1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
#![allow(dead_code)]
extern crate stm32f103xx;
use core::cmp::max;
use stm32f103xx::{i2c1, rcc, RCC};
pub const EVENT_MASTER_STARTED: u32 = 0x00030001; /* BUSY, MSL and SB flag */
pub const EVENT_MASTER_TRANSMITTER_MODE_SELECTED: u32 = 0x00070082; /* BUSY, MSL, ADDR, TXE and TRA flags */
pub const EVENT_MASTER_RECEIVER_MODE_SELECTED: u32 = 0x00030002; /* BUSY, MSL and ADDR flags */
pub const EVENT_MASTER_BYTE_RECEIVED: u32 = 0x00030040; /* BUSY, MSL and RXNE flags */
pub const EVENT_MASTER_BYTE_TRANSMITTING: u32 = 0x00070080; /* TRA, BUSY, MSL, TXE flags */
pub const EVENT_MASTER_BYTE_TRANSMITTED: u32 = 0x00070084; /* TRA, BUSY, MSL, TXE and BTF flags */
const FLAGS_MASK: u32 = 0x00ffffff;
const HSI_VALUE: u32 = 8000000;
const HSE_VALUE: u32 = 8000000;
pub struct I2C<'a> (pub &'a i2c1::RegisterBlock);
pub enum TransDir {
TRANSMITTER,
RECEIVER
}
pub enum DutyType {
DUTY0,
DUTY1
}
impl<'a> I2C<'a> {
#[inline(always)]
fn get_pclk1(rcc: &RCC) -> u32 {
use stm32f103xx::rcc::cfgr::{SWSR, PLLSRCR, PLLXTPRER};
let cfgr = rcc.cfgr.read();
let sysclk_freq = match cfgr.sws() {
SWSR::HSI => HSI_VALUE,
SWSR::HSE => HSE_VALUE,
SWSR::PLL => {
let pllmull = cfgr.pllmul().bits();
let pllsource = cfgr.pllsrc();
let pllmull = pllmull as u32 + 2;
match pllsource {
PLLSRCR::INTERNAL => {
(HSI_VALUE >> 1) * pllmull
},
PLLSRCR::EXTERNAL => {
match cfgr.pllxtpre() {
PLLXTPRER::DIV2 => (HSE_VALUE >> 1) * pllmull,
PLLXTPRER::DIV1 => HSE_VALUE * pllmull
}
}
}
}
_ => HSI_VALUE
};
let div_table: [u8; 16] = [0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9];
let hclk_freq = sysclk_freq >> div_table[cfgr.hpre().bits() as usize];
let pclk1_freq = hclk_freq >> div_table[cfgr.ppre1().bits() as usize];
pclk1_freq
}
/// TODO: support for standard mode
pub fn init(&self,
rcc: &RCC,
addr: u8,
scl_freq: u32,
duty_type: DutyType,
fast_mode: bool) {
let &I2C(ref i2c) = self;
unsafe {
let pclk1 = I2C::get_pclk1(rcc);
let freq_range: u16 = (pclk1 / 1_000_000) as u16;
self.pe(false);
/* TRISE configuration (in Fm mode, max rise interval is 300) */
i2c.trise.write(|w| w.bits(if fast_mode {(freq_range * 300) / 1000 + 1}
else {freq_range + 1} as u32));
/* CCR configuration */
i2c.ccr.write(|w|
if fast_mode {
match duty_type {
DutyType::DUTY0 => w.ccr().bits(max(pclk1 / (scl_freq * (2 + 1)), 0x1) as u16),
DutyType::DUTY1 => w.ccr().bits(max(pclk1 / (scl_freq * (16 + 9)), 0x1) as u16)
.duty().set_bit(),
}.f_s().set_bit()
} else {
w.ccr().bits(max(pclk1 / (scl_freq * (1 + 1)), 0x4) as u16)
.f_s().clear_bit()
});
self.pe(true); /* PE = 1, enable I2C */
/* CR1 configuration */
i2c.cr1.modify(|r, w| w.bits(r.bits())
.smbus().clear_bit()
.smbtype().clear_bit()
.ack().set_bit());
/* CR2 configuration */
i2c.cr2.modify(|r, w| w.bits(r.bits()).freq().bits(freq_range as u8));
/* OAR1 configuration */
i2c.oar1.write(|w| w.addmode().clear_bit().add7().bits(addr));
while i2c.sr2.read().busy().bit() {} /* wait until the bus is free */
}
}
pub fn pe(&self, enable: bool) {
let &I2C(ref i2c) = self;
unsafe {
match enable {
true => i2c.cr1.modify(|r, w| w.bits(r.bits()).pe().set_bit()),
false => i2c.cr1.modify(|r, w| w.bits(r.bits()).pe().clear_bit())
}
}
}
pub fn is_ack_fail(&self) -> bool {
self.0.sr1.read().af().bit_is_set()
}
pub fn start(&self, enable: bool, synced: bool) {
let &I2C(ref i2c) = self;
unsafe {
match enable {
true => i2c.cr1.modify(|r, w| w.bits(r.bits()).start().set_bit()),
false => i2c.cr1.modify(|r, w| w.bits(r.bits()).start().clear_bit())
}
}
if synced {
match enable {
true => while !self.check_event(EVENT_MASTER_STARTED) {},
false => while self.check_event(EVENT_MASTER_STARTED) {}
}
}
}
pub fn stop(&self, enable: bool) {
let &I2C(ref i2c) = self;
unsafe {
match enable {
true => i2c.cr1.modify(|r, w| w.bits(r.bits()).stop().set_bit()),
false => i2c.cr1.modify(|r, w| w.bits(r.bits()).stop().clear_bit())
}
}
}
pub fn conf_ack(&self, enable: bool) {
let &I2C(ref i2c) = self;
unsafe {
match enable {
true => i2c.cr1.modify(|r, w| w.bits(r.bits()).ack().set_bit()),
false => i2c.cr1.modify(|r, w| w.bits(r.bits()).ack().clear_bit())
}
}
}
pub fn send_addr(&self, addr: u8, d: TransDir, synced: bool) -> bool {
let addr = (addr << 1) | match d {
TransDir::TRANSMITTER => 0,
TransDir::RECEIVER => 1
};
unsafe {
self.0.sr1.write(|w| w.af().clear_bit());
self.0.dr.write(|w| w.dr().bits(addr));
}
if synced {
match d {
TransDir::TRANSMITTER =>
while !self.check_event(EVENT_MASTER_TRANSMITTER_MODE_SELECTED) {
if self.is_ack_fail() {
return false
}
},
TransDir::RECEIVER =>
while !self.check_event(EVENT_MASTER_RECEIVER_MODE_SELECTED) {
if self.is_ack_fail() {
return false
}
}
}
}
true
}
pub fn send(&self, data: u8, synced: bool) {
unsafe {
self.0.dr.write(|w| w.dr().bits(data));
}
if synced {
while !self.check_event(EVENT_MASTER_BYTE_TRANSMITTED) {}
}
}
pub fn recv(&self, synced: bool) -> u8 {
if synced {
while !self.check_event(EVENT_MASTER_BYTE_RECEIVED) {}
}
self.0.dr.read().dr().bits()
}
pub fn check_event(&self, ev_mask: u32) -> bool {
let flags = self.0.sr1.read().bits() & 0xffff |
((self.0.sr2.read().bits() & 0xffff) << 16) & FLAGS_MASK;
(flags & ev_mask) == ev_mask
}
}
|