDSAVS.pdf B.2.4: -CURVE_192_KATS = [ - (generator_192, - int("0x84ce72aa8699df436059f052ac51b6398d2511e49631bcb7e71f89c499b9ee" - "425dfbc13a5f6d408471b054f2655617cbbaf7937b7c80cd8865cf02c8487d30" - "d2b0fbd8b2c4e102e16d828374bbc47b93852f212d5043c3ea720f086178ff79" - "8cc4f63f787b9c2e419efa033e7644ea7936f54462dc21a6c4580725f7f0e7d1" - "58", 16), - 0xd9dbfb332aa8e5ff091e8ce535857c37c73f6250ffb2e7ac, - 0x282102e364feded3ad15ddf968f88d8321aa268dd483ebc4, - 0x64dca58a20787c488d11d6dd96313f1b766f2d8efe122916, - 0x1ecba28141e84ab4ecad92f56720e2cc83eb3d22dec72479, - True), - - (generator_192, - int("0x94bb5bacd5f8ea765810024db87f4224ad71362a3c28284b2b9f39fab86db1" - "2e8beb94aae899768229be8fdb6c4f12f28912bb604703a79ccff769c1607f5a" - "91450f30ba0460d359d9126cbd6296be6d9c4bb96c0ee74cbb44197c207f6db3" - "26ab6f5a659113a9034e54be7b041ced9dcf6458d7fb9cbfb2744d999f7dfd63" - "f4", 16), - 0x3e53ef8d3112af3285c0e74842090712cd324832d4277ae7, - 0xcc75f8952d30aec2cbb719fc6aa9934590b5d0ff5a83adb7, - 0x8285261607283ba18f335026130bab31840dcfd9c3e555af, - 0x356d89e1b04541afc9704a45e9c535ce4a50929e33d7e06c, - True), - - (generator_192, - int("0xf6227a8eeb34afed1621dcc89a91d72ea212cb2f476839d9b4243c66877911" - "b37b4ad6f4448792a7bbba76c63bdd63414b6facab7dc71c3396a73bd7ee14cd" - "d41a659c61c99b779cecf07bc51ab391aa3252386242b9853ea7da67fd768d30" - "3f1b9b513d401565b6f1eb722dfdb96b519fe4f9bd5de67ae131e64b40e78c42" - "dd", 16), - 0x16335dbe95f8e8254a4e04575d736befb258b8657f773cb7, - 0x421b13379c59bc9dce38a1099ca79bbd06d647c7f6242336, - 0x4141bd5d64ea36c5b0bd21ef28c02da216ed9d04522b1e91, - 0x159a6aa852bcc579e821b7bb0994c0861fb08280c38daa09, - False), - - (generator_192, - int("0x16b5f93afd0d02246f662761ed8e0dd9504681ed02a253006eb36736b56309" - "7ba39f81c8e1bce7a16c1339e345efabbc6baa3efb0612948ae51103382a8ee8" - "bc448e3ef71e9f6f7a9676694831d7f5dd0db5446f179bcb737d4a526367a447" - "bfe2c857521c7f40b6d7d7e01a180d92431fb0bbd29c04a0c420a57b3ed26ccd" - "8a", 16), - 0xfd14cdf1607f5efb7b1793037b15bdf4baa6f7c16341ab0b, - 0x83fa0795cc6c4795b9016dac928fd6bac32f3229a96312c4, - 0x8dfdb832951e0167c5d762a473c0416c5c15bc1195667dc1, - 0x1720288a2dc13fa1ec78f763f8fe2ff7354a7e6fdde44520, - False), - - (generator_192, - int("0x08a2024b61b79d260e3bb43ef15659aec89e5b560199bc82cf7c65c77d3919" - "2e03b9a895d766655105edd9188242b91fbde4167f7862d4ddd61e5d4ab55196" - "683d4f13ceb90d87aea6e07eb50a874e33086c4a7cb0273a8e1c4408f4b846bc" - "eae1ebaac1b2b2ea851a9b09de322efe34cebe601653efd6ddc876ce8c2f2072" - "fb", 16), - 0x674f941dc1a1f8b763c9334d726172d527b90ca324db8828, - 0x65adfa32e8b236cb33a3e84cf59bfb9417ae7e8ede57a7ff, - 0x9508b9fdd7daf0d8126f9e2bc5a35e4c6d800b5b804d7796, - 0x36f2bf6b21b987c77b53bb801b3435a577e3d493744bfab0, - False), - - (generator_192, - int("0x1843aba74b0789d4ac6b0b8923848023a644a7b70afa23b1191829bbe4397c" - "e15b629bf21a8838298653ed0c19222b95fa4f7390d1b4c844d96e645537e0aa" - "e98afb5c0ac3bd0e4c37f8daaff25556c64e98c319c52687c904c4de7240a1cc" - "55cd9756b7edaef184e6e23b385726e9ffcba8001b8f574987c1a3fedaaa83ca" - "6d", 16), - 0x10ecca1aad7220b56a62008b35170bfd5e35885c4014a19f, - 0x04eb61984c6c12ade3bc47f3c629ece7aa0a033b9948d686, - 0x82bfa4e82c0dfe9274169b86694e76ce993fd83b5c60f325, - 0xa97685676c59a65dbde002fe9d613431fb183e8006d05633, - False), - - (generator_192, - int("0x5a478f4084ddd1a7fea038aa9732a822106385797d02311aeef4d0264f824f" - "698df7a48cfb6b578cf3da416bc0799425bb491be5b5ecc37995b85b03420a98" - "f2c4dc5c31a69a379e9e322fbe706bbcaf0f77175e05cbb4fa162e0da82010a2" - "78461e3e974d137bc746d1880d6eb02aa95216014b37480d84b87f717bb13f76" - "e1", 16), - 0x6636653cb5b894ca65c448277b29da3ad101c4c2300f7c04, - 0xfdf1cbb3fc3fd6a4f890b59e554544175fa77dbdbeb656c1, - 0xeac2ddecddfb79931a9c3d49c08de0645c783a24cb365e1c, - 0x3549fee3cfa7e5f93bc47d92d8ba100e881a2a93c22f8d50, - False), - - (generator_192, - int("0xc598774259a058fa65212ac57eaa4f52240e629ef4c310722088292d1d4af6" - "c39b49ce06ba77e4247b20637174d0bd67c9723feb57b5ead232b47ea452d5d7" - "a089f17c00b8b6767e434a5e16c231ba0efa718a340bf41d67ea2d295812ff1b" - "9277daacb8bc27b50ea5e6443bcf95ef4e9f5468fe78485236313d53d1c68f6b" - "a2", 16), - 0xa82bd718d01d354001148cd5f69b9ebf38ff6f21898f8aaa, - 0xe67ceede07fc2ebfafd62462a51e4b6c6b3d5b537b7caf3e, - 0x4d292486c620c3de20856e57d3bb72fcde4a73ad26376955, - 0xa85289591a6081d5728825520e62ff1c64f94235c04c7f95, - False), - - (generator_192, - int("0xca98ed9db081a07b7557f24ced6c7b9891269a95d2026747add9e9eb80638a" - "961cf9c71a1b9f2c29744180bd4c3d3db60f2243c5c0b7cc8a8d40a3f9a7fc91" - "0250f2187136ee6413ffc67f1a25e1c4c204fa9635312252ac0e0481d89b6d53" - "808f0c496ba87631803f6c572c1f61fa049737fdacce4adff757afed4f05beb6" - "58", 16), - 0x7d3b016b57758b160c4fca73d48df07ae3b6b30225126c2f, - 0x4af3790d9775742bde46f8da876711be1b65244b2b39e7ec, - 0x95f778f5f656511a5ab49a5d69ddd0929563c29cbc3a9e62, - 0x75c87fc358c251b4c83d2dd979faad496b539f9f2ee7a289, - False), - - (generator_192, - int("0x31dd9a54c8338bea06b87eca813d555ad1850fac9742ef0bbe40dad400e102" - "88acc9c11ea7dac79eb16378ebea9490e09536099f1b993e2653cd50240014c9" - "0a9c987f64545abc6a536b9bd2435eb5e911fdfde2f13be96ea36ad38df4ae9e" - "a387b29cced599af777338af2794820c9cce43b51d2112380a35802ab7e396c9" - "7a", 16), - 0x9362f28c4ef96453d8a2f849f21e881cd7566887da8beb4a, - 0xe64d26d8d74c48a024ae85d982ee74cd16046f4ee5333905, - 0xf3923476a296c88287e8de914b0b324ad5a963319a4fe73b, - 0xf0baeed7624ed00d15244d8ba2aede085517dbdec8ac65f5, - True), - - (generator_192, - int("0xb2b94e4432267c92f9fdb9dc6040c95ffa477652761290d3c7de312283f645" - "0d89cc4aabe748554dfb6056b2d8e99c7aeaad9cdddebdee9dbc099839562d90" - "64e68e7bb5f3a6bba0749ca9a538181fc785553a4000785d73cc207922f63e8c" - "e1112768cb1de7b673aed83a1e4a74592f1268d8e2a4e9e63d414b5d442bd045" - "6d", 16), - 0xcc6fc032a846aaac25533eb033522824f94e670fa997ecef, - 0xe25463ef77a029eccda8b294fd63dd694e38d223d30862f1, - 0x066b1d07f3a40e679b620eda7f550842a35c18b80c5ebe06, - 0xa0b0fb201e8f2df65e2c4508ef303bdc90d934016f16b2dc, - False), - - (generator_192, - int("0x4366fcadf10d30d086911de30143da6f579527036937007b337f7282460eae" - "5678b15cccda853193ea5fc4bc0a6b9d7a31128f27e1214988592827520b214e" - "ed5052f7775b750b0c6b15f145453ba3fee24a085d65287e10509eb5d5f602c4" - "40341376b95c24e5c4727d4b859bfe1483d20538acdd92c7997fa9c614f0f839" - "d7", 16), - 0x955c908fe900a996f7e2089bee2f6376830f76a19135e753, - 0xba0c42a91d3847de4a592a46dc3fdaf45a7cc709b90de520, - 0x1f58ad77fc04c782815a1405b0925e72095d906cbf52a668, - 0xf2e93758b3af75edf784f05a6761c9b9a6043c66b845b599, - False), - - (generator_192, - int("0x543f8af57d750e33aa8565e0cae92bfa7a1ff78833093421c2942cadf99866" - "70a5ff3244c02a8225e790fbf30ea84c74720abf99cfd10d02d34377c3d3b412" - "69bea763384f372bb786b5846f58932defa68023136cd571863b304886e95e52" - "e7877f445b9364b3f06f3c28da12707673fecb4b8071de06b6e0a3c87da160ce" - "f3", 16), - 0x31f7fa05576d78a949b24812d4383107a9a45bb5fccdd835, - 0x8dc0eb65994a90f02b5e19bd18b32d61150746c09107e76b, - 0xbe26d59e4e883dde7c286614a767b31e49ad88789d3a78ff, - 0x8762ca831c1ce42df77893c9b03119428e7a9b819b619068, - False), - - (generator_192, - int("0xd2e8454143ce281e609a9d748014dcebb9d0bc53adb02443a6aac2ffe6cb009f" - "387c346ecb051791404f79e902ee333ad65e5c8cb38dc0d1d39a8dc90add502357" - "2720e5b94b190d43dd0d7873397504c0c7aef2727e628eb6a74411f2e400c65670" - "716cb4a815dc91cbbfeb7cfe8c929e93184c938af2c078584da045e8f8d1", 16), - 0x66aa8edbbdb5cf8e28ceb51b5bda891cae2df84819fe25c0, - 0x0c6bc2f69030a7ce58d4a00e3b3349844784a13b8936f8da, - 0xa4661e69b1734f4a71b788410a464b71e7ffe42334484f23, - 0x738421cf5e049159d69c57a915143e226cac8355e149afe9, - False), - - (generator_192, - int("0x6660717144040f3e2f95a4e25b08a7079c702a8b29babad5a19a87654bc5c5af" - "a261512a11b998a4fb36b5d8fe8bd942792ff0324b108120de86d63f65855e5461" - "184fc96a0a8ffd2ce6d5dfb0230cbbdd98f8543e361b3205f5da3d500fdc8bac6d" - "b377d75ebef3cb8f4d1ff738071ad0938917889250b41dd1d98896ca06fb", 16), - 0xbcfacf45139b6f5f690a4c35a5fffa498794136a2353fc77, - 0x6f4a6c906316a6afc6d98fe1f0399d056f128fe0270b0f22, - 0x9db679a3dafe48f7ccad122933acfe9da0970b71c94c21c1, - 0x984c2db99827576c0a41a5da41e07d8cc768bc82f18c9da9, - False) - ] - - [email protected]("gen,msg,qx,qy,r,s,expected", CURVE_192_KATS) -def test_signature_validity(gen, msg, qx, qy, r, s, expected): - """ - `msg` = message, `qx` and `qy` represent the base point on - elliptic curve of `gen`, `r` and `s` are the signature, and - `expected` is True iff the signature is expected to be valid.""" - pubk = Public_key(gen, - ellipticcurve.Point(gen.curve(), qx, qy)) - assert expected == pubk.verifies(digest_integer(msg), Signature(r, s)) - - [email protected]("gen,msg,qx,qy,r,s,expected", - [x for x in CURVE_192_KATS if x[6]]) -def test_pk_recovery(gen, msg, r, s, qx, qy, expected): - del expected - sign = Signature(r, s) - pks = sign.recover_public_keys(digest_integer(msg), gen) - - assert pks - - # Test if the signature is valid for all found public keys - for pk in pks: - q = pk.point - test_signature_validity(gen, msg, q.x(), q.y(), r, s, True) - - # Test if the original public key is in the set of found keys - original_q = ellipticcurve.Point(gen.curve(), qx, qy) - points = [pk.point for pk in pks] - assert original_q in points - - -def st_random_gen_key_msg_nonce(draw): - """Hypothesis strategy for test_sig_verify().""" - name_gen = { - "generator_192": generator_192, - "generator_224": generator_224, - "generator_256": generator_256, - "generator_secp256k1": generator_secp256k1, - "generator_384": generator_384, - "generator_521": generator_521} - name = draw(st.sampled_from(sorted(name_gen.keys()))) - note("Generator used: {0}".format(name)) - generator = name_gen[name] - order = int(generator.order()) - - key = draw(st.integers(min_value=1, max_value=order)) - msg = draw(st.integers(min_value=1, max_value=order)) - nonce = draw(st.integers(min_value=1, max_value=order+1) | - st.integers(min_value=order>>1, max_value=order)) - return generator, key, msg, nonce - - -SIG_VER_SETTINGS = dict(HYP_SETTINGS) -SIG_VER_SETTINGS["max_examples"] = 10 -@settings(**SIG_VER_SETTINGS) -@example((generator_224, 4, 1, 1)) -@given(st_random_gen_key_msg_nonce()) -def test_sig_verify(args): - """ - Check if signing and verification works for arbitrary messages and - that signatures for other messages are rejected. - """ - generator, sec_mult, msg, nonce = args - - pubkey = Public_key(generator, generator * sec_mult) - privkey = Private_key(pubkey, sec_mult) - - signature = privkey.sign(msg, nonce) - - assert pubkey.verifies(msg, signature) - - assert not pubkey.verifies(msg - 1, signature) diff --git a/freezed_deps/ecdsa/test_ellipticcurve.py b/freezed_deps/ecdsa/test_ellipticcurve.py deleted file mode 100644 index 924134c..0000000 --- a/freezed_deps/ecdsa/test_ellipticcurve.py +++ /dev/null @@ -1,188 +0,0 @@ -import pytest -from six import print_ -try: - import unittest2 as unittest -except ImportError: - import unittest -from hypothesis import given, settings -import hypothesis.strategies as st -try: - from hypothesis import HealthCheck - HC_PRESENT=True -except ImportError: # pragma: no cover - HC_PRESENT=False -from .numbertheory import inverse_mod -from .ellipticcurve import CurveFp, INFINITY, Point - - -HYP_SETTINGS={} -if HC_PRESENT: # pragma: no branch - HYP_SETTINGS['suppress_health_check']=[HealthCheck.too_slow] - HYP_SETTINGS['deadline'] = 5000 - - -# NIST Curve P-192: -p = 6277101735386680763835789423207666416083908700390324961279 -r = 6277101735386680763835789423176059013767194773182842284081 -# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5 -# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65 -b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 -Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 -Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 - -c192 = CurveFp(p, -3, b) -p192 = Point(c192, Gx, Gy, r) - -c_23 = CurveFp(23, 1, 1) -g_23 = Point(c_23, 13, 7, 7) - - -HYP_SLOW_SETTINGS=dict(HYP_SETTINGS) -HYP_SLOW_SETTINGS["max_examples"]=10 - - -@settings(**HYP_SLOW_SETTINGS) -@given(st.integers(min_value=1, max_value=r+1)) -def test_p192_mult_tests(multiple): - inv_m = inverse_mod(multiple, r) - - p1 = p192 * multiple - assert p1 * inv_m == p192 - - -def add_n_times(point, n): - ret = INFINITY - i = 0 - while i <= n: - yield ret - ret = ret + point - i += 1 - - -# From X9.62 I.1 (p. 96): - "p, m, check", - [(g_23, n, exp) for n, exp in enumerate(add_n_times(g_23, 8))], - ids=["g_23 test with mult {0}".format(i) for i in range(9)]) -def test_add_and_mult_equivalence(p, m, check): - assert p * m == check - - -class TestCurve(unittest.TestCase): - - @classmethod - def setUpClass(cls): - cls.c_23 = CurveFp(23, 1, 1) - - def test_equality_curves(self): - self.assertEqual(self.c_23, CurveFp(23, 1, 1)) - - def test_inequality_curves(self): - c192 = CurveFp(p, -3, b) - self.assertNotEqual(self.c_23, c192) - - def test_usability_in_a_hashed_collection_curves(self): - {self.c_23: None} - - def test_hashability_curves(self): - hash(self.c_23) - - def test_conflation_curves(self): - ne1, ne2, ne3 = CurveFp(24, 1, 1), CurveFp(23, 2, 1), CurveFp(23, 1, 2) - eq1, eq2, eq3 = CurveFp(23, 1, 1), CurveFp(23, 1, 1), self.c_23 - self.assertEqual(len(set((c_23, eq1, eq2, eq3))), 1) - self.assertEqual(len(set((c_23, ne1, ne2, ne3))), 4) - self.assertDictEqual({c_23: None}, {eq1: None}) - self.assertTrue(eq2 in {eq3: None}) - - -class TestPoint(unittest.TestCase): - - @classmethod - def setUpClass(cls): - cls.c_23 = CurveFp(23, 1, 1) - cls.g_23 = Point(cls.c_23, 13, 7, 7) - - p = 6277101735386680763835789423207666416083908700390324961279 - r = 6277101735386680763835789423176059013767194773182842284081 - # s = 0x3045ae6fc8422f64ed579528d38120eae12196d5 - # c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65 - b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 - Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 - Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 - - cls.c192 = CurveFp(p, -3, b) - cls.p192 = Point(cls.c192, Gx, Gy, r) - - def test_p192(self): - # Checking against some sample computations presented - # in X9.62: - d = 651056770906015076056810763456358567190100156695615665659 - Q = d * self.p192 - self.assertEqual(Q.x(), 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5) - - k = 6140507067065001063065065565667405560006161556565665656654 - R = k * self.p192 - self.assertEqual(R.x(), 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD) - self.assertEqual(R.y(), 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835) - - u1 = 2563697409189434185194736134579731015366492496392189760599 - u2 = 6266643813348617967186477710235785849136406323338782220568 - temp = u1 * self.p192 + u2 * Q - self.assertEqual(temp.x(), 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD) - self.assertEqual(temp.y(), 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835) - - def test_double_infinity(self): - p1 = INFINITY - p3 = p1.double() - self.assertEqual(p1, p3) - self.assertEqual(p3.x(), p1.x()) - self.assertEqual(p3.y(), p3.y()) - - def test_double(self): - x1, y1, x3, y3 = (3, 10, 7, 12) - - p1 = Point(self.c_23, x1, y1) - p3 = p1.double() - self.assertEqual(p3.x(), x3) - self.assertEqual(p3.y(), y3) - - def test_multiply(self): - x1, y1, m, x3, y3 = (3, 10, 2, 7, 12) - p1 = Point(self.c_23, x1, y1) - p3 = p1 * m - self.assertEqual(p3.x(), x3) - self.assertEqual(p3.y(), y3) - - # Trivial tests from X9.62 B.3: - def test_add(self): - """We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3).""" - - x1, y1, x2, y2, x3, y3 = (3, 10, 9, 7, 17, 20) - p1 = Point(self.c_23, x1, y1) - p2 = Point(self.c_23, x2, y2) - p3 = p1 + p2 - self.assertEqual(p3.x(), x3) - self.assertEqual(p3.y(), y3) - - def test_add_as_double(self): - """We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3).""" - - x1, y1, x2, y2, x3, y3 = (3, 10, 3, 10, 7, 12) - p1 = Point(self.c_23, x1, y1) - p2 = Point(self.c_23, x2, y2) - p3 = p1 + p2 - self.assertEqual(p3.x(), x3) - self.assertEqual(p3.y(), y3) - - def test_equality_points(self): - self.assertEqual(self.g_23, Point(self.c_23, 13, 7, 7)) - - def test_inequality_points(self): - c = CurveFp(100, -3, 