1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
// visit.h
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: [email protected] (Michael Riley)
//
// \file
// Queue-dependent visitation of finite-state transducers. See also
// dfs-visit.h.
#ifndef FST_LIB_VISIT_H__
#define FST_LIB_VISIT_H__
#include <fst/arcfilter.h>
#include <fst/mutable-fst.h>
namespace fst {
// Visitor Interface - class determines actions taken during a visit.
// If any of the boolean member functions return false, the visit is
// aborted by first calling FinishState() on all unfinished (grey)
// states and then calling FinishVisit().
//
// Note this is more general than the visitor interface in
// dfs-visit.h but lacks some DFS-specific behavior.
//
// template <class Arc>
// class Visitor {
// public:
// typedef typename Arc::StateId StateId;
//
// Visitor(T *return_data);
// // Invoked before visit
// void InitVisit(const Fst<Arc> &fst);
// // Invoked when state discovered (2nd arg is visitation root)
// bool InitState(StateId s, StateId root);
// // Invoked when arc to white/undiscovered state examined
// bool WhiteArc(StateId s, const Arc &a);
// // Invoked when arc to grey/unfinished state examined
// bool GreyArc(StateId s, const Arc &a);
// // Invoked when arc to black/finished state examined
// bool BlackArc(StateId s, const Arc &a);
// // Invoked when state finished.
// void FinishState(StateId s);
// // Invoked after visit
// void FinishVisit();
// };
// Performs queue-dependent visitation. Visitor class argument
// determines actions and contains any return data. ArcFilter
// determines arcs that are considered.
//
// Note this is more general than DfsVisit() in dfs-visit.h but lacks
// some DFS-specific Visitor behavior.
template <class Arc, class V, class Q, class ArcFilter>
void Visit(const Fst<Arc> &fst, V *visitor, Q *queue, ArcFilter filter) {
typedef typename Arc::StateId StateId;
typedef ArcIterator< Fst<Arc> > AIterator;
visitor->InitVisit(fst);
StateId start = fst.Start();
if (start == kNoStateId) {
visitor->FinishVisit();
return;
}
// An Fst state's visit color
const unsigned kWhiteState = 0x01; // Undiscovered
const unsigned kGreyState = 0x02; // Discovered & unfinished
const unsigned kBlackState = 0x04; // Finished
// We destroy an iterator as soon as possible and mark it so
const unsigned kArcIterDone = 0x08; // Arc iterator done and destroyed
vector<unsigned char> state_status;
vector<AIterator *> arc_iterator;
StateId nstates = start + 1; // # of known states in general case
bool expanded = false;
if (fst.Properties(kExpanded, false)) { // tests if expanded case, then
nstates = CountStates(fst); // uses ExpandedFst::NumStates().
expanded = true;
}
state_status.resize(nstates, kWhiteState);
arc_iterator.resize(nstates);
StateIterator< Fst<Arc> > siter(fst);
// Continues visit while true
bool visit = true;
// Iterates over trees in visit forest.
for (StateId root = start; visit && root < nstates;) {
visit = visitor->InitState(root, root);
state_status[root] = kGreyState;
queue->Enqueue(root);
while (!queue->Empty()) {
StateId s = queue->Head();
if (s >= state_status.size()) {
nstates = s + 1;
state_status.resize(nstates, kWhiteState);
arc_iterator.resize(nstates);
}
// Creates arc iterator if needed.
if (arc_iterator[s] == 0 && !(state_status[s] & kArcIterDone) && visit)
arc_iterator[s] = new AIterator(fst, s);
// Deletes arc iterator if done.
