blob: 30f24f2460008503e8ba0f6fd82ec3de9539b7b6 (
plain) (
tree)
|
|
(+)
(-)
(*)
(/)
(+ 0)
(- 0)
(* 0)
(/ 0)
(<)
(>)
(=)
(< 1)
(> 1)
(= 1)
(+ 0 . 0)
(+ . 0)
(- 0 . 0)
(- . 0)
(< 0 . 0)
(< . 0)
(+ 0 'a)
(- 0 'a)
(* 0 'a)
(/ 0 'a)
(< #f)
(> #f)
(= #f)
(exact?)
(exact? 'a)
(exact? 1 2)
(exact? . 0)
(exact? 0 . 0)
(inexact?)
(inexact? 'b)
(inexact? 1 2)
(inexact? . 0)
(inexact? 0 . 0)
(not)
(not 1 2)
(not 1)
(not #f)
(not '())
(not . 0)
(not 0 . 0)
(boolean?)
(boolean? 1 2)
(boolean? 1)
(boolean? #t)
(boolean? . 0)
(boolean? 0 . 0)
(pair?)
(pair? 1 2)
(pair? '())
(pair? (cons 1 2))
(pair? '(3 . 4))
(pair? 3)
(pair? . 0)
(pair? 0 . 0)
(cons)
(cons 1)
(cons 1 2 3)
(cons 'a '())
(cons . 0)
(cons 0 . 0)
(define t (cons 'a '()))
(car)
(car 1)
(car 1 2)
(car '())
(car t)
(car . 0)
(car 0 . 0)
(cdr)
(cdr 1)
(cdr 1 2)
(cdr '())
(cdr t)
(cdr . 0)
(cdr 0 . 0)
(set-car!)
(set-car! 1)
(set-car! 1 2)
(set-car! t '())
t
(set-car! . 0)
(set-car! 0 . 0)
(set-cdr!)
(set-cdr! 1)
(set-cdr! 1 2)
(set-cdr! t 'a)
t
(set-cdr! . 0)
(set-cdr! 0 . 0)
(null?)
(null? 1 2)
(null? 1)
(null? '())
(null? #f)
(null? . 0)
(null? 0 . 0)
(list?)
(list? 1 2)
(list? '())
(list? t)
(set-cdr! t '())
t
(list? t)
(list? . 0)
(list? 0 . 0)
(list)
(list 1)
(list 1 2)
(list . 0)
(list 0 . 0)
(length)
(length 1 2)
(length '( 1 . 2))
(length '())
(length '( 1 2 3 ))
(append)
(append '())
(append '(1 2) 3)
(append '(1 2) '(3 4) 5)
(append '(1 2) 3 '(1))
(append '() '() '() '(1 2) 3)
(display)
(display 1 2)
(display . 0)
(display 0 . 0)
(display t)
(define)
(define x)
(define 1)
(define x x)
(define x 1 2)
(define x . 1)
(define x 1 . 2)
(define ())
(define (f))
(define (f . ) 1)
(define () 3)
(lambda)
(lambda ())
(lambda 1)
(lambda () '(1 2 3))
(lambda () 1 2 3)
(lambda #() 1)
(define src
'(define g (lambda (x) (if (= x 5) 0 ((lambda () (display x) (g (+ x 1))))))))
src
(eval src)
(eval '(g 0))
(eval (list * 2 3))
(eval '(* 2 3))
(define f (lambda (x) (+ x x))) ;; test comments
((lambda (x y) (f 3)) 1 2) ;; first-class procedure
; this is a single line comment
; another line
(define f (lambda (x) (lambda (y) (+ x y))))
(f 1) ; #<procedure>
((f 1) 2) ; 3
(define g (lambda (x) (define y 2) (+ x y)))
(g 3)
((lambda () (display 2) (display 1) (+ 1 2)))
(define g (lambda (x) (if (= x 5) 0 ((lambda () (display x) (g (+ x 1)))))))
(g 0)
(define g (lambda (x)
(if (= x 5)
0
((lambda ()
(display x)
(g (+ x 1)))))))
(g 0)
(define square (lambda (x) (* x x)))
(square 2)
(define (f x y)
((lambda (a b)
(+ (* x (square a))
(* y b)
(* a b)))
(+ 1 (* x y ))
(- 1 y)))
(f 1 2)
((lambda (x + y) (+ x y)) 4 / 2) ; a classic trick
(if #t 1 ())
(if #f 1 ()) ; Error
; "Test double quotes in comments"
(display " Test double quotes outside the comments ; ;; ; ; ")
(equal? #(1 2 '()) #(1 2 '(1)))
(equal? #(1 2 '(1)) #(1 2 '(1)))
(define x '(1 . 1))
(set-cdr! x x)
(list x)
x
(cons x x)
(display "Test the eight queen puzzle: \n")
(define (shl bits)
(define len (vector-length bits))
(define res (make-vector len))
(define (copy i)
(if (= i (- len 1))
#t
(and
(vector-set! res i
(vector-ref bits (+ i 1)))
(copy (+ i 1)))))
(copy 0)
(vector-set! res (- len 1) #f)
res)
(define (shr bits)
(define len (vector-length bits))
(define res (make-vector len))
(define (copy i)
(if (= i (- len 1))
#t
(and
(vector-set! res (+ i 1)
(vector-ref bits i))
(copy (+ i 1)))))
(copy 0)
(vector-set! res 0 #f)
res)
(define (empty-bits len) (make-vector len #f))
(define vs vector-set!)
(define vr vector-ref)
(define res 0)
(define (queen n)
(define (search l m r step)
(define (col-iter c)
(if (= c n)
#f
(and
(if (and (eq? (vr l c) #f)
(eq? (vr r c) #f)
(eq? (vr m c) #f))
(and
(vs l c #t)
(vs m c #t)
(vs r c #t)
((lambda () (search l m r (+ step 1)) #t))
(vs l c #f)
(vs m c #f)
(vs r c #f))
)
(col-iter (+ c 1))
)))
(set! l (shl l))
(set! r (shr r))
(if (= step n)
(set! res (+ res 1))
(col-iter 0)))
(search (empty-bits n)
(empty-bits n)
(empty-bits n)
0)
res)
(display (queen 8))
(display "Test Bibonacci numbers: \n")
(define (f x)
(if (<= x 2) 1 (+ (f (- x 1)) (f (- x 2)))))
(f 1)
(f 2)
(f 3)
(f 4)
(f 5)
(define (g n)
(define (f p1 p2 n)
(if (<= n 2)
p2
(f p2 (+ p1 p2) (- n 1))))
(f 1 1 n))
(define (all i n)
(if (= n i)
#f
(and (display (g i)) (display "\n") (all (+ i 1) n))))
(all 1 100)
|