100) - p = Point(c, 100, 100, 100) - self.assertNotEqual(self.g_23, p) - - def test_inaquality_points_diff_types(self): - c = CurveFp(100, -3, 100) - self.assertNotEqual(self.g_23, c) diff --git a/freezed_deps/ecdsa/test_jacobi.py b/freezed_deps/ecdsa/test_jacobi.py deleted file mode 100644 index 35e5242..0000000 --- a/freezed_deps/ecdsa/test_jacobi.py +++ /dev/null @@ -1,365 +0,0 @@ - -try: - import unittest2 as unittest -except ImportError: - import unittest - -import hypothesis.strategies as st -from hypothesis import given, assume, settings, example - -from .ellipticcurve import Point, PointJacobi, INFINITY -from .ecdsa import generator_256, curve_256, generator_224 -from .numbertheory import inverse_mod - -class TestJacobi(unittest.TestCase): - def test___init__(self): - curve = object() - x = 2 - y = 3 - z = 1 - order = 4 - pj = PointJacobi(curve, x, y, z, order) - - self.assertEqual(pj.order(), order) - self.assertIs(pj.curve(), curve) - self.assertEqual(pj.x(), x) - self.assertEqual(pj.y(), y) - - def test_add_with_different_curves(self): - p_a = PointJacobi.from_affine(generator_256) - p_b = PointJacobi.from_affine(generator_224) - - with self.assertRaises(ValueError): - p_a + p_b - - def test_compare_different_curves(self): - self.assertNotEqual(generator_256, generator_224) - - def test_equality_with_non_point(self): - pj = PointJacobi.from_affine(generator_256) - - self.assertNotEqual(pj, "value") - - def test_conversion(self): - pj = PointJacobi.from_affine(generator_256) - pw = pj.to_affine() - - self.assertEqual(generator_256, pw) - - def test_single_double(self): - pj = PointJacobi.from_affine(generator_256) - pw = generator_256.double() - - pj = pj.double() - - self.assertEqual(pj.x(), pw.x()) - self.assertEqual(pj.y(), pw.y()) - - def test_double_with_zero_point(self): - pj = PointJacobi(curve_256, 0, 0, 1) - - pj = pj.double() - - self.assertIs(pj, INFINITY) - - def test_double_with_zero_equivalent_point(self): - pj = PointJacobi(curve_256, 0, curve_256.p(), 1) - - pj = pj.double() - - self.assertIs(pj, INFINITY) - - def test_double_with_zero_equivalent_point_non_1_z(self): - pj = PointJacobi(curve_256, 0, curve_256.p(), 2) - - pj = pj.double() - - self.assertIs(pj, INFINITY) - - def test_compare_with_affine_point(self): - pj = PointJacobi.from_affine(generator_256) - pa = pj.to_affine() - - self.assertEqual(pj, pa) - self.assertEqual(pa, pj) - - def test_to_affine_with_zero_point(self): - pj = PointJacobi(curve_256, 0, 0, 1) - - pa = pj.to_affine() - - self.assertIs(pa, INFINITY) - - def test_add_with_affine_point(self): - pj = PointJacobi.from_affine(generator_256) - pa = pj.to_affine() - - s = pj + pa - - self.assertEqual(s, pj.double()) - - def test_radd_with_affine_point(self): - pj = PointJacobi.from_affine(generator_256) - pa = pj.to_affine() - - s = pa + pj - - self.assertEqual(s, pj.double()) - - def test_add_with_infinity(self): - pj = PointJacobi.from_affine(generator_256) - - s = pj + INFINITY - - self.assertEqual(s, pj) - - def test_add_zero_point_to_affine(self): - pa = PointJacobi.from_affine(generator_256).to_affine() - pj = PointJacobi(curve_256, 0, 0, 1) - - s = pj + pa - - self.assertIs(s, pa) - - def test_multiply_by_zero(self): - pj = PointJacobi.from_affine(generator_256) - - pj = pj * 0 - - self.assertIs(pj, INFINITY) - - def test_zero_point_multiply_by_one(self): - pj = PointJacobi(curve_256, 0, 0, 1) - - pj = pj * 1 - - self.assertIs(pj, INFINITY) - - def test_multiply_by_one(self): - pj = PointJacobi.from_affine(generator_256) - pw = generator_256 * 1 - - pj = pj * 1 - - self.assertEqual(pj.x(), pw.x()) - self.assertEqual(pj.y(), pw.y()) - - def test_multiply_by_two(self): - pj = PointJacobi.from_affine(generator_256) - pw = generator_256 * 2 - - pj = pj * 2 - - self.assertEqual(pj.x(), pw.x()) - self.assertEqual(pj.y(), pw.y()) - - def test_rmul_by_two(self): - pj = PointJacobi.from_affine(generator_256) - pw = generator_256 * 2 - - pj = 2 * pj - - self.assertEqual(pj, pw) - - def test_compare_non_zero_with_infinity(self): - pj = PointJacobi.from_affine(generator_256) - - self.assertNotEqual(pj, INFINITY) - - def test_compare_zero_point_with_infinity(self): - pj = PointJacobi(curve_256, 0, 0, 1) - - self.assertEqual(pj, INFINITY) - - def test_compare_double_with_multiply(self): - pj = PointJacobi.from_affine(generator_256) - dbl = pj.double() - mlpl = pj * 2 - - self.assertEqual(dbl, mlpl) - - @settings(max_examples=10) - @given(st.integers(min_value=0, max_value=int(generator_256.order()))) - def test_multiplications(self, mul): - pj = PointJacobi.from_affine(generator_256) - pw = pj.to_affine() * mul - - pj = pj * mul - - self.assertEqual((pj.x(), pj.y()), (pw.x(), pw.y())) - self.assertEqual(pj, pw) - - @settings(max_examples=10) - @given(st.integers(min_value=0, max_value=int(generator_256.order()))) - @example(0) - @example(int(generator_256.order())) - def test_precompute(self, mul): - precomp = PointJacobi.from_affine(generator_256, True) - pj = PointJacobi.from_affine(generator_256) - - a = precomp * mul - b = pj * mul - - self.assertEqual(a, b) - - @settings(max_examples=10) - @given(st.integers(min_value=1, max_value=int(generator_256.order())), - st.integers(min_value=1, max_value=int(generator_256.order()))) - @example(3, 3) - def test_add_scaled_points(self, a_mul, b_mul): - j_g = PointJacobi.from_affine(generator_256) - a = PointJacobi.from_affine(j_g * a_mul) - b = PointJacobi.from_affine(j_g * b_mul) - - c = a + b - - self.assertEqual(c, j_g * (a_mul + b_mul)) - - @settings(max_examples=10) - @given(st.integers(min_value=1, max_value=int(generator_256.order())), - st.integers(min_value=1, max_value=int(generator_256.order())), - st.integers(min_value=1, max_value=int(curve_256.p()-1))) - def test_add_one_scaled_point(self, a_mul, b_mul, new_z): - j_g = PointJacobi.from_affine(generator_256) - a = PointJacobi.from_affine(j_g * a_mul) - b = PointJacobi.from_affine(j_g * b_mul) - - p = curve_256.p() - - assume(inverse_mod(new_z, p)) - - new_zz = new_z * new_z % p - - b = PointJacobi( - curve_256, b.x() * new_zz % p, b.y() * new_zz * new_z % p, new_z) - - c = a + b - - self.assertEqual(c, j_g * (a_mul + b_mul)) - - @settings(max_examples=10) - @given(st.integers(min_value=1, max_value=int(generator_256.order())), - st.integers(min_value=1, max_value=int(generator_256.order())), - st.integers(min_value=1, max_value=int(curve_256.p()-1))) - @example(1, 1, 1) - @example(3, 3, 3) - @example(2, int(generator_256.order()-2), 1) - @example(2, int(generator_256.order()-2), 3) - def test_add_same_scale_points(self, a_mul, b_mul, new_z): - j_g = PointJacobi.from_affine(generator_256) - a = PointJacobi.from_affine(j_g * a_mul) - b = PointJacobi.from_affine(j_g * b_mul) - - p = curve_256.p() - - assume(inverse_mod(new_z, p)) - - new_zz = new_z * new_z % p - - a = PointJacobi( - curve_256, a.x() * new_zz % p, a.y() * new_zz * new_z % p, new_z) - b = PointJacobi( - curve_256, b.x() * new_zz % p, b.y() * new_zz * new_z % p, new_z) - - c = a + b - - self.assertEqual(c, j_g * (a_mul + b_mul)) - - @settings(max_examples=14) - @given(st.integers(min_value=1, max_value=int(generator_256.order())), - st.integers(min_value=1, max_value=int(generator_256.order())), - st.lists(st.integers(min_value=1, max_value=int(curve_256.p()-1)), - min_size=2, max_size=2, unique=True)) - @example(2, 2, [2, 1]) - @example(2, 2, [2, 3]) - @example(2, int(generator_256.order()-2), [2, 3]) - @example(2, int(generator_256.order()-2), [2, 1]) - def test_add_different_scale_points(self, a_mul, b_mul, new_z): - j_g = PointJacobi.from_affine(generator_256) - a = PointJacobi.from_affine(j_g * a_mul) - b = PointJacobi.from_affine(j_g * b_mul) - - p = curve_256.p() - - assume(inverse_mod(new_z[0], p)) - assume(inverse_mod(new_z[1], p)) - - new_zz0 = new_z[0] * new_z[0] % p - new_zz1 = new_z[1] * new_z[1] % p - - a = PointJacobi( - curve_256, - a.x() * new_zz0 % p, - a.y() * new_zz0 * new_z[0] % p, - new_z[0]) - b = PointJacobi( - curve_256, - b.x() * new_zz1 % p, - b.y() * new_zz1 * new_z[1] % p, - new_z[1]) - - c = a + b - - self.assertEqual(c, j_g * (a_mul + b_mul)) - - def test_add_point_3_times(self): - j_g = PointJacobi.from_affine(generator_256) - - self.assertEqual(j_g * 3, j_g + j_g + j_g) - - def test_mul_add_inf(self): - j_g = PointJacobi.from_affine(generator_256) - - self.assertEqual(j_g, j_g.mul_add(1, INFINITY, 1)) - - def test_mul_add_same(self): - j_g = PointJacobi.from_affine(generator_256) - - self.assertEqual(j_g * 2, j_g.mul_add(1, j_g, 1)) - - def test_mul_add_precompute(self): - j_g = PointJacobi.from_affine(generator_256, True) - b = PointJacobi.from_affine(j_g * 255, True) - - self.assertEqual(j_g * 256, j_g + b) - self.assertEqual(j_g * (5 + 255 * 7), j_g * 5 + b * 7) - self.assertEqual(j_g * (5 + 255 * 7), j_g.mul_add(5, b, 7)) - - def test_mul_add_precompute_large(self): - j_g = PointJacobi.from_affine(generator_256, True) - b = PointJacobi.from_affine(j_g * 255, True) - - self.assertEqual(j_g * 256, j_g + b) - self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0), - j_g * 0xff00 + b * 0xf0f0) - self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0), - j_g.mul_add(0xff00, b, 0xf0f0)) - - def test_mul_add_to_mul(self): - j_g = PointJacobi.from_affine(generator_256) - - a = j_g * 3 - b = j_g.mul_add(2, j_g, 1) - - self.assertEqual(a, b) - - def test_mul_add(self): - j_g = PointJacobi.from_affine(generator_256) - - w_a = generator_256 * 255 - w_b = generator_256 * (0xa8*0xf0) - j_b = j_g * 0xa8 - - ret = j_g.mul_add(255, j_b, 0xf0) - - self.assertEqual(ret.to_affine(), w_a + w_b) - - def test_mul_add_large(self): - j_g = PointJacobi.from_affine(generator_256) - b = PointJacobi.from_affine(j_g * 255) - - self.assertEqual(j_g * 256, j_g + b) - self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0), - j_g * 0xff00 + b * 0xf0f0) - self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0), - j_g.mul_add(0xff00, b, 0xf0f0)) diff --git a/freezed_deps/ecdsa/test_keys.py b/freezed_deps/ecdsa/test_keys.py deleted file mode 100644 index 56e1284..0000000 --- a/freezed_deps/ecdsa/test_keys.py +++ /dev/null @@ -1,373 +0,0 @@ -try: - import unittest2 as unittest -except ImportError: - import unittest - -try: - buffer -except NameError: - buffer = memoryview - -import array -import six -import sys -import pytest -import hashlib - -from .keys import VerifyingKey, SigningKey -from .der import unpem -from .util import sigencode_string, sigencode_der, sigencode_strings, \ - sigdecode_string, sigdecode_der, sigdecode_strings - - -class TestVerifyingKeyFromString(unittest.TestCase): - """ - Verify that ecdsa.keys.VerifyingKey.from_string() can be used with - bytes-like objects - """ - - @classmethod - def setUpClass(cls): - cls.key_bytes = (b'\x04L\xa2\x95\xdb\xc7Z\xd7\x1f\x93\nz\xcf\x97\xcf' - b'\xd7\xc2\xd9o\xfe8}X!\xae\xd4\xfah\xfa^\rpI\xba\xd1' - b'Y\xfb\x92xa\xebo+\x9cG\xfav\xca') - cls.vk = VerifyingKey.from_string(cls.key_bytes) - - def test_bytes(self): - self.assertIsNotNone(self.vk) - self.assertIsInstance(self.vk, VerifyingKey) - self.assertEqual( - self.vk.pubkey.point.x(), - 105419898848891948935835657980914000059957975659675736097) - self.assertEqual( - self.vk.pubkey.point.y(), - 4286866841217412202667522375431381222214611213481632495306) - - def test_bytes_memoryview(self): - vk = VerifyingKey.from_string(buffer(self.key_bytes)) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_bytearray(self): - vk = VerifyingKey.from_string(bytearray(self.key_bytes)) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_bytesarray_memoryview(self): - vk = VerifyingKey.from_string(buffer(bytearray(self.key_bytes))) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_array_array_of_bytes(self): - arr = array.array('B', self.key_bytes) - vk = VerifyingKey.from_string(arr) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_array_array_of_bytes_memoryview(self): - arr = array.array('B', self.key_bytes) - vk = VerifyingKey.from_string(buffer(arr)) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_array_array_of_ints(self): - arr = array.array('I', self.key_bytes) - vk = VerifyingKey.from_string(arr) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_array_array_of_ints_memoryview(self): - arr = array.array('I', self.key_bytes) - vk = VerifyingKey.from_string(buffer(arr)) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_bytes_uncompressed(self): - vk = VerifyingKey.from_string(b'\x04' + self.key_bytes) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_bytearray_uncompressed(self): - vk = VerifyingKey.from_string(bytearray(b'\x04' + self.key_bytes)) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_bytes_compressed(self): - vk = VerifyingKey.from_string(b'\x02' + self.key_bytes[:24]) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_bytearray_compressed(self): - vk = VerifyingKey.from_string(bytearray(b'\x02' + self.key_bytes[:24])) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - -class TestVerifyingKeyFromDer(unittest.TestCase): - """ - Verify that ecdsa.keys.VerifyingKey.from_der() can be used with - bytes-like objects. - """ - @classmethod - def setUpClass(cls): - prv_key_str = ( - "-----BEGIN EC PRIVATE KEY-----\n" - "MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n" - "BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n" - "bA==\n" - "-----END EC PRIVATE KEY-----\n") - key_str = ( - "-----BEGIN PUBLIC KEY-----\n" - "MEkwEwYHKoZIzj0CAQYIKoZIzj0DAQEDMgAEuIF30ITvF/XkVjlAgCg2D59ZtKTX\n" - "Jk5i2gZR3OR6NaTFtFz1FZNCOotVe5wgmfNs\n" - "-----END PUBLIC KEY-----\n") - cls.key_pem = key_str - - cls.key_bytes = unpem(key_str) - assert isinstance(cls.key_bytes, bytes) - cls.vk = VerifyingKey.from_pem(key_str) - cls.sk = SigningKey.from_pem(prv_key_str) - - key_str = ( - "-----BEGIN PUBLIC KEY-----\n" - "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE4H3iRbG4TSrsSRb/gusPQB/4YcN8\n" - "Poqzgjau4kfxBPyZimeRfuY/9g/wMmPuhGl4BUve51DsnKJFRr8psk0ieA==\n" - "-----END PUBLIC KEY-----\n" - ) - cls.vk2 = VerifyingKey.from_pem(key_str) - - def test_custom_hashfunc(self): - vk = VerifyingKey.from_der(self.key_bytes, hashlib.sha256) - - self.assertIs(vk.default_hashfunc, hashlib.sha256) - - def test_from_pem_with_custom_hashfunc(self): - vk = VerifyingKey.from_pem(self.key_pem, hashlib.sha256) - - self.assertIs(vk.default_hashfunc, hashlib.sha256) - - def test_bytes(self): - vk = VerifyingKey.from_der(self.key_bytes) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_bytes_memoryview(self): - vk = VerifyingKey.from_der(buffer(self.key_bytes)) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_bytearray(self): - vk = VerifyingKey.from_der(bytearray(self.key_bytes)) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_bytesarray_memoryview(self): - vk = VerifyingKey.from_der(buffer(bytearray(self.key_bytes))) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_array_array_of_bytes(self): - arr = array.array('B', self.key_bytes) - vk = VerifyingKey.from_der(arr) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_array_array_of_bytes_memoryview(self): - arr = array.array('B', self.key_bytes) - vk = VerifyingKey.from_der(buffer(arr)) - - self.assertEqual(self.vk.to_string(), vk.to_string()) - - def test_equality_on_verifying_keys(self): - self.assertEqual(self.vk, self.sk.get_verifying_key()) - - def test_inequality_on_verifying_keys(self): - self.assertNotEqual(self.vk, self.vk2) - - def test_inequality_on_verifying_keys_not_implemented(self): - self.assertNotEqual(self.vk, None) - - -class TestSigningKey(unittest.TestCase): - """ - Verify that ecdsa.keys.SigningKey.from_der() can be used with - bytes-like objects. - """ - @classmethod - def setUpClass(cls): - prv_key_str = ( - "-----BEGIN EC PRIVATE KEY-----\n" - "MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n" - "BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n" - "bA==\n" - "-----END EC PRIVATE KEY-----\n") - cls.sk1 = SigningKey.from_pem(prv_key_str) - - prv_key_str = ( - "-----BEGIN EC PRIVATE