AIterator *aiter = arc_iterator[s];
if ((aiter && aiter->Done()) || !visit) {
delete aiter;
arc_iterator[s] = 0;
state_status[s] |= kArcIterDone;
}
// Dequeues state and marks black if done
if (state_status[s] & kArcIterDone) {
queue->Dequeue();
visitor->FinishState(s);
state_status[s] = kBlackState;
continue;
}
const Arc &arc = aiter->Value();
if (arc.nextstate >= state_status.size()) {
nstates = arc.nextstate + 1;
state_status.resize(nstates, kWhiteState);
arc_iterator.resize(nstates);
}
// Visits respective arc types
if (filter(arc)) {
// Enqueues destination state and marks grey if white
if (state_status[arc.nextstate] == kWhiteState) {
visit = visitor->WhiteArc(s, arc);
if (!visit) continue;
visit = visitor->InitState(arc.nextstate, root);
state_status[arc.nextstate] = kGreyState;
queue->Enqueue(arc.nextstate);
} else if (state_status[arc.nextstate] == kBlackState) {
visit = visitor->BlackArc(s, arc);
} else {
visit = visitor->GreyArc(s, arc);
}
}
aiter->Next();
// Destroys an iterator ASAP for efficiency.
if (aiter->Done()) {
delete aiter;
arc_iterator[s] = 0;
state_status[s] |= kArcIterDone;
}
}
// Finds next tree root
for (root = root == start ? 0 : root + 1;
root < nstates && state_status[root] != kWhiteState;
++root) {
}
// Check for a state beyond the largest known state
if (!expanded && root == nstates) {
for (; !siter.Done(); siter.Next()) {
if (siter.Value() == nstates) {
++nstates;
state_status.push_back(kWhiteState);
arc_iterator.push_back(0);
break;
}
}
}
}
visitor->FinishVisit();
}
template <class Arc, class V, class Q>
inline void Visit(const Fst<Arc> &fst, V *visitor, Q* queue) {
Visit(fst, visitor, queue, AnyArcFilter<Arc>());
}
// Copies input FST to mutable FST following queue order.
template <class A>
class CopyVisitor {
public:
typedef A Arc;
typedef typename A::StateId StateId;
CopyVisitor(MutableFst<Arc> *ofst) : ifst_(0), ofst_(ofst) {}
void InitVisit(const Fst<A> &ifst) {
ifst_ = &ifst;
ofst_->DeleteStates();
ofst_->SetStart(ifst_->Start());
}
bool InitState(StateId s, StateId) {
while (ofst_->NumStates() <= s)
ofst_->AddState();
return true;
}
bool WhiteArc(StateId s, const Arc &arc) {
ofst_->AddArc(s, arc);
return true;
}
bool GreyArc(StateId s, const Arc &arc) {
ofst_->AddArc(s, arc);
return true;
}
bool BlackArc(StateId s, const Arc &arc) {
ofst_->AddArc(s, arc);
return true;
}
void FinishState(StateId s) {
ofst_->SetFinal(s, ifst_->Final(s));
}
void FinishVisit() {}
private:
const Fst<Arc> *ifst_;
MutableFst<Arc> *ofst_;
};
// Visits input FST up to a state limit following queue order. If
// 'access_only' is true, aborts on visiting first state not
// accessible from the initial state.
template <class A>
class PartialVisitor {
public:
typedef A Arc;
typedef typename A::StateId StateId;
explicit PartialVisitor(StateId maxvisit, bool access_only = false)
: maxvisit_(maxvisit),
access_only_(access_only),
start_(kNoStateId) {}
void InitVisit(const Fst<A> &ifst) {
nvisit_ = 0;
start_ = ifst.Start();
}
bool InitState(StateId s, StateId root) {
if (access_only_ && root != start_)
return false;
++nvisit_;
return nvisit_ <= maxvisit_;
}
bool WhiteArc(StateId s, const Arc &arc) { return true; }
bool GreyArc(StateId s, const Arc &arc) { return true; }
bool BlackArc(StateId s, const Arc &arc) { return true; }
void FinishState(StateId s) {}
void FinishVisit() {}
private:
StateId maxvisit_;
bool access_only_;
StateId nvisit_;
StateId start_;
};
} // namespace fst
#endif // FST_LIB_VISIT_H__
|