1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
#include <string>
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "tree/context-dep.h"
#include "hmm/transition-model.h"
#include "fstext/fstext-lib.h"
#include "decoder/faster-decoder.h"
#include "decoder/decodable-matrix.h"
#include "lat/kaldi-lattice.h"
#include "lat/lattice-functions.h"
#include "nnet/nnet-trnopts.h"
#include "nnet/nnet-component.h"
#include "nnet/nnet-activation.h"
#include "nnet/nnet-nnet.h"
#include "nnet/nnet-pdf-prior.h"
#include "nnet/nnet-utils.h"
#include "base/timer.h"
#include "cudamatrix/cu-device.h"
#include <iomanip>
typedef kaldi::BaseFloat BaseFloat;
typedef struct Matrix NervMatrix;
namespace kaldi{
namespace nnet1{
void LatticeAcousticRescore(const kaldi::Matrix<BaseFloat> &log_like,
const TransitionModel &trans_model,
const std::vector<int32> &state_times,
Lattice *lat);
}
}
extern "C" {
#include "kaldi_mmi.h"
#include "string.h"
#include "assert.h"
#include "nerv/lib/common.h"
#include "nerv/lib/matrix/mmatrix.h"
extern NervMatrix *nerv_matrix_host_float_create(long nrow, long ncol, MContext *context, Status *status);
extern void nerv_matrix_host_float_copy_fromd(NervMatrix *mat, const NervMatrix *cumat, int, int, int, Status *);
using namespace kaldi;
using namespace kaldi::nnet1;
typedef kaldi::int32 int32;
struct KaldiMMI {
TransitionModel *trans_model;
RandomAccessLatticeReader *den_lat_reader;
RandomAccessInt32VectorReader *ref_ali_reader;
Lattice den_lat;
vector<int32> state_times;
PdfPriorOptions *prior_opts;
PdfPrior *log_prior;
std::vector<int32> ref_ali;
Timer *time;
double time_now;
int32 num_done, num_no_ref_ali, num_no_den_lat, num_other_error;
int32 num_frm_drop;
kaldi::int64 total_frames;
double lat_like; // total likelihood of the lattice
double lat_ac_like; // acoustic likelihood weighted by posterior.
double total_mmi_obj, mmi_obj;
double total_post_on_ali, post_on_ali;
int32 num_frames;
bool binary;
BaseFloat acoustic_scale, lm_scale, old_acoustic_scale;
kaldi::int32 max_frames;
bool drop_frames;
std::string use_gpu;
};
KaldiMMI * new_KaldiMMI(const char* arg, const char* mdl, const char* lat, const char* ali)
{
KaldiMMI * mmi = new KaldiMMI;
const char *usage =
"Perform one iteration of DNN-MMI training by stochastic "
"gradient descent.\n"
"The network weights are updated on each utterance.\n"
"Usage: nnet-train-mmi-sequential [options] <model-in> <transition-model-in> "
"<feature-rspecifier> <den-lat-rspecifier> <ali-rspecifier> [<model-out>]\n"
"e.g.: \n"
" nnet-train-mmi-sequential nnet.init trans.mdl scp:train.scp scp:denlats.scp ark:train.ali "
"nnet.iter1\n";
ParseOptions po(usage);
NnetTrainOptions trn_opts; trn_opts.learn_rate=0.00001;
trn_opts.Register(&po);
mmi->binary = true;
po.Register("binary", &(mmi->binary), "Write output in binary mode");
std::string feature_transform;
po.Register("feature-transform", &feature_transform,
"Feature transform in Nnet format");
mmi->prior_opts = new PdfPriorOptions;
PdfPriorOptions &prior_opts = *(mmi->prior_opts);
prior_opts.Register(&po);
mmi->acoustic_scale = 1.0,
mmi->lm_scale = 1.0,
mmi->old_acoustic_scale = 0.0;
po.Register("acoustic-scale", &(mmi->acoustic_scale),