KEY-----\n" - "MHcCAQEEIKlL2EAm5NPPZuXwxRf4nXMk0A80y6UUbiQ17be/qFhRoAoGCCqGSM49\n" - "AwEHoUQDQgAE4H3iRbG4TSrsSRb/gusPQB/4YcN8Poqzgjau4kfxBPyZimeRfuY/\n" - "9g/wMmPuhGl4BUve51DsnKJFRr8psk0ieA==\n" - "-----END EC PRIVATE KEY-----\n") - cls.sk2 = SigningKey.from_pem(prv_key_str) - - def test_equality_on_signing_keys(self): - sk = SigningKey.from_secret_exponent(self.sk1.privkey.secret_multiplier, self.sk1.curve) - self.assertEqual(self.sk1, sk) - - def test_inequality_on_signing_keys(self): - self.assertNotEqual(self.sk1, self.sk2) - - def test_inequality_on_signing_keys_not_implemented(self): - self.assertNotEqual(self.sk1, None) - -# test VerifyingKey.verify() -prv_key_str = ( - "-----BEGIN EC PRIVATE KEY-----\n" - "MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n" - "BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n" - "bA==\n" - "-----END EC PRIVATE KEY-----\n") -key_bytes = unpem(prv_key_str) -assert isinstance(key_bytes, bytes) -sk = SigningKey.from_der(key_bytes) -vk = sk.verifying_key - -data = (b"some string for signing" - b"contents don't really matter" - b"but do include also some crazy values: " - b"\x00\x01\t\r\n\x00\x00\x00\xff\xf0") -assert len(data) % 4 == 0 -sha1 = hashlib.sha1() -sha1.update(data) -data_hash = sha1.digest() -assert isinstance(data_hash, bytes) -sig_raw = sk.sign(data, sigencode=sigencode_string) -assert isinstance(sig_raw, bytes) -sig_der = sk.sign(data, sigencode=sigencode_der) -assert isinstance(sig_der, bytes) -sig_strings = sk.sign(data, sigencode=sigencode_strings) -assert isinstance(sig_strings[0], bytes) - -verifiers = [] -for modifier, fun in [ - ("bytes", lambda x: x), - ("bytes memoryview", lambda x: buffer(x)), - ("bytearray", lambda x: bytearray(x)), - ("bytearray memoryview", lambda x: buffer(bytearray(x))), - ("array.array of bytes", lambda x: array.array('B', x)), - ("array.array of bytes memoryview", lambda x: buffer(array.array('B', x))), - ("array.array of ints", lambda x: array.array('I', x)), - ("array.array of ints memoryview", lambda x: buffer(array.array('I', x))) - ]: - if "ints" in modifier: - conv = lambda x: x - else: - conv = fun - for sig_format, signature, decoder, mod_apply in [ - ("raw", sig_raw, sigdecode_string, lambda x: conv(x)), - ("der", sig_der, sigdecode_der, lambda x: conv(x)), - ("strings", sig_strings, sigdecode_strings, lambda x: - tuple(conv(i) for i in x)) - ]: - for method_name, vrf_mthd, vrf_data in [ - ("verify", vk.verify, data), - ("verify_digest", vk.verify_digest, data_hash) - ]: - verifiers.append(pytest.param( - signature, decoder, mod_apply, fun, vrf_mthd, vrf_data, - id="{2}-{0}-{1}".format(modifier, sig_format, method_name))) - - "signature,decoder,mod_apply,fun,vrf_mthd,vrf_data", - verifiers) -def test_VerifyingKey_verify( - signature, decoder, mod_apply, fun, vrf_mthd, vrf_data): - sig = mod_apply(signature) - - assert vrf_mthd(sig, fun(vrf_data), sigdecode=decoder) - - -# test SigningKey.from_string() -prv_key_bytes = (b'^\xc8B\x0b\xd6\xef\x92R\xa9B\xe9\x89\x04<\xa2' - b'\x9fV\x1f\xa5%w\x0e\xb1\xc5') -assert len(prv_key_bytes) == 24 -converters = [] -for modifier, convert in [ - ("bytes", lambda x: x), - ("bytes memoryview", buffer), - ("bytearray", bytearray), - ("bytearray memoryview", lambda x: buffer(bytearray(x))), - ("array.array of bytes", lambda x: array.array('B', x)), - ("array.array of bytes memoryview", - lambda x: buffer(array.array('B', x))), - ("array.array of ints", lambda x: array.array('I', x)), - ("array.array of ints memoryview", - lambda x: buffer(array.array('I', x))) - ]: - converters.append(pytest.param( - convert, - id=modifier)) - [email protected]("convert", converters) -def test_SigningKey_from_string(convert): - key = convert(prv_key_bytes) - sk = SigningKey.from_string(key) - - assert sk.to_string() == prv_key_bytes - - -# test SigningKey.from_der() -prv_key_str = ( - "-----BEGIN EC PRIVATE KEY-----\n" - "MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n" - "BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n" - "bA==\n" - "-----END EC PRIVATE KEY-----\n") -key_bytes = unpem(prv_key_str) -assert isinstance(key_bytes, bytes) - -# last two converters are for array.array of ints, those require input -# that's multiple of 4, which no curve we support produces [email protected]("convert", converters[:-2]) -def test_SigningKey_from_der(convert): - key = convert(key_bytes) - sk = SigningKey.from_der(key) - - assert sk.to_string() == prv_key_bytes - - -# test SigningKey.sign_deterministic() -extra_entropy=b'\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11' - [email protected]("convert", converters) -def test_SigningKey_sign_deterministic(convert): - sig = sk.sign_deterministic( - convert(data), - extra_entropy=convert(extra_entropy)) - - vk.verify(sig, data) - - -# test SigningKey.sign_digest_deterministic() [email protected]("convert", converters) -def test_SigningKey_sign_digest_deterministic(convert): - sig = sk.sign_digest_deterministic( - convert(data_hash), - extra_entropy=convert(extra_entropy)) - - vk.verify(sig, data) - - [email protected]("convert", converters) -def test_SigningKey_sign(convert): - sig = sk.sign(convert(data)) - - vk.verify(sig, data) - - [email protected]("convert", converters) -def test_SigningKey_sign_digest(convert): - sig = sk.sign_digest(convert(data_hash)) - - vk.verify(sig, data) diff --git a/freezed_deps/ecdsa/test_malformed_sigs.py b/freezed_deps/ecdsa/test_malformed_sigs.py deleted file mode 100644 index c1dca44..0000000 --- a/freezed_deps/ecdsa/test_malformed_sigs.py +++ /dev/null @@ -1,306 +0,0 @@ -from __future__ import with_statement, division - -import hashlib -try: - from hashlib import algorithms_available -except ImportError: # pragma: no cover - algorithms_available = [ - "md5", "sha1", "sha224", "sha256", "sha384", "sha512"] -from functools import partial -import pytest -import sys -from six import binary_type -import hypothesis.strategies as st -from hypothesis import note, assume, given, settings, example - -from .keys import SigningKey -from .keys import BadSignatureError -from .util import sigencode_der, sigencode_string -from .util import sigdecode_der, sigdecode_string -from .curves import curves, NIST256p -from .der import encode_integer, encode_bitstring, encode_octet_string, \ - encode_oid, encode_sequence, encode_constructed - - -example_data = b"some data to sign" -"""Since the data is hashed for processing, really any string will do.""" - - -hash_and_size = [(name, hashlib.new(name).digest_size) - for name in algorithms_available] -"""Pairs of hash names and their output sizes. -Needed for pairing with curves as we don't support hashes -bigger than order sizes of curves.""" - - -keys_and_sigs = [] -"""Name of the curve+hash combination, VerifyingKey and DER signature.""" - - -# for hypothesis strategy shrinking we want smallest curves and hashes first -for curve in sorted(curves, key=lambda x: x.baselen): - for hash_alg in [name for name, size in - sorted(hash_and_size, key=lambda x: x[1]) - if 0 < size <= curve.baselen]: - sk = SigningKey.generate( - curve, - hashfunc=partial(hashlib.new, hash_alg)) - - keys_and_sigs.append( - ("{0} {1}".format(curve, hash_alg), - sk.verifying_key, - sk.sign(example_data, sigencode=sigencode_der))) - - -# first make sure that the signatures can be verified - "verifying_key,signature", - [pytest.param(vk, sig, id=name) for name, vk, sig in keys_and_sigs]) -def test_signatures(verifying_key, signature): - assert verifying_key.verify(signature, example_data, - sigdecode=sigdecode_der) - - -def st_fuzzed_sig(draw, keys_and_sigs): - """ - Hypothesis strategy that generates pairs of VerifyingKey and malformed - signatures created by fuzzing of a valid signature. - """ - name, verifying_key, old_sig = draw(st.sampled_from(keys_and_sigs)) - note("Configuration: {0}".format(name)) - - sig = bytearray(old_sig) - - # decide which bytes should be removed - to_remove = draw(st.lists( - st.integers(min_value=0, max_value=len(sig)-1), - unique=True)) - to_remove.sort() - for i in reversed(to_remove): - del sig[i] - note("Remove bytes: {0}".format(to_remove)) - - # decide which bytes of the original signature should be changed - if sig: # pragma: no branch - xors = draw(st.dictionaries( - st.integers(min_value=0, max_value=len(sig)-1), - st.integers(min_value=1, max_value=255))) - for i, val in xors.items(): - sig[i] ^= val - note("xors: {0}".format(xors)) - - # decide where new data should be inserted - insert_pos = draw(st.integers(min_value=0, max_value=len(sig))) - # NIST521p signature is about 140 bytes long, test slightly longer - insert_data = draw(st.binary(max_size=256)) - - sig = sig[:insert_pos] + insert_data + sig[insert_pos:] - note("Inserted at position {0} bytes: {1!r}" - .format(insert_pos, insert_data)) - - sig = bytes(sig) - # make sure that there was performed at least one mutation on the data - assume(to_remove or xors or insert_data) - # and that the mutations didn't cancel each-other out - assume(sig != old_sig) - - return verifying_key, sig - - -params = {} -# not supported in hypothesis 2.0.0 -if sys.version_info >= (2, 7): # pragma: no branch - from hypothesis import HealthCheck - # deadline=5s because NIST521p are slow to verify - params["deadline"] = 5000 - params["suppress_health_check"] = [HealthCheck.data_too_large, - HealthCheck.filter_too_much, - HealthCheck.too_slow] - -slow_params = dict(params) -slow_params["max_examples"] = 10 - - -@settings(**params) -@given(st_fuzzed_sig(keys_and_sigs)) -def test_fuzzed_der_signatures(args): - verifying_key, sig = args - - with pytest.raises(BadSignatureError): - verifying_key.verify(sig, example_data, sigdecode=sigdecode_der) - - -def st_random_der_ecdsa_sig_value(draw): - """ - Hypothesis strategy for selecting random values and encoding them - to ECDSA-Sig-Value object:: - - ECDSA-Sig-Value ::= SEQUENCE { - r INTEGER, - s INTEGER - } - """ - name, verifying_key, _ = draw(st.sampled_from(keys_and_sigs)) - note("Configuration: {0}".format(name)) - order = int(verifying_key.curve.order) - - # the encode_integer doesn't suport negative numbers, would be nice - # to generate them too, but we have coverage for remove_integer() - # verifying that it doesn't accept them, so meh. - # Test all numbers around the ones that can show up (around order) - # way smaller and slightly bigger - r = draw(st.integers(min_value=0, max_value=order << 4) | - st.integers(min_value=order >> 2, max_value=order+1)) - s = draw(st.integers(min_value=0, max_value=order << 4) | - st.integers(min_value=order >> 2, max_value=order+1)) - - sig = encode_sequence(encode_integer(r), encode_integer(s)) - - return verifying_key, sig - - -@settings(**slow_params) -@given(st_random_der_ecdsa_sig_value()) -def test_random_der_ecdsa_sig_value(params): - """ - Check if random values encoded in ECDSA-Sig-Value structure are rejected - as signature. - """ - verifying_key, sig = params - - with pytest.raises(BadSignatureError): - verifying_key.verify(sig, example_data, sigdecode=sigdecode_der) - - -def st_der_integer(*args, **kwargs): - """ - Hypothesis strategy that returns a random positive integer as DER - INTEGER. - Parameters are passed to hypothesis.strategy.integer. - """ - if "min_value" not in kwargs: # pragma: no branch - kwargs["min_value"] = 0 - return st.builds(encode_integer, st.integers(*args, **kwargs)) - - -def st_der_bit_string(draw, *args, **kwargs): - """ - Hypothesis strategy that returns a random DER BIT STRING. - Parameters are passed to hypothesis.strategy.binary. - """ - data = draw(st.binary(*args, **kwargs)) - if data: - unused = draw(st.integers(min_value=0, max_value=7)) - data = bytearray(data) - data[-1] &= - (2**unused) - data = bytes(data) - else: - unused = 0 - return encode_bitstring(data, unused) - - -def st_der_octet_string(*args, **kwargs): - """ - Hypothesis strategy that returns a random DER OCTET STRING object. - Parameters are passed to hypothesis.strategy.binary - """ - return st.builds(encode_octet_string, st.binary(*args, **kwargs)) - - -def st_der_null(): - """ - Hypothesis strategy that returns DER NULL object. - """ - return st.just(b'\x05\x00') - - -def st_der_oid(draw): - """ - Hypothesis strategy that returns DER OBJECT IDENTIFIER objects. - """ - first = draw(st.integers(min_value=0, max_value=2)) - if first < 2: - second = draw(st.integers(min_value=0, max_value=39)) - else: - second = draw(st.integers(min_value=0, max_value=2**512)) - rest = draw(st.lists(st.integers(min_value=0, max_value=2**512), - max_size=50)) - return encode_oid(first, second, *rest) - - -def st_der(): - """ - Hypothesis strategy that returns random DER structures. - - A valid DER structure is any primitive object, an octet encoding - of a valid DER structure, sequence of valid DER objects or a constructed - encoding of any of the above. - """ - return st.recursive( - st.just(b'') | st_der_integer(max_value=2**4096) | - st_der_bit_string(max_size=1024**2) | - st_der_octet_string(max_size=1024**2) | st_der_null() | st_der_oid(), - lambda children: - st.builds(lambda x: encode_octet_string(x), st.one_of(children)) | - st.builds(lambda x: encode_bitstring(x, 0), st.one_of(children)) | - st.builds(lambda x: encode_sequence(*x), - st.lists(children, max_size=200)) | - st.builds(lambda tag, x: - encode_constructed(tag, x), - st.integers(min_value=0, max_value=0x3f), - st.one_of(children)), - max_leaves=40 - ) - - -@settings(**params) -@given(st.sampled_from(keys_and_sigs), st_der()) -def test_random_der_as_signature(params, der): - """Check if random DER structures are rejected as signature""" - name, verifying_key, _ = params - - with pytest.raises(BadSignatureError): - verifying_key.verify(der, example_data, sigdecode=sigdecode_der) - - -@settings(**params) -@given(st.sampled_from(keys_and_sigs), st.binary(max_size=1024**2)) -@example( - keys_and_sigs[0], - encode_sequence(encode_integer(0), encode_integer(0))) -@example( - keys_and_sigs[0], - encode_sequence(encode_integer(1), encode_integer(1)) + b'\x00') -@example( - keys_and_sigs[0], - encode_sequence(*[encode_integer(1)] * 3)) -def test_random_bytes_as_signature(params, der): - """Check if random bytes are rejected as signature""" - name, verifying_key, _ = params - - with pytest.raises(BadSignatureError): - verifying_key.verify(der, example_data, sigdecode=sigdecode_der) - - -keys_and_string_sigs = [ - (name, verifying_key, - sigencode_string(*sigdecode_der(sig, verifying_key.curve.order), - order=verifying_key.curve.order)) - for name, verifying_key, sig in keys_and_sigs] -""" -Name of the curve+hash combination, VerifyingKey and signature as a -byte string. -""" - - -@settings(**params) -@given(st_fuzzed_sig(keys_and_string_sigs)) -def test_fuzzed_string_signatures(params): - verifying_key, sig = params - - with pytest.raises(BadSignatureError): - verifying_key.verify(sig, example_data, sigdecode=sigdecode_string) diff --git a/freezed_deps/ecdsa/test_numbertheory.py b/freezed_deps/ecdsa/test_numbertheory.py deleted file mode 100644 index 4cec4fd..0000000 --- a/freezed_deps/ecdsa/test_numbertheory.py +++ /dev/null @@ -1,275 +0,0 @@ -import operator -from six import print_ -from functools import reduce -import operator -try: - import unittest2 as unittest -except ImportError: - import unittest -import hypothesis.strategies as st -import pytest -from hypothesis import given, settings, example -try: - from hypothesis import HealthCheck - HC_PRESENT=True -except ImportError: # pragma: no cover - HC_PRESENT=False -from .numbertheory import (SquareRootError, factorization, gcd, lcm, - jacobi, inverse_mod, - is_prime, next_prime, smallprimes, - square_root_mod_prime) - - -BIGPRIMES = (999671, - 999683, - 999721, - 999727, - 999749, - 999763, - 999769, - 999773, - 999809, - 999853, - 999863, - 999883, - 999907, - 999917, - 999931, - 999953, - 999959, - 999961, - 999979, - 999983) - - - "prime, next_p", - [(p, q) for p, q in zip(BIGPRIMES[:-1], BIGPRIMES[1:])]) -def test_next_prime(prime, next_p): - assert next_prime(prime) == next_p - - - "val", - [-1, 0, 1]) -def test_next_prime_with_nums_less_2(val): - assert next_prime(val) == 2 - - [email protected]("prime", smallprimes) -def