Salticidae: minimal C++ asynchronous network library.
=======================================================
.. image:: https://img.shields.io/badge/License-MIT-yellow.svg
:target: https://opensource.org/licenses/MIT
Features
--------
- Simplicity. The library is self-contained, small in code base, and only
relies on libuv and libcrypo (OpenSSL, for SHA256 purpose).
- Clarity. With moderate use of C++ template and new features, the vast
majority of the code is self-documenting.
- Layered design. You can use network abstraction from the lowest socket
connection level to the highest P2P network level.
- Performance. Based on a hybrid solution that combines both thread-based and
event-driven concurrency paradigms, it gets the best of both worlds.
The implementation strives to incur very little overhead in processing
network I/O, and avoid unnecessary memory copies thanks to the move semantics.
- Utilities. The library also provides with some useful gadgets, such as
command-line parser, libuv abstraction, etc.
Functionalities
---------------
- ``ConnPool``: byte level connection pool implementation, ``ConnPool::Conn`` (or
``ConnPool::conn_t``) objects represent connections to which one can
send/receive a stream of binary data asynchronously.
- ``MsgNetwork<OpcodeType>``: message level network pool implementation,
``MsgNetwork::Conn`` (or ``MsgNetwork::cont_t``) objects represent channels to
which one can send/receive predefined messages asynchronously. Message
handler functions are registered by ``reg_handler()`` and invoked upon
receiving a new message. ``OpcodeType`` is the type used for identifying
message types. A valid message class must have:
- a static member ``opcode`` typed ``OpcodeType`` as the message type identifier
- a member ``serialized`` typed ``DataStream`` which contains the serialized data
of the message.
- a constructor ``MsgType(DataStream &&)`` that parse the message from stream.
Based on ``MsgNetwork``, salticidae provides the following higher level abstractions:
- ``PeerNetwork<OpcodeType>``: simple P2P network pool implementation. It will
ensure exactly one underlying bi-directional connection is established per
added peer, and retry the connection when it is broken. Ping-pong messages
are utilized to test the connectivity periodically.
- ``ClientNetwork<OpcodeType>``: simple client-server network pool
implementation. A server who initially calls ``listen()`` will accept the
incoming client messages, while a client simply calls ``connect()`` to connect
to a known server.
Dependencies
------------
- CMake >= 3.9
- C++14
- libuv
- libcrypto
Example (MsgNetwork layer)
--------------------------
.. code-block:: cpp
#include <cstdio>
#include <string>
#include <functional>
#include "salticidae/msg.h"
#include "salticidae/event.h"
#include "salticidae/network.h"
#include "salticidae/stream.h"
using salticidae::NetAddr;
using salticidae::DataStream;
using salticidae::MsgNetwork;
using salticidae::htole;
using salticidae::letoh;
using std::placeholders::_1;
using std::placeholders::_2;
/** Hello Message. */
struct MsgHello {
static const uint8_t opcode = 0x0;
DataStream serialized;
std::string name;
std::string text;
/** Defines how to serialize the msg. */
MsgHello(const std::string &name,
const std::string &text) {
serialized << htole((uint32_t)name.length());
serialized << name << text;
}
/** Defines how to parse the msg. */
MsgHello(DataStream &&s) {
uint32_t len;
s >> len;
len = letoh(len);
name = std::string((const char *)s.get_data_inplace(len), len);
len = s.size();
text = std::string((const char *)s.get_data_inplace(len), len);
}
};
/** Acknowledgement Message. */
struct MsgAck {
static const uint8_t opcode = 0x1;
DataStream serialized;
MsgAck() {}
MsgAck(DataStream &&s) {}
};
const uint8_t MsgHello::opcode;
const uint8_t MsgAck::opcode;
using MsgNetworkByteOp = MsgNetwork<uint8_t>;
struct MyNet: public MsgNetworkByteOp {
const std::string name;
const NetAddr peer;
MyNet(const salticidae::EventContext &ec,
const std::string name,
const NetAddr &peer):
MsgNetwork<uint8_t>(ec, MsgNetwork::Config()),
name(name),
peer(peer) {
/* message handler could be a bound method */
reg_handler(
salticidae::generic_bind(&MyNet::on_receive_hello, this, _1, _2));
reg_conn_handler([this](const ConnPool::conn_t &conn, bool connected) {
if (connected)
{
if (conn->get_mode() == ConnPool::Conn::ACTIVE)
{
printf("[%s] Connected, sending hello.\n",
this->name.c_str());
/* send the first message through this connection */
send_msg(MsgHello(this->name, "Hello there!"),
salticidae::static_pointer_cast<Conn>(conn));
}
else
printf("[%s] Accepted, waiting for greetings.\n",
this->name.c_str());
}
else
{
printf("[%s] Disconnected, retrying.\n", this->name.c_str());
/* try to reconnect to the same address */
connect(conn->get_addr());
}
});
}
void on_receive_hello(MsgHello &&msg, const MyNet::conn_t &conn) {
printf("[%s] %s says %s\n",
name.c_str(),
msg.name.c_str(), msg.text.c_str());
/* send acknowledgement */
send_msg(MsgAck(), conn);
}
};
void on_receive_ack(MsgAck &&msg, const MyNet::conn_t &conn) {
auto net = static_cast<MyNet *>(conn->get_net());
printf("[%s] the peer knows\n", net->name.c_str());
}
int main() {
salticidae::EventContext ec;
NetAddr alice_addr("127.0.0.1:12345");
NetAddr bob_addr("127.0.0.1:12346");
/* test two nodes in the same main loop */
MyNet alice(ec, "Alice", bob_addr);
MyNet bob(ec, "Bob", alice_addr);
/* message handler could be a normal function */
alice.reg_handler(on_receive_ack);
bob.reg_handler(on_receive_ack);
/* start all threads */
alice.start();
bob.start();
/* accept incoming connections */
alice.listen(alice_addr);
bob.listen(bob_addr);
/* try to connect once */
alice.connect(bob_addr);
bob.connect(alice_addr);
/* the main loop can be shutdown by ctrl-c or kill */
auto shutdown = [&](int) {ec.stop();};
salticidae::SigEvent ev_sigint(ec, shutdown);
salticidae::SigEvent ev_sigterm(ec, shutdown);
ev_sigint.add(SIGINT);
ev_sigterm.add(SIGTERM);
/* enter the main loop */
ec.dispatch();
return 0;
}