"Scaling factor for acoustic likelihoods");
po.Register("lm-scale", &(mmi->lm_scale),
"Scaling factor for \"graph costs\" (including LM costs)");
po.Register("old-acoustic-scale", &(mmi->old_acoustic_scale),
"Add in the scores in the input lattices with this scale, rather "
"than discarding them.");
mmi->max_frames = 6000; // Allow segments maximum of one minute by default
po.Register("max-frames",&(mmi->max_frames), "Maximum number of frames a segment can have to be processed");
mmi->drop_frames = true;
po.Register("drop-frames", &(mmi->drop_frames),
"Drop frames, where is zero den-posterior under numerator path "
"(ie. path not in lattice)");
mmi->use_gpu=std::string("yes");
po.Register("use-gpu", &(mmi->use_gpu), "yes|no|optional, only has effect if compiled with CUDA");
int narg = 0;
char args[64][1024];
char *token;
char *saveptr = NULL;
char tmpstr[1024];
strcpy(tmpstr, arg);
strcpy(args[0], "nnet-train-mmi-sequential");
for(narg = 1, token = strtok_r(tmpstr, " ", &saveptr); token; token = strtok_r(NULL, " ", &saveptr))
strcpy(args[narg++], token);
strcpy(args[narg++], "0.nnet");
strcpy(args[narg++], mdl);
strcpy(args[narg++], "feat");
strcpy(args[narg++], lat);
strcpy(args[narg++], ali);
strcpy(args[narg++], "1.nnet");
char **argsv = new char*[narg];
for(int _i = 0; _i < narg; _i++)
argsv[_i] = args[_i];
po.Read(narg, argsv);
delete [] argsv;
if (po.NumArgs() != 6) {
po.PrintUsage();
exit(1);
}
std::string transition_model_filename = po.GetArg(2),
den_lat_rspecifier = po.GetArg(4),
ref_ali_rspecifier = po.GetArg(5);
// Select the GPU
#if HAVE_CUDA == 1
CuDevice::Instantiate().SelectGpuId(mmi->use_gpu);
#endif
// Read the class-frame-counts, compute priors
mmi->log_prior = new PdfPrior(prior_opts);
// Read transition model
mmi->trans_model = new TransitionModel;
ReadKaldiObject(transition_model_filename, mmi->trans_model);
mmi->den_lat_reader = new RandomAccessLatticeReader(den_lat_rspecifier);
mmi->ref_ali_reader = new RandomAccessInt32VectorReader(ref_ali_rspecifier);
if (mmi->drop_frames) {
KALDI_LOG << "--drop-frames=true :"
" we will zero gradient for frames with total den/num mismatch."
" The mismatch is likely to be caused by missing correct path "
" from den-lattice due wrong annotation or search error."
" Leaving such frames out stabilizes the training.";
}
mmi->time = new Timer;
mmi->time_now = 0;
mmi->num_done =0;
mmi->num_no_ref_ali = 0;
mmi->num_no_den_lat = 0;
mmi->num_other_error = 0;
mmi->total_frames = 0;
mmi->num_frm_drop = 0;
mmi->total_mmi_obj = 0.0, mmi->mmi_obj = 0.0;
mmi->total_post_on_ali = 0.0, mmi->post_on_ali = 0.0;
return mmi;
}
void destroy_KaldiMMI(KaldiMMI *mmi)
{
delete mmi->trans_model;
delete mmi->den_lat_reader;
delete mmi->ref_ali_reader;
delete mmi->time;
delete mmi->prior_opts;
delete mmi->log_prior;
}
int check_mmi(KaldiMMI *mmi, const NervMatrix* mat, const char *key)
{
std::string utt(key);
if (!mmi->den_lat_reader->HasKey(utt)) {
KALDI_WARN << "Utterance " << utt << ": found no lattice.";
mmi->num_no_den_lat++;
return 0;
}
if (!mmi->ref_ali_reader->HasKey(utt)) {
KALDI_WARN << "Utterance " << utt << ": found no reference alignment.";
mmi->num_no_ref_ali++;
return 0;