test_square_root_mod_prime_for_small_primes(prime): - squares = set() - for num in range(0, 1 + prime // 2): - sq = num * num % prime - squares.add(sq) - root = square_root_mod_prime(sq, prime) - # tested for real with TestNumbertheory.test_square_root_mod_prime - assert root * root % prime == sq - - for nonsquare in range(0, prime): - if nonsquare in squares: - continue - with pytest.raises(SquareRootError): - square_root_mod_prime(nonsquare, prime) - - -def st_two_nums_rel_prime(draw): - # 521-bit is the biggest curve we operate on, use 1024 for a bit - # of breathing space - mod = draw(st.integers(min_value=2, max_value=2**1024)) - num = draw(st.integers(min_value=1, max_value=mod-1) - .filter(lambda x: gcd(x, mod) == 1)) - return num, mod - - -def st_primes(draw, *args, **kwargs): - if "min_value" not in kwargs: # pragma: no branch - kwargs["min_value"] = 1 - prime = draw(st.sampled_from(smallprimes) | - st.integers(*args, **kwargs) - .filter(is_prime)) - return prime - - -def st_num_square_prime(draw): - prime = draw(st_primes(max_value=2**1024)) - num = draw(st.integers(min_value=0, max_value=1 + prime // 2)) - sq = num * num % prime - return sq, prime - - -def st_comp_with_com_fac(draw): - """ - Strategy that returns lists of numbers, all having a common factor. - """ - primes = draw(st.lists(st_primes(max_value=2**512), min_size=1, - max_size=10)) - # select random prime(s) that will make the common factor of composites - com_fac_primes = draw(st.lists(st.sampled_from(primes), - min_size=1, max_size=20)) - com_fac = reduce(operator.mul, com_fac_primes, 1) - - # select at most 20 lists (returned numbers), - # each having at most 30 primes (factors) including none (then the number - # will be 1) - comp_primes = draw( - st.integers(min_value=1, max_value=20). - flatmap(lambda n: st.lists(st.lists(st.sampled_from(primes), - max_size=30), - min_size=1, max_size=n))) - - return [reduce(operator.mul, nums, 1) * com_fac for nums in comp_primes] - - -def st_comp_no_com_fac(draw): - """ - Strategy that returns lists of numbers that don't have a common factor. - """ - primes = draw(st.lists(st_primes(max_value=2**512), - min_size=2, max_size=10, unique=True)) - # first select the primes that will create the uncommon factor - # between returned numbers - uncom_fac_primes = draw(st.lists( - st.sampled_from(primes), - min_size=1, max_size=len(primes)-1, unique=True)) - uncom_fac = reduce(operator.mul, uncom_fac_primes, 1) - - # then build composites from leftover primes - leftover_primes = [i for i in primes if i not in uncom_fac_primes] - - assert leftover_primes - assert uncom_fac_primes - - # select at most 20 lists, each having at most 30 primes - # selected from the leftover_primes list - number_primes = draw( - st.integers(min_value=1, max_value=20). - flatmap(lambda n: st.lists(st.lists(st.sampled_from(leftover_primes), - max_size=30), - min_size=1, max_size=n))) - - numbers = [reduce(operator.mul, nums, 1) for nums in number_primes] - - insert_at = draw(st.integers(min_value=0, max_value=len(numbers))) - numbers.insert(insert_at, uncom_fac) - return numbers - - -HYP_SETTINGS = {} -if HC_PRESENT: # pragma: no branch - HYP_SETTINGS['suppress_health_check']=[HealthCheck.filter_too_much, - HealthCheck.too_slow] - # the factorization() sometimes takes a long time to finish - HYP_SETTINGS['deadline'] = 5000 - - -HYP_SLOW_SETTINGS=dict(HYP_SETTINGS) -HYP_SLOW_SETTINGS["max_examples"] = 10 - - -class TestNumbertheory(unittest.TestCase): - def test_gcd(self): - assert gcd(3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13) == 3 * 5 - assert gcd([3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13]) == 3 * 5 - assert gcd(3) == 3 - - @unittest.skipUnless(HC_PRESENT, - "Hypothesis 2.0.0 can't be made tolerant of hard to " - "meet requirements (like `is_prime()`), the test " - "case times-out on it") - @settings(**HYP_SLOW_SETTINGS) - @given(st_comp_with_com_fac()) - def test_gcd_with_com_factor(self, numbers): - n = gcd(numbers) - assert 1 in numbers or n != 1 - for i in numbers: - assert i % n == 0 - - @unittest.skipUnless(HC_PRESENT, - "Hypothesis 2.0.0 can't be made tolerant of hard to " - "meet requirements (like `is_prime()`), the test " - "case times-out on it") - @settings(**HYP_SLOW_SETTINGS) - @given(st_comp_no_com_fac()) - def test_gcd_with_uncom_factor(self, numbers): - n = gcd(numbers) - assert n == 1 - - @given(st.lists(st.integers(min_value=1, max_value=2**8192), - min_size=1, max_size=20)) - def test_gcd_with_random_numbers(self, numbers): - n = gcd(numbers) - for i in numbers: - # check that at least it's a divider - assert i % n == 0 - - def test_lcm(self): - assert lcm(3, 5 * 3, 7 * 3) == 3 * 5 * 7 - assert lcm([3, 5 * 3, 7 * 3]) == 3 * 5 * 7 - assert lcm(3) == 3 - - @given(st.lists(st.integers(min_value=1, max_value=2**8192), - min_size=1, max_size=20)) - def test_lcm_with_random_numbers(self, numbers): - n = lcm(numbers) - for i in numbers: - assert n % i == 0 - - @unittest.skipUnless(HC_PRESENT, - "Hypothesis 2.0.0 can't be made tolerant of hard to " - "meet requirements (like `is_prime()`), the test " - "case times-out on it") - @settings(**HYP_SETTINGS) - @given(st_num_square_prime()) - def test_square_root_mod_prime(self, vals): - square, prime = vals - - calc = square_root_mod_prime(square, prime) - assert calc * calc % prime == square - - @settings(**HYP_SETTINGS) - @given(st.integers(min_value=1, max_value=10**12)) - @example(265399 * 1526929) - @example(373297 ** 2 * 553991) - def test_factorization(self, num): - factors = factorization(num) - mult = 1 - for i in factors: - mult *= i[0] ** i[1] - assert mult == num - - @settings(**HYP_SETTINGS) - @given(st.integers(min_value=3, max_value=1000).filter(lambda x: x % 2)) - def test_jacobi(self, mod): - if is_prime(mod): - squares = set() - for root in range(1, mod): - assert jacobi(root * root, mod) == 1 - squares.add(root * root % mod) - for i in range(1, mod): - if i not in squares: - assert jacobi(i, mod) == -1 - else: - factors = factorization(mod) - for a in range(1, mod): - c = 1 - for i in factors: - c *= jacobi(a, i[0]) ** i[1] - assert c == jacobi(a, mod) - - @given(st_two_nums_rel_prime()) - def test_inverse_mod(self, nums): - num, mod = nums - - inv = inverse_mod(num, mod) - - assert 0 < inv < mod - assert num * inv % mod == 1 - - def test_inverse_mod_with_zero(self): - assert 0 == inverse_mod(0, 11) diff --git a/freezed_deps/ecdsa/test_pyecdsa.py b/freezed_deps/ecdsa/test_pyecdsa.py deleted file mode 100644 index d83eb01..0000000 --- a/freezed_deps/ecdsa/test_pyecdsa.py +++ /dev/null @@ -1,1445 +0,0 @@ -from __future__ import with_statement, division - -try: - import unittest2 as unittest -except ImportError: - import unittest -import os -import time -import shutil -import subprocess -import pytest -from binascii import hexlify, unhexlify -from hashlib import sha1, sha256, sha384, sha512 -import hashlib -from functools import partial - -from hypothesis import given -import hypothesis.strategies as st - -from six import b, print_, binary_type -from .keys import SigningKey, VerifyingKey -from .keys import BadSignatureError, MalformedPointError, BadDigestError -from . import util -from .util import sigencode_der, sigencode_strings -from .util import sigdecode_der, sigdecode_strings -from .util import number_to_string, encoded_oid_ecPublicKey, \ - MalformedSignature -from .curves import Curve, UnknownCurveError -from .curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, \ - SECP256k1, BRAINPOOLP160r1, BRAINPOOLP192r1, BRAINPOOLP224r1, \ - BRAINPOOLP256r1, BRAINPOOLP320r1, BRAINPOOLP384r1, BRAINPOOLP512r1, \ - curves -from .ecdsa import curve_brainpoolp224r1, curve_brainpoolp256r1, \ - curve_brainpoolp384r1, curve_brainpoolp512r1 -from .ellipticcurve import Point -from . import der -from . import rfc6979 -from . import ecdsa - - -class SubprocessError(Exception): - pass - - -def run_openssl(cmd): - OPENSSL = "openssl" - p = subprocess.Popen([OPENSSL] + cmd.split(), - stdout=subprocess.PIPE, - stderr=subprocess.STDOUT) - stdout, ignored = p.communicate() - if p.returncode != 0: - raise SubprocessError("cmd '%s %s' failed: rc=%s, stdout/err was %s" % - (OPENSSL, cmd, p.returncode, stdout)) - return stdout.decode() - - -class ECDSA(unittest.TestCase): - def test_basic(self): - priv = SigningKey.generate() - pub = priv.get_verifying_key() - - data = b("blahblah") - sig = priv.sign(data) - - self.assertTrue(pub.verify(sig, data)) - self.assertRaises(BadSignatureError, pub.verify, sig, data + b("bad")) - - pub2 = VerifyingKey.from_string(pub.to_string()) - self.assertTrue(pub2.verify(sig, data)) - - def test_deterministic(self): - data = b("blahblah") - secexp = int("9d0219792467d7d37b4d43298a7d0c05", 16) - - priv = SigningKey.from_secret_exponent(secexp, SECP256k1, sha256) - pub = priv.get_verifying_key() - - k = rfc6979.generate_k( - SECP256k1.generator.order(), secexp, sha256, sha256(data).digest()) - - sig1 = priv.sign(data, k=k) - self.assertTrue(pub.verify(sig1, data)) - - sig2 = priv.sign(data, k=k) - self.assertTrue(pub.verify(sig2, data)) - - sig3 = priv.sign_deterministic(data, sha256) - self.assertTrue(pub.verify(sig3, data)) - - self.assertEqual(sig1, sig2) - self.assertEqual(sig1, sig3) - - def test_bad_usage(self): - # sk=SigningKey() is wrong - self.assertRaises(TypeError, SigningKey) - self.assertRaises(TypeError, VerifyingKey) - - def test_lengths(self): - default = NIST192p - priv = SigningKey.generate() - pub = priv.get_verifying_key() - self.assertEqual(len(pub.to_string()), default.verifying_key_length) - sig = priv.sign(b("data")) - self.assertEqual(len(sig), default.signature_length) - for curve in (NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, - BRAINPOOLP160r1, BRAINPOOLP192r1, BRAINPOOLP224r1, - BRAINPOOLP256r1, BRAINPOOLP320r1, BRAINPOOLP384r1, - BRAINPOOLP512r1): - start = time.time() - priv = SigningKey.generate(curve=curve) - pub1 = priv.get_verifying_key() - keygen_time = time.time() - start - pub2 = VerifyingKey.from_string(pub1.to_string(), curve) - self.assertEqual(pub1.to_string(), pub2.to_string()) - self.assertEqual(len(pub1.to_string()), - curve.verifying_key_length) - start = time.time() - sig = priv.sign(b("data")) - sign_time = time.time() - start - self.assertEqual(len(sig), curve.signature_length) - - def test_serialize(self): - seed = b("secret") - curve = NIST192p - secexp1 = util.randrange_from_seed__trytryagain(seed, curve.order) - secexp2 = util.randrange_from_seed__trytryagain(seed, curve.order) - self.assertEqual(secexp1, secexp2) - priv1 = SigningKey.from_secret_exponent(secexp1, curve) - priv2 = SigningKey.from_secret_exponent(secexp2, curve) - self.assertEqual(hexlify(priv1.to_string()), - hexlify(priv2.to_string())) - self.assertEqual(priv1.to_pem(), priv2.to_pem()) - pub1 = priv1.get_verifying_key() - pub2 = priv2.get_verifying_key() - data = b("data") - sig1 = priv1.sign(data) - sig2 = priv2.sign(data) - self.assertTrue(pub1.verify(sig1, data)) - self.assertTrue(pub2.verify(sig1, data)) - self.assertTrue(pub1.verify(sig2, data)) - self.assertTrue(pub2.verify(sig2, data)) - self.assertEqual(hexlify(pub1.to_string()), - hexlify(pub2.to_string())) - - def test_nonrandom(self): - s = b("all the entropy in the entire world, compressed into one line") - - def not_much_entropy(numbytes): - return s[:numbytes] - - # we control the entropy source, these two keys should be identical: - priv1 = SigningKey.generate(entropy=not_much_entropy) - priv2 = SigningKey.generate(entropy=not_much_entropy) - self.assertEqual(hexlify(priv1.get_verifying_key().to_string()), - hexlify(priv2.get_verifying_key().to_string())) - # likewise, signatures should be identical. Obviously you'd never - # want to do this with keys you care about, because the secrecy of - # the private key depends upon using different random numbers for - # each signature - sig1 = priv1.sign(b("data"), entropy=not_much_entropy) - sig2 = priv2.sign(b("data"), entropy=not_much_entropy) - self.assertEqual(hexlify(sig1), hexlify(sig2)) - - def assertTruePrivkeysEqual(self, priv1, priv2): - self.assertEqual(priv1.privkey.secret_multiplier, - priv2.privkey.secret_multiplier) - self.assertEqual(priv1.privkey.public_key.generator, - priv2.privkey.public_key.generator) - - def test_privkey_creation(self): - s = b("all the entropy in the entire world, compressed into one line") - - def not_much_entropy(numbytes): - return s[:numbytes] - - priv1 = SigningKey.generate() - self.assertEqual(priv1.baselen, NIST192p.baselen) - - priv1 = SigningKey.generate(curve=NIST224p) - self.assertEqual(priv1.baselen, NIST224p.baselen) - - priv1 = SigningKey.generate(entropy=not_much_entropy) - self.assertEqual(priv1.baselen, NIST192p.baselen) - priv2 = SigningKey.generate(entropy=not_much_entropy) - self.assertEqual(priv2.baselen, NIST192p.baselen) - self.assertTruePrivkeysEqual(priv1, priv2) - - priv1 = SigningKey.from_secret_exponent(secexp=3) - self.assertEqual(priv1.baselen, NIST192p.baselen) - priv2 = SigningKey.from_secret_exponent(secexp=3) - self.assertTruePrivkeysEqual(priv1, priv2) - - priv1 = SigningKey.from_secret_exponent(secexp=4, curve=NIST224p) - self.assertEqual(priv1.baselen, NIST224p.baselen) - - def test_privkey_strings(self): - priv1 = SigningKey.generate() - s1 = priv1.to_string() - self.assertEqual(type(s1), binary_type) - self.assertEqual(len(s1), NIST192p.baselen) - priv2 = SigningKey.from_string(s1) - self.assertTruePrivkeysEqual(priv1, priv2) - - s1 = priv1.to_pem() - self.assertEqual(type(s1), binary_type) - self.assertTrue(s1.startswith(b("-----BEGIN EC PRIVATE KEY-----"))) - self.assertTrue(s1.strip().endswith(b("-----END EC PRIVATE KEY-----"))) - priv2 = SigningKey.from_pem(s1) - self.assertTruePrivkeysEqual(priv1, priv2) - - s1 = priv1.to_der() - self.assertEqual(type(s1), binary_type) - priv2 = SigningKey.from_der(s1) - self.assertTruePrivkeysEqual(priv1, priv2) - - priv1 = SigningKey.generate(curve=NIST256p) - s1 = priv1.to_pem() - self.assertEqual(type(s1), binary_type) - self.assertTrue(s1.startswith(b("-----BEGIN EC PRIVATE KEY-----"))) - self.assertTrue(s1.strip().endswith(b("-----END EC PRIVATE KEY-----"))) - priv2 = SigningKey.from_pem(s1) - self.assertTruePrivkeysEqual(priv1, priv2) - - s1 = priv1.to_der() - self.assertEqual(type(s1), binary_type) - priv2 = SigningKey.from_der(s1) - self.assertTruePrivkeysEqual(priv1, priv2) - - def test_privkey_strings_brainpool(self): - priv1 = SigningKey.generate(curve=BRAINPOOLP512r1) - s1 = priv1.to_pem() - self.assertEqual(type(s1), binary_type) - self.assertTrue(s1.startswith(b("-----BEGIN EC PRIVATE KEY-----"))) - self.assertTrue(s1.strip().endswith(b("-----END EC PRIVATE KEY-----"))) - priv2 = SigningKey.from_pem(s1) - self.assertTruePrivkeysEqual(priv1, priv2) - - s1 = priv1.to_der() - self.assertEqual(type(s1), binary_type) - priv2 = SigningKey.from_der(s1) - self.assertTruePrivkeysEqual(priv1, priv2) - - def assertTruePubkeysEqual(self, pub1, pub2): - self.assertEqual(pub1.pubkey.point, pub2.pubkey.point) - self.assertEqual(pub1.pubkey.generator, pub2.pubkey.generator) - self.assertEqual(pub1.curve, pub2.curve) - - def test_pubkey_strings(self): - priv1 = SigningKey.generate() - pub1 = priv1.get_verifying_key() - s1 = pub1.to_string() - self.assertEqual(type(s1), binary_type) - self.assertEqual(len(s1), NIST192p.verifying_key_length) - pub2 = VerifyingKey.from_string(s1) - self.assertTruePubkeysEqual(pub1, pub2) - - priv1 = SigningKey.generate(curve=NIST256p) - pub1 = priv1.get_verifying_key() - s1 = pub1.to_string() - self.assertEqual(type(s1), binary_type) - self.assertEqual(len(s1), NIST256p.verifying_key_length) - pub2 = VerifyingKey.from_string(s1, curve=NIST256p) - self.assertTruePubkeysEqual(pub1, pub2) - - pub1_der = pub1.to_der() - self.assertEqual(type(pub1_der), binary_type) - pub2 = VerifyingKey.from_der(pub1_der) - self.assertTruePubkeysEqual(pub1, pub2) - - self.assertRaises(der.UnexpectedDER, - VerifyingKey.from_der, pub1_der + b("junk")) - badpub = VerifyingKey.from_der(pub1_der) - - class FakeGenerator: - def order(self): - return 123456789 - - badcurve = Curve("unknown", None, FakeGenerator(), (1, 2, 3, 4, 5, 6), None) - badpub.curve = badcurve - badder = badpub.to_der() - self.assertRaises(UnknownCurveError, VerifyingKey.from_der, badder) - - pem = pub1.to_pem() - self.assertEqual(type(pem), binary_type) - self.assertTrue(pem.startswith(b("-----BEGIN PUBLIC KEY-----")), pem) - self.assertTrue(pem.strip().endswith(b("-----END PUBLIC KEY-----")), pem) - pub2 = VerifyingKey.from_pem(pem) - self.assertTruePubkeysEqual(pub1, pub2) - - def test_pubkey_strings_brainpool(self): - priv1 = SigningKey.generate(curve=BRAINPOOLP512r1) - pub1 = priv1.get_verifying_key() - s1 = pub1.to_string() - self.assertEqual(type(s1), binary_type) - self.assertEqual(len(s1), BRAINPOOLP512r1.verifying_key_length) - pub2 = VerifyingKey.from_string(s1, curve=BRAINPOOLP512r1) - self.assertTruePubkeysEqual(pub1, pub2) - - pub1_der = pub1.to_der() - self.assertEqual(type(pub1_der), binary_type) - pub2 = VerifyingKey.from_der(pub1_der) - self.assertTruePubkeysEqual(pub1, pub2) - - def test_vk_to_der_with_invalid_point_encoding(self): - sk = SigningKey.generate() - vk = sk.verifying_key - - with self.assertRaises(ValueError): - vk.to_der("raw") - - def test_sk_to_der_with_invalid_point_encoding(self): - sk = SigningKey.generate() - - with self.assertRaises(ValueError): - sk.to_der("raw") - - def test_vk_from_der_garbage_after_curve_oid(self): - type_oid_der = encoded_oid_ecPublicKey - curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) + \ - b('garbage') - enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) - point_der = der.encode_bitstring(b'\x00\xff', None) - to_decode = der.encode_sequence(enc_type_der, point_der) - - with self.assertRaises(der.UnexpectedDER): - VerifyingKey.from_der(to_decode) - - def test_vk_from_der_invalid_key_type(self): - type_oid_der = der.encode_oid(*(1, 2, 3)) - curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) - enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) - point_der = der.encode_bitstring(b'\x00\xff', None) - to_decode = der.encode_sequence(enc_type_der, point_der) - - with self.assertRaises(der.UnexpectedDER): - VerifyingKey.from_der(to_decode) - - def test_vk_from_der_garbage_after_point_string(self): - type_oid_der = encoded_oid_ecPublicKey - curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) - enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) - point_der = der.encode_bitstring(b'\x00\xff', None) + b('garbage') - to_decode = der.encode_sequence(enc_type_der, point_der) - - with self.assertRaises(der.UnexpectedDER): - VerifyingKey.from_der(to_decode) - - def test_vk_from_der_invalid_bitstring(self): - type_oid_der = encoded_oid_ecPublicKey - curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) - enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) - point_der = der.encode_bitstring(b'\x08\xff', None) - to_decode = der.encode_sequence(enc_type_der, point_der) - - with self.assertRaises(der.UnexpectedDER): - VerifyingKey.from_der(to_decode) - - def test_vk_from_der_with_invalid_length_of_encoding(self): - type_oid_der = encoded_oid_ecPublicKey - curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) - enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) - point_der = der.encode_bitstring(b'\xff'*64, 0) - to_decode = der.encode_sequence(enc_type_der, point_der) - - with self.assertRaises(MalformedPointError): - VerifyingKey.from_der(to_decode) - - def test_vk_from_der_with_raw_encoding(self): - type_oid_der = encoded_oid_ecPublicKey - curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) - enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) - point_der = der.encode_bitstring(b'\xff'*48, 0) - to_decode = der.encode_sequence(enc_type_der, point_der) - - with self.assertRaises(der.UnexpectedDER): - VerifyingKey.from_der(to_decode) - - def test_signature_strings(self): - priv1 = SigningKey.generate() - pub1 = priv1.get_verifying_key() - data = b("data") - - sig = priv1.sign(data) - self.assertEqual(type(sig), binary_type) - self.assertEqual(len(sig), NIST192p.signature_length) - self.assertTrue(pub1.verify(sig, data)) - - sig = priv1.sign(data, sigencode=sigencode_strings) - self.assertEqual(type(sig), tuple) - self.assertEqual(len(sig), 2) - self.assertEqual(type(sig[0]), binary_type) - self.assertEqual(type(sig[1]), binary_type) - self.assertEqual(len(sig[0]), NIST192p.baselen) - self.assertEqual(len(sig[1]), NIST192p.baselen) - self.assertTrue(pub1.verify(sig, data, sigdecode=sigdecode_strings)) - - sig_der = priv1.sign(data, sigencode=sigencode_der) - self.assertEqual(type(sig_der), binary_type) - self.assertTrue(pub1.verify(sig_der, data, sigdecode=sigdecode_der)) - - def test_sig_decode_strings_with_invalid_count(self): - with self.assertRaises(MalformedSignature): - sigdecode_strings([b('one'), b('two'), b('three')], 0xff) - - def test_sig_decode_strings_with_wrong_r_len(self): - with self.assertRaises(MalformedSignature): - sigdecode_strings([b('one'), b('two')], 0xff) - - def test_sig_decode_strings_with_wrong_s_len(self): - with self.assertRaises(MalformedSignature): - sigdecode_strings([b('\xa0'), b('\xb0\xff')], 0xff) - - def test_verify_with_too_long_input(self): - sk = SigningKey.generate() - vk = sk.verifying_key - - with self.assertRaises(BadDigestError): - vk.verify_digest(None, b('\x00') * 128) - - def test_sk_from_secret_exponent_with_wrong_sec_exponent(self): - with self.assertRaises(MalformedPointError): - SigningKey.from_secret_exponent(0) - - def test_sk_from_string_with_wrong_len_string(self): - with self.assertRaises(MalformedPointError): - SigningKey.from_string(b('\x01')) - - def test_sk_from_der_with_junk_after_sequence(self): - ver_der = der.encode_integer(1) - to_decode = der.encode_sequence(ver_der) + b('garbage') - - with self.assertRaises(der.UnexpectedDER): - SigningKey.from_der(to_decode) - - def test_sk_from_der_with_wrong_version(self): - ver_der = der.encode_integer(0) - to_decode = der.encode_sequence(ver_der) - - with self.assertRaises(der.UnexpectedDER): - SigningKey.from_der(to_decode) - - def test_sk_from_der_invalid_const_tag(self): - ver_der = der.encode_integer(1) - privkey_der = der.encode_octet_string(b('\x00\xff')) - curve_oid_der = der.encode_oid(*(1, 2, 3)) - const_der = der.encode_constructed(1, curve_oid_der) - to_decode = der.encode_sequence(ver_der, privkey_der, const_der, - curve_oid_der) - - with self.assertRaises(der.UnexpectedDER): - SigningKey.from_der(to_decode) - - def test_sk_from_der_garbage_after_privkey_oid(self): - ver_der = der.encode_integer(1) - privkey_der = der.encode_octet_string(b('\x00\xff')) - curve_oid_der = der.encode_oid(*(1, 2, 3)) + b('garbage') - const_der = der.encode_constructed(0, curve_oid_der) - to_decode = der.encode_sequence(ver_der, privkey_der, const_der, - curve_oid_der) - - with self.assertRaises(der.UnexpectedDER): - SigningKey.from_der(to_decode) - - def test_sk_from_der_with_short_privkey(self): - ver_der = der.encode_integer(1) - privkey_der = der.encode_octet_string(b('\x00\xff')) - curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) - const_der = der.encode_constructed(0, curve_oid_der) - to_decode = der.encode_sequence(ver_der, privkey_der, const_der, - curve_oid_der) - - sk = SigningKey.from_der(to_decode) - self.assertEqual(sk.privkey.secret_multiplier, 255) - - def test_sign_with_too_long_hash(self): - sk = SigningKey.from_secret_exponent(12) - - with self.assertRaises(BadDigestError): - sk.sign_digest(b('\xff') * 64) - - def test_hashfunc(self): - sk = SigningKey.generate(curve=NIST256p, hashfunc=sha256) - data = b("security level is 128 bits") - sig = sk.sign(data) - vk = VerifyingKey.from_string(sk.get_verifying_key().to_string(), - curve=NIST256p, hashfunc=sha256) - self.assertTrue(vk.verify(sig, data)) - - sk2 = SigningKey.generate(curve=NIST256p) - sig2 = sk2.sign(data, hashfunc=sha256) - vk2 = VerifyingKey.from_string(sk2.get_verifying_key().to_string(), - curve=NIST256p, hashfunc=sha256) - self.assertTrue(vk2.verify(sig2, data)) - - vk3 = VerifyingKey.from_string(sk.get_verifying_key().to_string(), - curve=NIST256p) - self.assertTrue(vk3.verify(sig, data, hashfunc=sha256)) - - def test_public_key_recovery(self): - # Create keys - curve = NIST256p - - sk = SigningKey.generate(curve=curve) - vk = sk.get_verifying_key() - - # Sign a message - data = b("blahblah") - signature = sk.sign(data) - - # Recover verifying keys - recovered_vks = VerifyingKey.from_public_key_recovery(signature, data, curve) - - # Test if each pk is valid - for recovered_vk in recovered_vks: - # Test if recovered vk is valid for the data - self.assertTrue(recovered_vk.verify(signature, data)) - - # Test if properties are equal - self.assertEqual(vk.curve, recovered_vk.curve) - self.assertEqual(vk.default_hashfunc, recovered_vk.default_hashfunc) - - # Test if original vk is the list of recovered keys - self.assertTrue( - vk.pubkey.point in [recovered_vk.pubkey.point for recovered_vk in recovered_vks]) - - def test_public_key_recovery_with_custom_hash(self): - # Create keys - curve = NIST256p - - sk = SigningKey.generate(curve=curve, hashfunc=sha256) - vk = sk.get_verifying_key() - - # Sign a message - data = b("blahblah") - signature = sk.sign(data) - - # Recover verifying keys - recovered_vks = VerifyingKey.\ - from_public_key_recovery(signature, data, curve, - hashfunc=sha256) - - # Test if each pk is valid - for recovered_vk in recovered_vks: - # Test if recovered vk is valid for the data - self.assertTrue(recovered_vk.verify(signature, data)) - - # Test if properties are equal - self.assertEqual(vk.curve, recovered_vk.curve) - self.assertEqual(sha256, recovered_vk.default_hashfunc) - - # Test if original vk is the list of recovered keys - self.assertTrue(vk.pubkey.point in - [recovered_vk.pubkey.point for recovered_vk in recovered_vks]) - - def test_encoding(self): - sk = SigningKey.from_secret_exponent(123456789) - vk = sk.verifying_key - - exp = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' - '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' - 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') - self.assertEqual(vk.to_string(), exp) - self.assertEqual(vk.to_string('raw'), exp) - self.assertEqual(vk.to_string('uncompressed'), b('\x04') + exp) - self.assertEqual(vk.to_string('compressed'), b('\x02') + exp[:24]) - self.assertEqual(vk.to_string('hybrid'), b('\x06') + exp) - - def test_decoding(self): - sk = SigningKey.from_secret_exponent(123456789) - vk = sk.verifying_key - - enc = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' - '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' - 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') - - from_raw = VerifyingKey.from_string(enc) - self.assertEqual(from_raw.pubkey.point, vk.pubkey.point) - - from_uncompressed = VerifyingKey.from_string(b('\x04') + enc) - self.assertEqual(from_uncompressed.pubkey.point, vk.pubkey.point) - - from_compressed = VerifyingKey.from_string(b('\x02') + enc[:24]) - self.assertEqual(from_compressed.pubkey.point, vk.pubkey.point) - - from_uncompressed = VerifyingKey.from_string(b('\x06') + enc) - self.assertEqual(from_uncompressed.pubkey.point, vk.pubkey.point) - - def test_decoding_with_malformed_uncompressed(self): - enc = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' - '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' - 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') - - with self.assertRaises(MalformedPointError): - VerifyingKey.from_string(b('\x02') + enc) - - def test_decoding_with_malformed_compressed(self): - enc = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' - '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' - 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') - - with self.assertRaises(MalformedPointError): - VerifyingKey.from_string(b('\x01') + enc[:24]) - - def test_decoding_with_inconsistent_hybrid(self): - enc = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' - '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' - 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') - - with self.assertRaises(MalformedPointError): - VerifyingKey.from_string(b('\x07') + enc) - - def test_decoding_with_point_not_on_curve(self): - enc = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' - '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' - 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') - - with self.assertRaises(MalformedPointError): - VerifyingKey.from_string(enc[:47] + b('\x00')) - - def test_decoding_with_point_at_infinity(self): - # decoding it is unsupported, as it's not necessary to encode it - with self.assertRaises(MalformedPointError): - VerifyingKey.from_string(b('\x00')) - - def test_not_lying_on_curve(self): - enc = number_to_string(NIST192p.curve.p(), NIST192p.curve.p()+1) - - with self.assertRaises(MalformedPointError): - VerifyingKey.from_string(b('\x02') + enc) - - def test_from_string_with_invalid_curve_too_short_ver_key_len(self): - # both verifying_key_length and baselen are calculated internally - # by the Curve constructor, but since we depend on them verify - # that inconsistent values are detected - curve = Curve("test", ecdsa.curve_192, ecdsa.generator_192, (1, 2)) - curve.verifying_key_length = 16 - curve.baselen = 32 - - with self.assertRaises(MalformedPointError): - VerifyingKey.from_string(b('\x00')*16, curve) - - def test_from_string_with_invalid_curve_too_long_ver_key_len(self): - # both verifying_key_length and baselen are calculated internally - # by the Curve constructor, but since we depend on them verify - # that inconsistent values are detected - curve = Curve("test", ecdsa.curve_192, ecdsa.generator_192, (1, 2)) - curve.verifying_key_length = 16 - curve.baselen = 16 - - with self.assertRaises(MalformedPointError): - VerifyingKey.from_string(b('\x00')*16, curve) - - [email protected]("val,even", - [(i, j) for i in range(256) for j in [True, False]]) -def test_VerifyingKey_decode_with_small_values(val, even): - enc = number_to_string(val, NIST192p.order) - - if even: - enc = b('\x02') + enc - else: - enc = b('\x03') + enc - - # small values can both be actual valid public keys and not, verify that - # only expected exceptions are raised if they are not - try: - vk = VerifyingKey.from_string(enc) - assert isinstance(vk, VerifyingKey) - except MalformedPointError: - assert True - - -params = [] -for curve in curves: - for enc in ["raw", "uncompressed", "compressed", "hybrid"]: - params.append(pytest.param(curve, enc, id="{0}-{1}".format( - curve.name, enc))) - - [email protected]("curve,encoding", params) -def test_VerifyingKey_encode_decode(curve, encoding): - sk = SigningKey.generate(curve=curve) - vk = sk.verifying_key - - encoded = vk.to_string(encoding) - - from_enc = VerifyingKey.from_string(encoded, curve=curve) - - assert vk.pubkey.point == from_enc.pubkey.point - - -class OpenSSL(unittest.TestCase): - # test interoperability with OpenSSL tools. Note that openssl's ECDSA - # sign/verify arguments changed between 0.9.8 and 1.0.0: the early - # versions require "-ecdsa-with-SHA1", the later versions want just - # "-SHA1" (or to leave out that argument entirely, which means the - # signature will use some default digest algorithm, probably determined - # by the key, probably always SHA1). - # - # openssl ecparam -name secp224r1 -genkey -out privkey.pem - # openssl ec -in privkey.pem -text -noout # get the priv/pub keys - # openssl dgst -ecdsa-with-SHA1 -sign privkey.pem -out data.sig data.txt - # openssl asn1parse -in data.sig -inform DER - # data.sig is 64 bytes, probably 56b plus ASN1 overhead - # openssl dgst -ecdsa-with-SHA1 -prverify privkey.pem -signature data.sig data.txt ; echo $? - # openssl ec -in privkey.pem -pubout -out pubkey.pem - # openssl ec -in privkey.pem -pubout -outform DER -out pubkey.der - - OPENSSL_SUPPORTED_CURVES = set(c.split(':')[0].strip() for c in - run_openssl("ecparam -list_curves") - .split('\n')) - - def get_openssl_messagedigest_arg(self, hash_name): - v = run_openssl("version") - # e.g. "OpenSSL 1.0.0 29 Mar 2010", or "OpenSSL 1.0.0a 1 Jun 2010", - # or "OpenSSL 0.9.8o 01 Jun 