summaryrefslogtreecommitdiff
path: root/kaldi_io/tools/kaldi_to_nerv.cpp
blob: aadac533862ab7ee150c29676e1a263834f776a4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#include <cstdio>
#include <fstream>
#include <string>
#include <cstring>
#include <cassert>
#include <cstdlib>
#include <map>

char token[1024];
char output[1024];

double **new_matrix(int nrow, int ncol) {
    double **mat = new double *[nrow];
    int i;
    for (i = 0; i < nrow; i++)
        mat[i] = new double[ncol];
    return mat;
}

void free_matrix(double **mat, int nrow, int ncol) {
    int i;
    for (i = 0; i < nrow; i++)
        delete [] mat[i];
    delete [] mat;
}

int cnt0;
std::map<std::string, int> param_cnt;
int get_param_cnt(const std::string &key) {
    std::map<std::string, int>::iterator it = param_cnt.find(key);
    if (it == param_cnt.end())
    {
        param_cnt[key] = cnt0 + 1;
        return cnt0;
    }
    return it->second++;
}

int main(int argc, char **argv) {
    FILE *fin;
    std::ofstream fout;
    assert(argc >= 3);
    fin = fopen(argv[1], "r");
    fout.open(argv[2]);
    assert(fin != NULL);
    cnt0 = argc > 3 ? atoi(argv[3]) : 0;
    bool shift;
    while (fscanf(fin, "%s", token) != EOF)
    {
        int nrow, ncol;
        int i, j;
        double **mat;
        int cnt = get_param_cnt(token);
        if (strcmp(token, "<AffineTransform>") == 0)
        {
            double lrate, blrate, mnorm;
            fscanf(fin, "%d %d", &ncol, &nrow);
            fscanf(fin, "%s %lf %s %lf %s %lf",
                    token, &lrate, token, &blrate, token, &mnorm);
            fscanf(fin, "%s", token);
            assert(*token == '[');
            printf("%d %d\n", nrow, ncol);
            mat = new_matrix(nrow, ncol);
            for (j = 0; j < ncol; j++)
                for (i = 0; i < nrow; i++)
                    fscanf(fin, "%lf", mat[i] + j);
            long base = fout.tellp();
            sprintf(output, "%16d", 0);
            fout << output;
            sprintf(output, "{type=\"nerv.LinearTransParam\",id=\"affine%d_ltp\"}\n",
                    cnt);
            fout << output;
            sprintf(output, "%d %d\n", nrow, ncol);
            fout << output;
            for (i = 0; i < nrow; i++)
            {
                for (j = 0; j < ncol; j++)
                    fout << mat[i][j] << " ";
                fout << std::endl;
            }
            long length = fout.tellp() - base;
            fout.seekp(base);
            sprintf(output, "[%13lu]\n", length);
            fout << output;
            fout.seekp(0, std::ios_base::end);
            fscanf(fin, "%s", token);
            assert(*token == ']');
            if (fscanf(fin, "%s", token) == 1 && *token == '[')
            {
                base = fout.tellp();
                for (j = 0; j < ncol; j++)
                    fscanf(fin, "%lf", mat[0] + j);
                sprintf(output, "%16d", 0);
                fout << output;
                sprintf(output, "{type=\"nerv.BiasParam\",id=\"affine%d_bp\"}\n",
                        cnt);
                fout << output;
                sprintf(output, "1 %d\n", ncol);
                fout << output;
                for (j = 0; j < ncol; j++)
                    fout << mat[0][j] << " ";
                fout << std::endl;
                length = fout.tellp() - base;
                fout.seekp(base);
                sprintf(output, "[%13lu]\n", length);
                fout << output;
                fout.seekp(0, std::ios_base::end);
            }
            free_matrix(mat, nrow, ncol);
        }
        else if ((shift = (strcmp(token, "<AddShift>") == 0)) ||
                strcmp(token, "<Rescale>") == 0)
        {
            double lrate, blrate, mnorm;
            fscanf(fin, "%d %d", &ncol, &ncol);
            mat = new_matrix(1, ncol);
            fscanf(fin, "%s %lf",
                    token, &lrate);
            fscanf(fin, "%s", token);
            assert(*token == '[');
            printf("%d\n", ncol);
            for (j = 0; j < ncol; j++)
                    fscanf(fin, "%lf", mat[0] + j);
            long base = fout.tellp();
            sprintf(output, "%16d", 0);
            fout << output;
            sprintf(output, "{type=\"nerv.BiasParam\",id=\"%s%d\"}\n",
                    shift ? "bias" : "window",
                    cnt);
            fout << output;
            sprintf(output, "%d %d\n", 1, ncol);
            fout << output;
            for (j = 0; j < ncol; j++)
                fout << mat[0][j] << " ";
            fout << std::endl;
            long length = fout.tellp() - base;
            fout.seekp(base);
            sprintf(output, "[%13lu]\n", length);
            fout << output;
            fout.seekp(0, std::ios_base::end);
            fscanf(fin, "%s", token);
            assert(*token == ']');
            free_matrix(mat, 1, ncol);
        }
    }
    return 0;
}