}
assert(sizeof(BaseFloat) == sizeof(float));
// 1) get the features, numerator alignment
mmi->ref_ali = mmi->ref_ali_reader->Value(utt);
long mat_nrow = mat->nrow, mat_ncol = mat->ncol;
// check for temporal length of numerator alignments
if (static_cast<MatrixIndexT>(mmi->ref_ali.size()) != mat_nrow) {
KALDI_WARN << "Numerator alignment has wrong length "
<< mmi->ref_ali.size() << " vs. "<< mat_nrow;
mmi->num_other_error++;
return 0;
}
if (mat_nrow > mmi->max_frames) {
KALDI_WARN << "Utterance " << utt << ": Skipped because it has " << mat_nrow <<
" frames, which is more than " << mmi->max_frames << ".";
mmi->num_other_error++;
return 0;
}
// 2) get the denominator lattice, preprocess
mmi->den_lat = mmi->den_lat_reader->Value(utt);
Lattice &den_lat = mmi->den_lat;
if (den_lat.Start() == -1) {
KALDI_WARN << "Empty lattice for utt " << utt;
mmi->num_other_error++;
return 0;
}
if (mmi->old_acoustic_scale != 1.0) {
fst::ScaleLattice(fst::AcousticLatticeScale(mmi->old_acoustic_scale),
&den_lat);
}
// optional sort it topologically
kaldi::uint64 props = den_lat.Properties(fst::kFstProperties, false);
if (!(props & fst::kTopSorted)) {
if (fst::TopSort(&den_lat) == false)
KALDI_ERR << "Cycles detected in lattice.";
}
// get the lattice length and times of states
mmi->state_times.clear();
vector<int32> &state_times = mmi->state_times;
int32 max_time = kaldi::LatticeStateTimes(den_lat, &state_times);
// check for temporal length of denominator lattices
if (max_time != mat_nrow) {
KALDI_WARN << "Denominator lattice has wrong length "
<< max_time << " vs. " << mat_nrow;
mmi->num_other_error++;
return 0;
}
return 1;
}
NervMatrix * calc_diff_mmi(KaldiMMI * mmi, NervMatrix * mat, const char * key)
{
std::string utt(key);
assert(sizeof(BaseFloat) == sizeof(float));
kaldi::Matrix<BaseFloat> nnet_out_h, nnet_diff_h;
nnet_out_h.Resize(mat->nrow, mat->ncol, kUndefined);
size_t stride = mat->stride;
for (int i = 0; i < mat->nrow; i++)
{
const BaseFloat *nerv_row = (BaseFloat *)((char *)mat->data.f + i * stride);
BaseFloat *row = nnet_out_h.RowData(i);
memmove(row, nerv_row, sizeof(BaseFloat) * mat->ncol);
}
mmi->num_frames = nnet_out_h.NumRows();
PdfPriorOptions &prior_opts = *(mmi->prior_opts);
if (prior_opts.class_frame_counts != "") {
CuMatrix<BaseFloat> nnet_out;
nnet_out.Resize(mat->nrow, mat->ncol, kUndefined);
nnet_out.CopyFromMat(nnet_out_h);
mmi->log_prior->SubtractOnLogpost(&nnet_out);
nnet_out.CopyToMat(&nnet_out_h);
nnet_out.Resize(0,0);
}
// 4) rescore the latice
LatticeAcousticRescore(nnet_out_h, *(mmi->trans_model), mmi->state_times, &(mmi->den_lat));
if (mmi->acoustic_scale != 1.0 || mmi->lm_scale != 1.0)
fst::ScaleLattice(fst::LatticeScale(mmi->lm_scale, mmi->acoustic_scale), &(mmi->den_lat));
kaldi::Posterior post;
mmi->lat_like = kaldi::LatticeForwardBackward(mmi->den_lat, &post, &(mmi->lat_ac_like));
nnet_diff_h.Resize(mat->nrow, mat->ncol, kSetZero);
for (int32 t = 0; t < post.size(); t++) {
for (int32 arc = 0; arc < post[t].size(); arc++) {
int32 pdf = mmi->trans_model->TransitionIdToPdf(post[t][arc].first);
nnet_diff_h(t, pdf) += post[t][arc].second;
}
}
double path_ac_like = 0.0;
for(int32 t=0; t<mmi->num_frames; t++) {