2010" - vs = v.split()[1].split(".") - if vs >= ["1", "0", "0"]: # pragma: no cover - return "-{0}".format(hash_name) - else: # pragma: no cover - return "-ecdsa-with-{0}".format(hash_name) - - # sk: 1:OpenSSL->python 2:python->OpenSSL - # vk: 3:OpenSSL->python 4:python->OpenSSL - # sig: 5:OpenSSL->python 6:python->OpenSSL - - @pytest.mark.skipif("prime192v1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support prime192v1") - def test_from_openssl_nist192p(self): - return self.do_test_from_openssl(NIST192p) - - @pytest.mark.skipif("prime192v1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support prime192v1") - def test_from_openssl_nist192p_sha256(self): - return self.do_test_from_openssl(NIST192p, "SHA256") - - @pytest.mark.skipif("secp224r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support secp224r1") - def test_from_openssl_nist224p(self): - return self.do_test_from_openssl(NIST224p) - - @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support prime256v1") - def test_from_openssl_nist256p(self): - return self.do_test_from_openssl(NIST256p) - - @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support prime256v1") - def test_from_openssl_nist256p_sha384(self): - return self.do_test_from_openssl(NIST256p, "SHA384") - - @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support prime256v1") - def test_from_openssl_nist256p_sha512(self): - return self.do_test_from_openssl(NIST256p, "SHA512") - - @pytest.mark.skipif("secp384r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support secp384r1") - def test_from_openssl_nist384p(self): - return self.do_test_from_openssl(NIST384p) - - @pytest.mark.skipif("secp521r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support secp521r1") - def test_from_openssl_nist521p(self): - return self.do_test_from_openssl(NIST521p) - - @pytest.mark.skipif("secp256k1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support secp256k1") - def test_from_openssl_secp256k1(self): - return self.do_test_from_openssl(SECP256k1) - - @pytest.mark.skipif("brainpoolP160r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP160r1") - def test_from_openssl_brainpoolp160r1(self): - return self.do_test_from_openssl(BRAINPOOLP160r1) - - @pytest.mark.skipif("brainpoolP192r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP192r1") - def test_from_openssl_brainpoolp192r1(self): - return self.do_test_from_openssl(BRAINPOOLP192r1) - - @pytest.mark.skipif("brainpoolP224r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP224r1") - def test_from_openssl_brainpoolp224r1(self): - return self.do_test_from_openssl(BRAINPOOLP224r1) - - @pytest.mark.skipif("brainpoolP256r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP256r1") - def test_from_openssl_brainpoolp256r1(self): - return self.do_test_from_openssl(BRAINPOOLP256r1) - - @pytest.mark.skipif("brainpoolP320r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP320r1") - def test_from_openssl_brainpoolp320r1(self): - return self.do_test_from_openssl(BRAINPOOLP320r1) - - @pytest.mark.skipif("brainpoolP384r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP384r1") - def test_from_openssl_brainpoolp384r1(self): - return self.do_test_from_openssl(BRAINPOOLP384r1) - - @pytest.mark.skipif("brainpoolP512r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP512r1") - def test_from_openssl_brainpoolp512r1(self): - return self.do_test_from_openssl(BRAINPOOLP512r1) - - def do_test_from_openssl(self, curve, hash_name="SHA1"): - curvename = curve.openssl_name - assert curvename - # OpenSSL: create sk, vk, sign. - # Python: read vk(3), checksig(5), read sk(1), sign, check - mdarg = self.get_openssl_messagedigest_arg(hash_name) - if os.path.isdir("t"): # pragma: no cover - shutil.rmtree("t") - os.mkdir("t") - run_openssl("ecparam -name %s -genkey -out t/privkey.pem" % curvename) - run_openssl("ec -in t/privkey.pem -pubout -out t/pubkey.pem") - data = b("data") - with open("t/data.txt", "wb") as e: - e.write(data) - run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig t/data.txt" % mdarg) - run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig t/data.txt" % mdarg) - with open("t/pubkey.pem", "rb") as e: - pubkey_pem = e.read() - vk = VerifyingKey.from_pem(pubkey_pem) # 3 - with open("t/data.sig", "rb") as e: - sig_der = e.read() - self.assertTrue(vk.verify(sig_der, data, # 5 - hashfunc=partial(hashlib.new, hash_name), - sigdecode=sigdecode_der)) - - with open("t/privkey.pem") as e: - fp = e.read() - sk = SigningKey.from_pem(fp) # 1 - sig = sk.sign( - data, - hashfunc=partial(hashlib.new, hash_name), - ) - self.assertTrue(vk.verify(sig, - data, - hashfunc=partial(hashlib.new, hash_name))) - - @pytest.mark.skipif("prime192v1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support prime192v1") - def test_to_openssl_nist192p(self): - self.do_test_to_openssl(NIST192p) - - @pytest.mark.skipif("prime192v1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support prime192v1") - def test_to_openssl_nist192p_sha256(self): - self.do_test_to_openssl(NIST192p, "SHA256") - - @pytest.mark.skipif("secp224r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support secp224r1") - def test_to_openssl_nist224p(self): - self.do_test_to_openssl(NIST224p) - - @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support prime256v1") - def test_to_openssl_nist256p(self): - self.do_test_to_openssl(NIST256p) - - @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support prime256v1") - def test_to_openssl_nist256p_sha384(self): - self.do_test_to_openssl(NIST256p, "SHA384") - - @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support prime256v1") - def test_to_openssl_nist256p_sha512(self): - self.do_test_to_openssl(NIST256p, "SHA512") - - @pytest.mark.skipif("secp384r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support secp384r1") - def test_to_openssl_nist384p(self): - self.do_test_to_openssl(NIST384p) - - @pytest.mark.skipif("secp521r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support secp521r1") - def test_to_openssl_nist521p(self): - self.do_test_to_openssl(NIST521p) - - @pytest.mark.skipif("secp256k1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support secp256k1") - def test_to_openssl_secp256k1(self): - self.do_test_to_openssl(SECP256k1) - - @pytest.mark.skipif("brainpoolP160r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP160r1") - def test_to_openssl_brainpoolp160r1(self): - self.do_test_to_openssl(BRAINPOOLP160r1) - - @pytest.mark.skipif("brainpoolP192r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP192r1") - def test_to_openssl_brainpoolp192r1(self): - self.do_test_to_openssl(BRAINPOOLP192r1) - - @pytest.mark.skipif("brainpoolP224r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP224r1") - def test_to_openssl_brainpoolp224r1(self): - self.do_test_to_openssl(BRAINPOOLP224r1) - - @pytest.mark.skipif("brainpoolP256r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP256r1") - def test_to_openssl_brainpoolp256r1(self): - self.do_test_to_openssl(BRAINPOOLP256r1) - - @pytest.mark.skipif("brainpoolP320r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP320r1") - def test_to_openssl_brainpoolp320r1(self): - self.do_test_to_openssl(BRAINPOOLP320r1) - - @pytest.mark.skipif("brainpoolP384r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP384r1") - def test_to_openssl_brainpoolp384r1(self): - self.do_test_to_openssl(BRAINPOOLP384r1) - - @pytest.mark.skipif("brainpoolP512r1" not in OPENSSL_SUPPORTED_CURVES, - reason="system openssl does not support brainpoolP512r1") - def test_to_openssl_brainpoolp512r1(self): - self.do_test_to_openssl(BRAINPOOLP512r1) - - def do_test_to_openssl(self, curve, hash_name="SHA1"): - curvename = curve.openssl_name - assert curvename - # Python: create sk, vk, sign. - # OpenSSL: read vk(4), checksig(6), read sk(2), sign, check - mdarg = self.get_openssl_messagedigest_arg(hash_name) - if os.path.isdir("t"): # pragma: no cover - shutil.rmtree("t") - os.mkdir("t") - sk = SigningKey.generate(curve=curve) - vk = sk.get_verifying_key() - data = b("data") - with open("t/pubkey.der", "wb") as e: - e.write(vk.to_der()) # 4 - with open("t/pubkey.pem", "wb") as e: - e.write(vk.to_pem()) # 4 - sig_der = sk.sign(data, hashfunc=partial(hashlib.new, hash_name), - sigencode=sigencode_der) - - with open("t/data.sig", "wb") as e: - e.write(sig_der) # 6 - with open("t/data.txt", "wb") as e: - e.write(data) - with open("t/baddata.txt", "wb") as e: - e.write(data + b("corrupt")) - - self.assertRaises(SubprocessError, run_openssl, - "dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/baddata.txt" % mdarg) - run_openssl("dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/data.txt" % mdarg) - - with open("t/privkey.pem", "wb") as e: - e.write(sk.to_pem()) # 2 - run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig2 t/data.txt" % mdarg) - run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig2 t/data.txt" % mdarg) - - -class DER(unittest.TestCase): - def test_integer(self): - self.assertEqual(der.encode_integer(0), b("\x02\x01\x00")) - self.assertEqual(der.encode_integer(1), b("\x02\x01\x01")) - self.assertEqual(der.encode_integer(127), b("\x02\x01\x7f")) - self.assertEqual(der.encode_integer(128), b("\x02\x02\x00\x80")) - self.assertEqual(der.encode_integer(256), b("\x02\x02\x01\x00")) - # self.assertEqual(der.encode_integer(-1), b("\x02\x01\xff")) - - def s(n): - return der.remove_integer(der.encode_integer(n) + b("junk")) - self.assertEqual(s(0), (0, b("junk"))) - self.assertEqual(s(1), (1, b("junk"))) - self.assertEqual(s(127), (127, b("junk"))) - self.assertEqual(s(128), (128, b("junk"))) - self.assertEqual(s(256), (256, b("junk"))) - self.assertEqual(s(1234567890123456789012345678901234567890), - (1234567890123456789012345678901234567890, b("junk"))) - - def test_number(self): - self.assertEqual(der.encode_number(0), b("\x00")) - self.assertEqual(der.encode_number(127), b("\x7f")) - self.assertEqual(der.encode_number(128), b("\x81\x00")) - self.assertEqual(der.encode_number(3 * 128 + 7), b("\x83\x07")) - # self.assertEqual(der.read_number("\x81\x9b" + "more"), (155, 2)) - # self.assertEqual(der.encode_number(155), b("\x81\x9b")) - for n in (0, 1, 2, 127, 128, 3 * 128 + 7, 840, 10045): # , 155): - x = der.encode_number(n) + b("more") - n1, llen = der.read_number(x) - self.assertEqual(n1, n) - self.assertEqual(x[llen:], b("more")) - - def test_length(self): - self.assertEqual(der.encode_length(0), b("\x00")) - self.assertEqual(der.encode_length(127), b("\x7f")) - self.assertEqual(der.encode_length(128), b("\x81\x80")) - self.assertEqual(der.encode_length(255), b("\x81\xff")) - self.assertEqual(der.encode_length(256), b("\x82\x01\x00")) - self.assertEqual(der.encode_length(3 * 256 + 7), b("\x82\x03\x07")) - self.assertEqual(der.read_length(b("\x81\x9b") + b("more")), (155, 2)) - self.assertEqual(der.encode_length(155), b("\x81\x9b")) - for n in (0, 1, 2, 127, 128, 255, 256, 3 * 256 + 7, 155): - x = der.encode_length(n) + b("more") - n1, llen = der.read_length(x) - self.assertEqual(n1, n) - self.assertEqual(x[llen:], b("more")) - - def test_sequence(self): - x = der.encode_sequence(b("ABC"), b("DEF")) + b("GHI") - self.assertEqual(x, b("\x30\x06ABCDEFGHI")) - x1, rest = der.remove_sequence(x) - self.assertEqual(x1, b("ABCDEF")) - self.assertEqual(rest, b("GHI")) - - def test_constructed(self): - x = der.encode_constructed(0, NIST224p.encoded_oid) - self.assertEqual(hexlify(x), b("a007") + b("06052b81040021")) - x = der.encode_constructed(1, unhexlify(b("0102030a0b0c"))) - self.assertEqual(hexlify(x), b("a106") + b("0102030a0b0c")) - - -class Util(unittest.TestCase): - def test_trytryagain(self): - tta = util.randrange_from_seed__trytryagain - for i in range(1000): - seed = "seed-%d" % i - for order in (2**8 - 2, 2**8 - 1, 2**8, 2**8 + 1, 2**8 + 2, - 2**16 - 1, 2**16 + 1): - n = tta(seed, order) - self.assertTrue(1 <= n < order, (1, n, order)) - # this trytryagain *does* provide long-term stability - self.assertEqual(("%x" % (tta("seed", NIST224p.order))).encode(), - b("6fa59d73bf0446ae8743cf748fc5ac11d5585a90356417e97155c3bc")) - - @given(st.integers(min_value=0, max_value=10**200)) - def test_randrange(self, i): - # util.randrange does not provide long-term stability: we might - # change the algorithm in the future. - entropy = util.PRNG("seed-%d" % i) - for order in (2**8 - 2, 2**8 - 1, 2**8, - 2**16 - 1, 2**16 + 1, - ): - # that oddball 2**16+1 takes half our runtime - n = util.randrange(order, entropy=entropy) - self.assertTrue(1 <= n < order, (1, n, order)) - - def OFF_test_prove_uniformity(self): # pragma: no cover - order = 2**8 - 2 - counts = dict([(i, 0) for i in range(1, order)]) - assert 0 not in counts - assert order not in counts - for i in range(1000000): - seed = "seed-%d" % i - n = util.randrange_from_seed__trytryagain(seed, order) - counts[n] += 1 - # this technique should use the full range - self.assertTrue(counts[order - 1]) - for i in range(1, order): - print_("%3d: %s" % (i, "*" * (counts[i] // 100))) - - -class RFC6979(unittest.TestCase): - # https://tools.ietf.org/html/rfc6979#appendix-A.1 - def _do(self, generator, secexp, hsh, hash_func, expected): - actual = rfc6979.generate_k(generator.order(), secexp, hash_func, hsh) - self.assertEqual(expected, actual) - - def test_SECP256k1(self): - '''RFC doesn't contain test vectors for SECP256k1 used in bitcoin. - This vector has been computed by Golang reference implementation instead.''' - self._do( - generator=SECP256k1.generator, - secexp=int("9d0219792467d7d37b4d43298a7d0c05", 16), - hsh=sha256(b("sample")).digest(), - hash_func=sha256, - expected=int("8fa1f95d514760e498f28957b824ee6ec39ed64826ff4fecc2b5739ec45b91cd", 16)) - - def test_SECP256k1_2(self): - self._do( - generator=SECP256k1.generator, - secexp=int("cca9fbcc1b41e5a95d369eaa6ddcff73b61a4efaa279cfc6567e8daa39cbaf50", 16), - hsh=sha256(b("sample")).digest(), - hash_func=sha256, - expected=int("2df40ca70e639d89528a6b670d9d48d9165fdc0febc0974056bdce192b8e16a3", 16)) - - def test_SECP256k1_3(self): - self._do( - generator=SECP256k1.generator, - secexp=0x1, - hsh=sha256(b("Satoshi Nakamoto")).digest(), - hash_func=sha256, - expected=0x8F8A276C19F4149656B280621E358CCE24F5F52542772691EE69063B74F15D15) - - def test_SECP256k1_4(self): - self._do( - generator=SECP256k1.generator, - secexp=0x1, - hsh=sha256(b("All those moments will be lost in time, like tears in rain. Time to die...")).digest(), - hash_func=sha256, - expected=0x38AA22D72376B4DBC472E06C3BA403EE0A394DA63FC58D88686C611ABA98D6B3) - - def test_SECP256k1_5(self): - self._do( - generator=SECP256k1.generator, - secexp=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140, - hsh=sha256(b("Satoshi Nakamoto")).digest(), - hash_func=sha256, - expected=0x33A19B60E25FB6F4435AF53A3D42D493644827367E6453928554F43E49AA6F90) - - def test_SECP256k1_6(self): - self._do( - generator=SECP256k1.generator, - secexp=0xf8b8af8ce3c7cca5e300d33939540c10d45ce001b8f252bfbc57ba0342904181, - hsh=sha256(b("Alan Turing")).digest(), - hash_func=sha256, - expected=0x525A82B70E67874398067543FD84C83D30C175FDC45FDEEE082FE13B1D7CFDF1) - - def test_1(self): - # Basic example of the RFC, it also tests 'try-try-again' from Step H of rfc6979 - self._do( - generator=Point(None, 0, 0, int("4000000000000000000020108A2E0CC0D99F8A5EF", 16)), - secexp=int("09A4D6792295A7F730FC3F2B49CBC0F62E862272F", 16), - hsh=unhexlify(b("AF2BDBE1AA9B6EC1E2ADE1D694F41FC71A831D0268E9891562113D8A62ADD1BF")), - hash_func=sha256, - expected=int("23AF4074C90A02B3FE61D286D5C87F425E6BDD81B", 16)) - - def test_2(self): - self._do( - generator=NIST192p.generator, - secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), - hsh=sha1(b("sample")).digest(), - hash_func=sha1, - expected=int("37D7CA00D2C7B0E5E412AC03BD44BA837FDD5B28CD3B0021", 16)) - - def test_3(self): - self._do( - generator=NIST192p.generator, - secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), - hsh=sha256(b("sample")).digest(), - hash_func=sha256, - expected=int("32B1B6D7D42A05CB449065727A84804FB1A3E34D8F261496", 16)) - - def test_4(self): - self._do( - generator=NIST192p.generator, - secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), - hsh=sha512(b("sample")).digest(), - hash_func=sha512, - expected=int("A2AC7AB055E4F20692D49209544C203A7D1F2C0BFBC75DB1", 16)) - - def test_5(self): - self._do( - generator=NIST192p.generator, - secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), - hsh=sha1(b("test")).digest(), - hash_func=sha1, - expected=int("D9CF9C3D3297D3260773A1DA7418DB5537AB8DD93DE7FA25", 16)) - - def test_6(self): - self._do( - generator=NIST192p.generator, - secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), - hsh=sha256(b("test")).digest(), - hash_func=sha256, - expected=int("5C4CE89CF56D9E7C77C8585339B006B97B5F0680B4306C6C", 16)) - - def test_7(self): - self._do( - generator=NIST192p.generator, - secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), - hsh=sha512(b("test")).digest(), - hash_func=sha512, - expected=int("0758753A5254759C7CFBAD2E2D9B0792EEE44136C9480527", 16)) - - def test_8(self): - self._do( - generator=NIST521p.generator, - secexp=int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16), - hsh=sha1(b("sample")).digest(), - hash_func=sha1, - expected=int("089C071B419E1C2820962321787258469511958E80582E95D8378E0C2CCDB3CB42BEDE42F50E3FA3C71F5A76724281D31D9C89F0F91FC1BE4918DB1C03A5838D0F9", 16)) - - def test_9(self): - self._do( - generator=NIST521p.generator, - secexp=int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16), - hsh=sha256(b("sample")).digest(), - hash_func=sha256, - expected=int("0EDF38AFCAAECAB4383358B34D67C9F2216C8382AAEA44A3DAD5FDC9C32575761793FEF24EB0FC276DFC4F6E3EC476752F043CF01415387470BCBD8678ED2C7E1A0", 16)) - - def test_10(self): - self._do( - generator=NIST521p.generator, - secexp=int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16), - hsh=sha512(b("test")).digest(), - hash_func=sha512, - expected=int("16200813020EC986863BEDFC1B121F605C1215645018AEA1A7B215A564DE9EB1B38A67AA1128B80CE391C4FB71187654AAA3431027BFC7F395766CA988C964DC56D", 16)) - - -class ECDH(unittest.TestCase): - def _do(self, curve, generator, dA, x_qA, y_qA, dB, x_qB, y_qB, x_Z, y_Z): - qA = dA * generator - qB = dB * generator - Z = dA * qB - self.assertEqual(Point(curve, x_qA, y_qA), qA) - self.assertEqual(Point(curve, x_qB, y_qB), qB) - self.assertTrue((dA * qB) == - (dA * dB * generator) == - (dB * dA * generator) == - (dB * qA)) - self.assertEqual(Point(curve, x_Z, y_Z), Z) - - -class RFC6932(ECDH): - # https://tools.ietf.org/html/rfc6932#appendix-A.1 - - def test_brainpoolP224r1(self): - self._do( - curve=curve_brainpoolp224r1, - generator=BRAINPOOLP224r1.generator, - dA=int("7C4B7A2C8A4BAD1FBB7D79CC0955DB7C6A4660CA64CC4778159B495E", - 16), - x_qA=int("B104A67A6F6E85E14EC1825E1539E8ECDBBF584922367DD88C6BDCF2", - 16), - y_qA=int("46D782E7FDB5F60CD8404301AC5949C58EDB26BC68BA07695B750A94", - 16), - dB=int("63976D4AAE6CD0F6DD18DEFEF55D96569D0507C03E74D6486FFA28FB", - 16), - x_qB=int("2A97089A9296147B71B21A4B574E1278245B536F14D8C2B9D07A874E", - 16), - y_qB=int("9B900D7C77A709A797276B8CA1BA61BB95B546FC29F862E44D59D25B", - 16), - x_Z=int("312DFD98783F9FB77B9704945A73BEB6DCCBE3B65D0F967DCAB574EB", - 16), - y_Z=int("6F800811D64114B1C48C621AB3357CF93F496E4238696A2A012B3C98", - 16)) - - def test_brainpoolP256r1(self): - self._do( - curve=curve_brainpoolp256r1, - generator=BRAINPOOLP256r1.generator, - dA=int("041EB8B1E2BC681BCE8E39963B2E9FC415B05283313DD1A8BCC055F11AE" - "49699", 16), - x_qA=int("78028496B5ECAAB3C8B6C12E45DB1E02C9E4D26B4113BC4F015F60C5C" - "CC0D206", 16), - y_qA=int("A2AE1762A3831C1D20F03F8D1E3C0C39AFE6F09B4D44BBE80CD100987" - "B05F92B", 16), - dB=int("06F5240EACDB9837BC96D48274C8AA834B6C87BA9CC3EEDD81F99A16B8D" - "804D3", 16), - x_qB=int("8E07E219BA588916C5B06AA30A2F464C2F2ACFC1610A3BE2FB240B635" - "341F0DB", 16), - y_qB=int("148EA1D7D1E7E54B9555B6C9AC90629C18B63BEE5D7AA6949EBBF47B2" - "4FDE40D", 16), - x_Z=int("05E940915549E9F6A4A75693716E37466ABA79B4BF2919877A16DD2CC2" - "E23708", 16), - y_Z=int("6BC23B6702BC5A019438CEEA107DAAD8B94232FFBBC350F3B137628FE6" - "FD134C", 16)) - - def test_brainpoolP384r1(self): - self._do( - curve=curve_brainpoolp384r1, - generator=BRAINPOOLP384r1.generator, - dA=int("014EC0755B78594BA47FB0A56F6173045B4331E74BA1A6F47322E70D79D" - "828D97E095884CA72B73FDABD5910DF0FA76A", 16), - x_qA=int("45CB26E4384DAF6FB776885307B9A38B7AD1B5C692E0C32F012533277" - "8F3B8D3F50CA358099B30DEB5EE69A95C058B4E", 16), - y_qA=int("8173A1C54AFFA7E781D0E1E1D12C0DC2B74F4DF58E4A4E3AF7026C5D3" - "2DC530A2CD89C859BB4B4B768497F49AB8CC859", 16), - dB=int("6B461CB79BD0EA519A87D6828815D8CE7CD9B3CAA0B5A8262CBCD550A01" - "5C90095B976F3529957506E1224A861711D54", 16), - x_qB=int("01BF92A92EE4BE8DED1A911125C209B03F99E3161CFCC986DC7711383" - "FC30AF9CE28CA3386D59E2C8D72CE1E7B4666E8", 16), - y_qB=int("3289C4A3A4FEE035E39BDB885D509D224A142FF9FBCC5CFE5CCBB3026" - "8EE47487ED8044858D31D848F7A95C635A347AC", 16), - x_Z=int("04CC4FF3DCCCB07AF24E0ACC529955B36D7C807772B92FCBE48F3AFE9A" - "2F370A1F98D3FA73FD0C0747C632E12F1423EC", 16), - y_Z=int("7F465F90BD69AFB8F828A214EB9716D66ABC59F17AF7C75EE7F1DE22AB" - "5D05085F5A01A9382D05BF72D96698FE3FF64E", 16)) - - def test_brainpoolP512r1(self): - self._do( - curve=curve_brainpoolp512r1, - generator=BRAINPOOLP512r1.generator, - dA=int("636B6BE0482A6C1C41AA7AE7B245E983392DB94CECEA2660A379CFE1595" - "59E357581825391175FC195D28BAC0CF03A7841A383B95C262B98378287" - "4CCE6FE333", 16), - x_qA=int("0562E68B9AF7CBFD5565C6B16883B777FF11C199161ECC427A39D17EC" - "2166499389571D6A994977C56AD8252658BA8A1B72AE42F4FB7532151" - "AFC3EF0971CCDA", 16), - y_qA=int("A7CA2D8191E21776A89860AFBC1F582FAA308D551C1DC6133AF9F9C3C" - "AD59998D70079548140B90B1F311AFB378AA81F51B275B2BE6B7DEE97" - "8EFC7343EA642E", 16), - dB=int("0AF4E7F6D52EDD52907BB8DBAB3992A0BB696EC10DF11892FF205B66D38" - "1ECE72314E6A6EA079CEA06961DBA5AE6422EF2E9EE803A1F236FB96A17" - "99B86E5C8B", 16), - x_qB=int("5A7954E32663DFF11AE24712D87419F26B708AC2B92877D6BFEE2BFC4" - "3714D89BBDB6D24D807BBD3AEB7F0C325F862E8BADE4F74636B97EAAC" - "E739E11720D323", 16), - y_qB=int("96D14621A9283A1BED84DE8DD64836B2C0758B11441179DC0C54C0D49" - "A47C03807D171DD544B72CAAEF7B7CE01C7753E2CAD1A861ECA55A719" - "54EE1BA35E04BE", 16), - x_Z=int("1EE8321A4BBF93B9CF8921AB209850EC9B7066D1984EF08C2BB7232362" - "08AC8F1A483E79461A00E0D5F6921CE9D360502F85C812BEDEE23AC5B2" - "10E5811B191E", 16), - y_Z=int("2632095B7B936174B41FD2FAF369B1D18DCADEED7E410A7E251F083109" - "7C50D02CFED02607B6A2D5ADB4C0006008562208631875B58B54ECDA5A" - "4F9FE9EAABA6", 16)) - - -class RFC7027(ECDH): - # https://tools.ietf.org/html/rfc7027#appendix-A - - def test_brainpoolP256r1(self): - self._do( - curve=curve_brainpoolp256r1, - generator=BRAINPOOLP256r1.generator, - dA=int("81DB1EE100150FF2EA338D708271BE38300CB54241D79950F77B0630398" - "04F1D", 16), - x_qA=int("44106E913F92BC02A1705D9953A8414DB95E1AAA49E81D9E85F929A8E" - "3100BE5", 16), - y_qA=int("8AB4846F11CACCB73CE49CBDD120F5A900A69FD32C272223F789EF10E" - "B089BDC", 16), - dB=int("55E40BC41E37E3E2AD25C3C6654511FFA8474A91A0032087593852D3E7D" - "76BD3", 16), - x_qB=int("8D2D688C6CF93E1160AD04CC4429117DC2C41825E1E9FCA0ADDD34E6F" - "1B39F7B", 16), - y_qB=int("990C57520812BE512641E47034832106BC7D3E8DD0E4C7F1136D70065" - "47CEC6A", 16), - x_Z=int("89AFC39D41D3B327814B80940B042590F96556EC91E6AE7939BCE31F3A" - "18BF2B", 16), - y_Z=int("49C27868F4ECA2179BFD7D59B1E3BF34C1DBDE61AE12931648F43E5963" - "2504DE", 16)) - - def test_brainpoolP384r1(self): - self._do( - curve=curve_brainpoolp384r1, - generator=BRAINPOOLP384r1.generator, - dA=int("1E20F5E048A5886F1F157C74E91BDE2B98C8B52D58E5003D57053FC4B0B" - "D65D6F15EB5D1EE1610DF870795143627D042", 16), - x_qA=int("68B665DD91C195800650CDD363C625F4E742E8134667B767B1B476793" - "588F885AB698C852D4A6E77A252D6380FCAF068", 16), - y_qA=int("55BC91A39C9EC01DEE36017B7D673A931236D2F1F5C83942D049E3FA2" - "0607493E0D038FF2FD30C2AB67D15C85F7FAA59", 16), - dB=int("032640BC6003C59260F7250C3DB58CE647F98E1260ACCE4ACDA3DD869F7" - "4E01F8BA5E0324309DB6A9831497ABAC96670", 16), - x_qB=int("4D44326F269A597A5B58BBA565DA5556ED7FD9A8A9EB76C25F46DB69D" - "19DC8CE6AD18E404B15738B2086DF37E71D1EB4", 16), - y_qB=int("62D692136DE56CBE93BF5FA3188EF58BC8A3A0EC6C1E151A21038A42E" - "9185329B5B275903D192F8D4E1F32FE9CC78C48", 16), - x_Z=int("0BD9D3A7EA0B3D519D09D8E48D0785FB744A6B355E6304BC51C229FBBC" - "E239BBADF6403715C35D4FB2A5444F575D4F42", 16), - y_Z=int("0DF213417EBE4D8E40A5F76F66C56470C489A3478D146DECF6DF0D94BA" - "E9E598157290F8756066975F1DB34B2324B7BD", 16)) - - def test_brainpoolP512r1(self): - self._do( - curve=curve_brainpoolp512r1, - generator=BRAINPOOLP512r1.generator, - dA=int("16302FF0DBBB5A8D733DAB7141C1B45ACBC8715939677F6A56850A38BD8" - "7BD59B09E80279609FF333EB9D4C061231FB26F92EEB04982A5F1D1764C" - "AD57665422", 16), - x_qA=int("0A420517E406AAC0ACDCE90FCD71487718D3B953EFD7FBEC5F7F27E28" - "C6149999397E91E029E06457DB2D3E640668B392C2A7E737A7F0BF044" - "36D11640FD09FD", 16), - y_qA=int("72E6882E8DB28AAD36237CD25D580DB23783961C8DC52DFA2EC138AD4" - "72A0FCEF3887CF62B623B2A87DE5C588301EA3E5FC269B373B60724F5" - "E82A6AD147FDE7", 16), - dB=int("230E18E1BCC88A362FA54E4EA3902009292F7F8033624FD471B5D8ACE49" - "D12CFABBC19963DAB8E2F1EBA00BFFB29E4D72D13F2224562F405CB8050" - "3666B25429", 16), - x_qB=int("9D45F66DE5D67E2E6DB6E93A59CE0BB48106097FF78A081DE781CDB31" - "FCE8CCBAAEA8DD4320C4119F1E9CD437A2EAB3731FA9668AB268D871D" - "EDA55A5473199F", 16), - y_qB=int("2FDC313095BCDD5FB3A91636F07A959C8E86B5636A1E930E8396049CB" - "481961D365CC11453A06C719835475B12CB52FC3C383BCE35E27EF194" - "512B71876285FA", 16), - x_Z=int("A7927098655F1F9976FA50A9D566865DC530331846381C87256BAF3226" - "244B76D36403C024D7BBF0AA0803EAFF405D3D24F11A9B5C0BEF679FE1" - "454B21C4CD1F", 16), - y_Z=int("7DB71C3DEF63212841C463E881BDCF055523BD368240E6C3143BD8DEF8" - "B3B3223B95E0F53082FF5E412F4222537A43DF1C6D25729DDB51620A83" - "2BE6A26680A2", 16)) - - -# https://tools.ietf.org/html/rfc4754#page-5 [email protected]("w, gwx, gwy, k, msg, md, r, s, curve", - [pytest.param( - "DC51D3866A15BACDE33D96F992FCA99DA7E6EF0934E7097559C27F1614C88A7F", - "2442A5CC0ECD015FA3CA31DC8E2BBC70BF42D60CBCA20085E0822CB04235E970", - "6FC98BD7E50211A4A27102FA3549DF79EBCB4BF246B80945CDDFE7D509BBFD7D", - "9E56F509196784D963D1C0A401510EE7ADA3DCC5DEE04B154BF61AF1D5A6DECE", - b"abc", - sha256, - "CB28E0999B9C7715FD0A80D8E47A77079716CBBF917DD72E97566EA1C066957C", - "86FA3BB4E26CAD5BF90B7F81899256CE7594BB1EA0C89212748BFF3B3D5B0315", - NIST256p, - id="ECDSA-256"), - pytest.param( - "0BEB646634BA87735D77AE4809A0EBEA865535DE4C1E1DCB692E84708E81A5AF" - "62E528C38B2A81B35309668D73524D9F", - "96281BF8DD5E0525CA049C048D345D3082968D10FEDF5C5ACA0C64E6465A97EA" - "5CE10C9DFEC21797415710721F437922", - "447688BA94708EB6E2E4D59F6AB6D7EDFF9301D249FE49C33096655F5D502FAD" - "3D383B91C5E7EDAA2B714CC99D5743CA", - "B4B74E44D71A13D568003D7489908D564C7761E229C58CBFA18950096EB7463B" - "854D7FA992F934D927376285E63414FA", - b'abc', - sha384, - "FB017B914E29149432D8BAC29A514640B46F53DDAB2C69948084E2930F1C8F7E" - "08E07C9C63F2D21A07DCB56A6AF56EB3", - "B263A1305E057F984D38726A1B46874109F417BCA112674C528262A40A629AF1" - "CBB9F516CE0FA7D2FF630863A00E8B9F", - NIST384p, - id="ECDSA-384"), - pytest.param( - "0065FDA3409451DCAB0A0EAD45495112A3D813C17BFD34BDF8C1209D7DF58491" - "20597779060A7FF9D704ADF78B570FFAD6F062E95C7E0C5D5481C5B153B48B37" - "5FA1", - "0151518F1AF0F563517EDD5485190DF95A4BF57B5CBA4CF2A9A3F6474725A35F" - "7AFE0A6DDEB8BEDBCD6A197E592D40188901CECD650699C9B5E456AEA5ADD190" - "52A8", - "006F3B142EA1BFFF7E2837AD44C9E4FF6D2D34C73184BBAD90026DD5E6E85317" - "D9DF45CAD7803C6C20035B2F3FF63AFF4E1BA64D1C077577DA3F4286C58F0AEA" - "E643", - "00C1C2B305419F5A41344D7E4359933D734096F556197A9B244342B8B62F46F9" - "373778F9DE6B6497B1EF825FF24F42F9B4A4BD7382CFC3378A540B1B7F0C1B95" - "6C2F", - b'abc', - sha512, - "0154FD3836AF92D0DCA57DD5341D3053988534FDE8318FC6AAAAB68E2E6F4339" - "B19F2F281A7E0B22C269D93CF8794A9278880ED7DBB8D9362CAEACEE54432055" - "2251", - "017705A7030290D1CEB605A9A1BB03FF9CDD521E87A696EC926C8C10C8362DF4" - "975367101F67D1CF9BCCBF2F3D239534FA509E70AAC851AE01AAC68D62F86647" - "2660", - NIST521p, - id="ECDSA-521") - ]) -def test_RFC4754_vectors(w, gwx, gwy, k, msg, md, r, s, curve): - sk = SigningKey.from_string(unhexlify(w), curve) - vk = VerifyingKey.from_string(unhexlify(gwx + gwy), curve) - assert sk.verifying_key == vk - sig = sk.sign(msg, hashfunc=md, sigencode=sigencode_strings, k=int(k, 16)) - - assert sig == (unhexlify(r), unhexlify(s)) - - assert vk.verify(sig, msg, md, sigdecode_strings) diff --git a/freezed_deps/ecdsa/test_rw_lock.py b/freezed_deps/ecdsa/test_rw_lock.py deleted file mode 100644 index de11d15..0000000 --- a/freezed_deps/ecdsa/test_rw_lock.py +++ /dev/null @@ -1,175 +0,0 @@ -# Copyright Mateusz Kobos, (c) 2011 -# https://code.activestate.com/recipes/577803-reader-writer-lock-with-priority-for-writers/ -# released under the MIT licence - -import unittest -import threading -import time -import copy -from ._rwlock import RWLock - - -class Writer(threading.Thread): - def __init__(self, buffer_, rw_lock, init_sleep_time, sleep_time, to_write): - """ - @param buffer_: common buffer_ shared by the readers and writers - @type buffer_: list - @type rw_lock: L{RWLock} - @param init_sleep_time: sleep time before doing any action - @type init_sleep_time: C{float} - @param sleep_time: sleep time while in critical section - @type sleep_time: C{float} - @param to_write: data that will be appended to the buffer - """ - threading.Thread.__init__(self) - self.__buffer = buffer_ - self.__rw_lock = rw_lock - self.__init_sleep_time = init_sleep_time - self.__sleep_time = sleep_time - self.__to_write = to_write - self.entry_time = None - """Time of entry to the critical section""" - self.exit_time = None - """Time of exit from the critical section""" - - def run(self): - time.sleep(self.__init_sleep_time) - self.__rw_lock.writer_acquire() - self.entry_time = time.time() - time.sleep(self.__sleep_time) - self.__buffer.append(self.__to_write) - self.exit_time = time.time() - self.__rw_lock.writer_release() - - -class Reader(threading.Thread): - def __init__(self, buffer_, rw_lock, init_sleep_time, sleep_time): - """ - @param buffer_: common buffer shared by the readers and writers - @type buffer_: list - @type rw_lock: L{RWLock} - @param init_sleep_time: sleep time before doing any action - @type init_sleep_time: C{float} - @param sleep_time: sleep time while in critical section - @type sleep_time: C{float} - """ - threading.Thread.__init__(self) - self.__buffer = buffer_ - self.__rw_lock = rw_lock - self.__init_sleep_time = init_sleep_time - self.__sleep_time = sleep_time - self.buffer_read = None - """a copy of a the buffer read while in critical section""" - self.entry_time = None - """Time of entry to the critical section""" - self.exit_time = None - """Time of exit from the critical section""" - - def run(self): - time.sleep(self.__init_sleep_time) - self.__rw_lock.reader_acquire() - self.entry_time = time.time() - time.sleep(self.__sleep_time) - self.buffer_read = copy.deepcopy(self.__buffer) - self.exit_time = time.time() - self.__rw_lock.reader_release() - - -class RWLockTestCase(unittest.TestCase): - def test_readers_nonexclusive_access(self): - (buffer_, rw_lock, threads) = self.__init_variables() - - threads.append(Reader(buffer_, rw_lock, 0, 0)) - threads.append(Writer(buffer_, rw_lock, 0.2, 0.4, 1)) - threads.append(Reader(buffer_, rw_lock, 0.3, 0.3)) - threads.append(Reader(buffer_, rw_lock, 0.5, 0)) - - self.__start_and_join_threads(threads) - - ## The third reader should enter after the second one but it should - ## exit before the second one exits - ## (i.e. the readers should be in the critical section - ## at the same time) - - self.assertEqual([], threads[0].buffer_read) - self.assertEqual([1], threads[2].buffer_read) - self.assertEqual([1], threads[3].buffer_read) - self.assert_(threads[1].exit_time <= threads[2].entry_time) - self.assert_(threads[2].entry_time <= threads[3].entry_time) - self.assert_(threads[3].exit_time < threads[2].exit_time) - - def test_writers_exclusive_access(self): - (buffer_, rw_lock, threads) = self.