int32 pdf = mmi->trans_model->TransitionIdToPdf(mmi->ref_ali[t]);
path_ac_like += nnet_out_h(t,pdf);
}
path_ac_like *= mmi->acoustic_scale;
mmi->mmi_obj = path_ac_like - mmi->lat_like;
mmi->post_on_ali = 0.0;
for(int32 t=0; t<mmi->num_frames; t++) {
int32 pdf = mmi->trans_model->TransitionIdToPdf(mmi->ref_ali[t]);
double posterior = nnet_diff_h(t, pdf);
mmi->post_on_ali += posterior;
}
KALDI_VLOG(1) << "Lattice #" << mmi->num_done + 1 << " processed"
<< " (" << utt << "): found " << mmi->den_lat.NumStates()
<< " states and " << fst::NumArcs(mmi->den_lat) << " arcs.";
KALDI_VLOG(1) << "Utterance " << utt << ": Average MMI obj. value = "
<< (mmi->mmi_obj/mmi->num_frames) << " over " << mmi->num_frames
<< " frames,"
<< " (Avg. den-posterior on ali " << mmi->post_on_ali/mmi->num_frames << ")";
// 7a) Search for the frames with num/den mismatch
int32 frm_drop = 0;
std::vector<int32> frm_drop_vec;
for(int32 t=0; t<mmi->num_frames; t++) {
int32 pdf = mmi->trans_model->TransitionIdToPdf(mmi->ref_ali[t]);
double posterior = nnet_diff_h(t, pdf);
if(posterior < 1e-20) {
frm_drop++;
frm_drop_vec.push_back(t);
}
}
// 8) subtract the pdf-Viterbi-path
for(int32 t=0; t<nnet_diff_h.NumRows(); t++) {
int32 pdf = mmi->trans_model->TransitionIdToPdf(mmi->ref_ali[t]);
nnet_diff_h(t, pdf) -= 1.0;
}
// 9) Drop mismatched frames from the training by zeroing the derivative
if(mmi->drop_frames) {
for(int32 i=0; i<frm_drop_vec.size(); i++) {
nnet_diff_h.Row(frm_drop_vec[i]).Set(0.0);
}
mmi->num_frm_drop += frm_drop;
}
// Report the frame dropping
if (frm_drop > 0) {
std::stringstream ss;
ss << (mmi->drop_frames?"Dropped":"[dropping disabled] Would drop")
<< " frames in " << utt << " " << frm_drop << "/" << mmi->num_frames << ",";
//get frame intervals from vec frm_drop_vec
ss << " intervals :";
//search for streaks of consecutive numbers:
int32 beg_streak=frm_drop_vec[0];
int32 len_streak=0;
int32 i;
for(i=0; i<frm_drop_vec.size(); i++,len_streak++) {
if(beg_streak + len_streak != frm_drop_vec[i]) {
ss << " " << beg_streak << ".." << frm_drop_vec[i-1] << "frm";
beg_streak = frm_drop_vec[i];
len_streak = 0;
}
}
ss << " " << beg_streak << ".." << frm_drop_vec[i-1] << "frm";
//print
KALDI_WARN << ss.str();
}
assert(mat->nrow == nnet_diff_h.NumRows() && mat->ncol == nnet_diff_h.NumCols());
stride = mat->stride;
for (int i = 0; i < mat->nrow; i++)
{
const BaseFloat *row = nnet_diff_h.RowData(i);
BaseFloat *nerv_row = (BaseFloat *)((char *)mat->data.f + i * stride);
memmove(nerv_row, row, sizeof(BaseFloat) * mat->ncol);
}
nnet_diff_h.Resize(0,0);
// increase time counter
mmi->total_mmi_obj += mmi->mmi_obj;
mmi->total_post_on_ali += mmi->post_on_ali;
mmi->total_frames += mmi->num_frames;
mmi->num_done++;
if (mmi->num_done % 100 == 0) {
mmi->time_now = mmi->time->Elapsed();
KALDI_VLOG(1) << "After " << mmi->num_done << " utterances: time elapsed = "
<< mmi->time_now/60 << " min; processed " << mmi->total_frames/mmi->time_now
<< " frames per second.";
#if HAVE_CUDA==1
// check the GPU is not overheated
CuDevice::Instantiate().CheckGpuHealth();
#endif
}
return mat;
}
double get_num_frames_mmi(const KaldiMMI *mmi)
{
return (double)mmi->num_frames;
}
}
|