__init_variables() - - threads.append(Writer(buffer_, rw_lock, 0, 0.4, 1)) - threads.append(Writer(buffer_, rw_lock, 0.1, 0, 2)) - threads.append(Reader(buffer_, rw_lock, 0.2, 0)) - - self.__start_and_join_threads(threads) - - ## The second writer should wait for the first one to exit - - self.assertEqual([1, 2], threads[2].buffer_read) - self.assert_(threads[0].exit_time <= threads[1].entry_time) - self.assert_(threads[1].exit_time <= threads[2].exit_time) - - def test_writer_priority(self): - (buffer_, rw_lock, threads) = self.__init_variables() - - threads.append(Writer(buffer_, rw_lock, 0, 0, 1)) - threads.append(Reader(buffer_, rw_lock, 0.1, 0.4)) - threads.append(Writer(buffer_, rw_lock, 0.2, 0, 2)) - threads.append(Reader(buffer_, rw_lock, 0.3, 0)) - threads.append(Reader(buffer_, rw_lock, 0.3, 0)) - - self.__start_and_join_threads(threads) - - ## The second writer should go before the second and the third reader - - self.assertEqual([1], threads[1].buffer_read) - self.assertEqual([1, 2], threads[3].buffer_read) - self.assertEqual([1, 2], threads[4].buffer_read) - self.assert_(threads[0].exit_time < threads[1].entry_time) - self.assert_(threads[1].exit_time <= threads[2].entry_time) - self.assert_(threads[2].exit_time <= threads[3].entry_time) - self.assert_(threads[2].exit_time <= threads[4].entry_time) - - def test_many_writers_priority(self): - (buffer_, rw_lock, threads) = self.__init_variables() - - threads.append(Writer(buffer_, rw_lock, 0, 0, 1)) - threads.append(Reader(buffer_, rw_lock, 0.1, 0.6)) - threads.append(Writer(buffer_, rw_lock, 0.2, 0.1, 2)) - threads.append(Reader(buffer_, rw_lock, 0.3, 0)) - threads.append(Reader(buffer_, rw_lock, 0.4, 0)) - threads.append(Writer(buffer_, rw_lock, 0.5, 0.1, 3)) - - self.__start_and_join_threads(threads) - - ## The two last writers should go first -- after the first reader and - ## before the second and the third reader - - self.assertEqual([1], threads[1].buffer_read) - self.assertEqual([1, 2, 3], threads[3].buffer_read) - self.assertEqual([1, 2, 3], threads[4].buffer_read) - self.assert_(threads[0].exit_time < threads[1].entry_time) - self.assert_(threads[1].exit_time <= threads[2].entry_time) - self.assert_(threads[1].exit_time <= threads[5].entry_time) - self.assert_(threads[2].exit_time <= threads[3].entry_time) - self.assert_(threads[2].exit_time <= threads[4].entry_time) - self.assert_(threads[5].exit_time <= threads[3].entry_time) - self.assert_(threads[5].exit_time <= threads[4].entry_time) - - @staticmethod - def __init_variables(): - buffer_ = [] - rw_lock = RWLock() - threads = [] - return (buffer_, rw_lock, threads) - - @staticmethod - def __start_and_join_threads(threads): - for t in threads: - t.start() - for t in threads: - t.join() diff --git a/freezed_deps/ecdsa/util.py b/freezed_deps/ecdsa/util.py deleted file mode 100644 index 5f1c750..0000000 --- a/freezed_deps/ecdsa/util.py +++ /dev/null @@ -1,401 +0,0 @@ -from __future__ import division - -import os -import math -import binascii -import sys -from hashlib import sha256 -from six import PY3, int2byte, b, next -from . import der -from ._compat import normalise_bytes - -# RFC5480: -# The "unrestricted" algorithm identifier is: -# id-ecPublicKey OBJECT IDENTIFIER ::= { -# iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 } - -oid_ecPublicKey = (1, 2, 840, 10045, 2, 1) -encoded_oid_ecPublicKey = der.encode_oid(*oid_ecPublicKey) - -if sys.version > '3': - def entropy_to_bits(ent_256): - """Convert a bytestring to string of 0's and 1's""" - return bin(int.from_bytes(ent_256, 'big'))[2:].zfill(len(ent_256)*8) -else: - def entropy_to_bits(ent_256): - """Convert a bytestring to string of 0's and 1's""" - return ''.join(bin(ord(x))[2:].zfill(8) for x in ent_256) - - -if sys.version < '2.7': - # Can't add a method to a built-in type so we are stuck with this - def bit_length(x): - return len(bin(x)) - 2 -else: - def bit_length(x): - return x.bit_length() or 1 - - -def orderlen(order): - return (1+len("%x" % order))//2 # bytes - - -def randrange(order, entropy=None): - """Return a random integer k such that 1 <= k < order, uniformly - distributed across that range. Worst case should be a mean of 2 loops at - (2**k)+2. - - Note that this function is not declared to be forwards-compatible: we may - change the behavior in future releases. The entropy= argument (which - should get a callable that behaves like os.urandom) can be used to - achieve stability within a given release (for repeatable unit tests), but - should not be used as a long-term-compatible key generation algorithm. - """ - assert order > 1 - if entropy is None: - entropy = os.urandom - upper_2 = bit_length(order-2) - upper_256 = upper_2//8 + 1 - while True: # I don't think this needs a counter with bit-wise randrange - ent_256 = entropy(upper_256) - ent_2 = entropy_to_bits(ent_256) - rand_num = int(ent_2[:upper_2], base=2) + 1 - if 0 < rand_num < order: - return rand_num - - -class PRNG: - # this returns a callable which, when invoked with an integer N, will - # return N pseudorandom bytes. Note: this is a short-term PRNG, meant - # primarily for the needs of randrange_from_seed__trytryagain(), which - # only needs to run it a few times per seed. It does not provide - # protection against state compromise (forward security). - def __init__(self, seed): - self.generator = self.block_generator(seed) - - def __call__(self, numbytes): - a = [next(self.generator) for i in range(numbytes)] - - if PY3: - return bytes(a) - else: - return "".join(a) - - def block_generator(self, seed): - counter = 0 - while True: - for byte in sha256(("prng-%d-%s" % (counter, seed)).encode()).digest(): - yield byte - counter += 1 - - -def randrange_from_seed__overshoot_modulo(seed, order): - # hash the data, then turn the digest into a number in [1,order). - # - # We use David-Sarah Hopwood's suggestion: turn it into a number that's - # sufficiently larger than the group order, then modulo it down to fit. - # This should give adequate (but not perfect) uniformity, and simple - # code. There are other choices: try-try-again is the main one. - base = PRNG(seed)(2 * orderlen(order)) - number = (int(binascii.hexlify(base), 16) % (order - 1)) + 1 - assert 1 <= number < order, (1, number, order) - return number - - -def lsb_of_ones(numbits): - return (1 << numbits) - 1 - - -def bits_and_bytes(order): - bits = int(math.log(order - 1, 2) + 1) - bytes = bits // 8 - extrabits = bits % 8 - return bits, bytes, extrabits - - -# the following randrange_from_seed__METHOD() functions take an -# arbitrarily-sized secret seed and turn it into a number that obeys the same -# range limits as randrange() above. They are meant for deriving consistent -# signing keys from a secret rather than generating them randomly, for -# example a protocol in which three signing keys are derived from a master -# secret. You should use a uniformly-distributed unguessable seed with about -# curve.baselen bytes of entropy. To use one, do this: -# seed = os.urandom(curve.baselen) # or other starting point -# secexp = ecdsa.util.randrange_from_seed__trytryagain(sed, curve.order) -# sk = SigningKey.from_secret_exponent(secexp, curve) - -def randrange_from_seed__truncate_bytes(seed, order, hashmod=sha256): - # hash the seed, then turn the digest into a number in [1,order), but - # don't worry about trying to uniformly fill the range. This will lose, - # on average, four bits of entropy. - bits, _bytes, extrabits = bits_and_bytes(order) - if extrabits: - _bytes += 1 - base = hashmod(seed).digest()[:_bytes] - base = "\x00" * (_bytes - len(base)) + base - number = 1 + int(binascii.hexlify(base), 16) - assert 1 <= number < order - return number - - -def randrange_from_seed__truncate_bits(seed, order, hashmod=sha256): - # like string_to_randrange_truncate_bytes, but only lose an average of - # half a bit - bits = int(math.log(order - 1, 2) + 1) - maxbytes = (bits + 7) // 8 - base = hashmod(seed).digest()[:maxbytes] - base = "\x00" * (maxbytes - len(base)) + base - topbits = 8 * maxbytes - bits - if topbits: - base = int2byte(ord(base[0]) & lsb_of_ones(topbits)) + base[1:] - number = 1 + int(binascii.hexlify(base), 16) - assert 1 <= number < order - return number - - -def randrange_from_seed__trytryagain(seed, order): - # figure out exactly how many bits we need (rounded up to the nearest - # bit), so we can reduce the chance of looping to less than 0.5 . This is - # specified to feed from a byte-oriented PRNG, and discards the - # high-order bits of the first byte as necessary to get the right number - # of bits. The average number of loops will range from 1.0 (when - # order=2**k-1) to 2.0 (when order=2**k+1). - assert order > 1 - bits, bytes, extrabits = bits_and_bytes(order) - generate = PRNG(seed) - while True: - extrabyte = b("") - if extrabits: - extrabyte = int2byte(ord(generate(1)) & lsb_of_ones(extrabits)) - guess = string_to_number(extrabyte + generate(bytes)) + 1 - if 1 <= guess < order: - return guess - - -def number_to_string(num, order): - l = orderlen(order) - fmt_str = "%0" + str(2 * l) + "x" - string = binascii.unhexlify((fmt_str % num).encode()) - assert len(string) == l, (len(string), l) - return string - - -def number_to_string_crop(num, order): - l = orderlen(order) - fmt_str = "%0" + str(2 * l) + "x" - string = binascii.unhexlify((fmt_str % num).encode()) - return string[:l] - - -def string_to_number(string): - return int(binascii.hexlify(string), 16) - - -def string_to_number_fixedlen(string, order): - l = orderlen(order) - assert len(string) == l, (len(string), l) - return int(binascii.hexlify(string), 16) - - -# these methods are useful for the sigencode= argument to SK.sign() and the -# sigdecode= argument to VK.verify(), and control how the signature is packed -# or unpacked. - -def sigencode_strings(r, s, order): - r_str = number_to_string(r, order) - s_str = number_to_string(s, order) - return (r_str, s_str) - - -def sigencode_string(r, s, order): - """ - Encode the signature to raw format (:term:`raw encoding`) - - It's expected that this function will be used as a `sigencode=` parameter - in :func:`ecdsa.keys.SigningKey.sign` method. - - :param int r: first parameter of the signature - :param int s: second parameter of the signature - :param int order: the order of the curve over which the signature was - computed - - :return: raw encoding of ECDSA signature - :rtype: bytes - """ - # for any given curve, the size of the signature numbers is - # fixed, so just use simple concatenation - r_str, s_str = sigencode_strings(r, s, order) - return r_str + s_str - - -def sigencode_der(r, s, order): - """ - Encode the signature into the ECDSA-Sig-Value structure using :term:`DER`. - - Encodes the signature to the following :term:`ASN.1` structure:: - - Ecdsa-Sig-Value ::= SEQUENCE { - r INTEGER, - s INTEGER - } - - It's expected that this function will be used as a `sigencode=` parameter - in :func:`ecdsa.keys.SigningKey.sign` method. - - :param int r: first parameter of the signature - :param int s: second parameter of the signature - :param int order: the order of the curve over which the signature was - computed - - :return: DER encoding of ECDSA signature - :rtype: bytes - """ - return der.encode_sequence(der.encode_integer(r), der.encode_integer(s)) - - -# canonical versions of sigencode methods -# these enforce low S values, by negating the value (modulo the order) if above order/2 -# see CECKey::Sign() https://github.com/bitcoin/bitcoin/blob/master/src/key.cpp#L214 -def sigencode_strings_canonize(r, s, order): - if s > order / 2: - s = order - s - return sigencode_strings(r, s, order) - - -def sigencode_string_canonize(r, s, order): - if s > order / 2: - s = order - s - return sigencode_string(r, s, order) - - -def sigencode_der_canonize(r, s, order): - if s > order / 2: - s = order - s - return sigencode_der(r, s, order) - - -class MalformedSignature(Exception): - """ - Raised by decoding functions when the signature is malformed. - - Malformed in this context means that the relevant strings or integers - do not match what a signature over provided curve would create. Either - because the byte strings have incorrect lengths or because the encoded - values are too large. - """ - - pass - - -def sigdecode_string(signature, order): - """ - Decoder for :term:`raw encoding` of ECDSA signatures. - - raw encoding is a simple concatenation of the two integers that comprise - the signature, with each encoded using the same amount of bytes depending - on curve size/order. - - It's expected that this function will be used as the `sigdecode=` - parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method. - - :param signature: encoded signature - :type signature: bytes like object - :param order: order of the curve over which the signature was computed - :type order: int - - :raises MalformedSignature: when the encoding of the signature is invalid - - :return: tuple with decoded 'r' and 's' values of signature - :rtype: tuple of ints - """ - signature = normalise_bytes(signature) - l = orderlen(order) - if not len(signature) == 2 * l: - raise MalformedSignature( - "Invalid length of signature, expected {0} bytes long, " - "provided string is {1} bytes long" - .format(2 * l, len(signature))) - r = string_to_number_fixedlen(signature[:l], order) - s = string_to_number_fixedlen(signature[l:], order) - return r, s - - -def sigdecode_strings(rs_strings, order): - """ - Decode the signature from two strings. - - First string needs to be a big endian encoding of 'r', second needs to - be a big endian encoding of the 's' parameter of an ECDSA signature. - - It's expected that this function will be used as the `sigdecode=` - parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method. - - :param list rs_strings: list of two bytes-like objects, each encoding one - parameter of signature - :param int order: order of the curve over which the signature was computed - - :raises MalformedSignature: when the encoding of the signature is invalid - - :return: tuple with decoded 'r' and 's' values of signature - :rtype: tuple of ints - """ - if not len(rs_strings) == 2: - raise MalformedSignature( - "Invalid number of strings provided: {0}, expected 2" - .format(len(rs_strings))) - (r_str, s_str) = rs_strings - r_str = normalise_bytes(r_str) - s_str = normalise_bytes(s_str) - l = orderlen(order) - if not len(r_str) == l: - raise MalformedSignature( - "Invalid length of first string ('r' parameter), " - "expected {0} bytes long, provided string is {1} bytes long" - .format(l, len(r_str))) - if not len(s_str) == l: - raise MalformedSignature( - "Invalid length of second string ('s' parameter), " - "expected {0} bytes long, provided string is {1} bytes long" - .format(l, len(s_str))) - r = string_to_number_fixedlen(r_str, order) - s = string_to_number_fixedlen(s_str, order) - return r, s - - -def sigdecode_der(sig_der, order): - """ - Decoder for DER format of ECDSA signatures. - - DER format of signature is one that uses the :term:`ASN.1` :term:`DER` - rules to encode it as a sequence of two integers:: - - Ecdsa-Sig-Value ::= SEQUENCE { - r INTEGER, - s INTEGER - } - - It's expected that this function will be used as as the `sigdecode=` - parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method. - - :param sig_der: encoded signature - :type sig_der: bytes like object - :param order: order of the curve over which the signature was computed - :type order: int - - :raises UnexpectedDER: when the encoding of signature is invalid - - :return: tuple with decoded 'r' and 's' values of signature - :rtype: tuple of ints - """ - sig_der = normalise_bytes(sig_der) - # return der.encode_sequence(der.encode_integer(r), der.encode_integer(s)) - rs_strings, empty = der.remove_sequence(sig_der) - if empty != b"": - raise der.UnexpectedDER("trailing junk after DER sig: %s" % - binascii.hexlify(empty)) - r, rest = der.remove_integer(rs_strings) - s, empty = der.remove_integer(rest) - if empty != b"": - raise der.UnexpectedDER("trailing junk after DER numbers: %s" % - binascii.hexlify(empty)) - return r, s |