summaryrefslogtreecommitdiff
path: root/kaldi_io/src/tools/openfst/include/fst/shortest-path.h
blob: 9cd13d9650b3e276301a45992511bccbd99e5a74 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// shortest-path.h

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: [email protected] (Cyril Allauzen)
//
// \file
// Functions to find shortest paths in an FST.

#ifndef FST_LIB_SHORTEST_PATH_H__
#define FST_LIB_SHORTEST_PATH_H__

#include <functional>
#include <utility>
using std::pair; using std::make_pair;
#include <vector>
using std::vector;

#include <fst/cache.h>
#include <fst/determinize.h>
#include <fst/queue.h>
#include <fst/shortest-distance.h>
#include <fst/test-properties.h>


namespace fst {

template <class Arc, class Queue, class ArcFilter>
struct ShortestPathOptions
    : public ShortestDistanceOptions<Arc, Queue, ArcFilter> {
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Weight Weight;
  size_t nshortest;   // return n-shortest paths
  bool unique;        // only return paths with distinct input strings
  bool has_distance;  // distance vector already contains the
                      // shortest distance from the initial state
  bool first_path;    // Single shortest path stops after finding the first
                      // path to a final state. That path is the shortest path
                      // only when using the ShortestFirstQueue and
                      // only when all the weights in the FST are between
                      // One() and Zero() according to NaturalLess.
  Weight weight_threshold;   // pruning weight threshold.
  StateId state_threshold;   // pruning state threshold.

  ShortestPathOptions(Queue *q, ArcFilter filt, size_t n = 1, bool u = false,
                      bool hasdist = false, float d = kDelta,
                      bool fp = false, Weight w = Weight::Zero(),
                      StateId s = kNoStateId)
      : ShortestDistanceOptions<Arc, Queue, ArcFilter>(q, filt, kNoStateId, d),
        nshortest(n), unique(u), has_distance(hasdist), first_path(fp),
        weight_threshold(w), state_threshold(s) {}
};


// Shortest-path algorithm: normally not called directly; prefer
// 'ShortestPath' below with n=1. 'ofst' contains the shortest path in
// 'ifst'. 'distance' returns the shortest distances from the source
// state to each state in 'ifst'. 'opts' is used to specify options
// such as the queue discipline, the arc filter and delta.
//
// The shortest path is the lowest weight path w.r.t. the natural
// semiring order.
//
// The weights need to be right distributive and have the path (kPath)
// property.
template<class Arc, class Queue, class ArcFilter>
void SingleShortestPath(const Fst<Arc> &ifst,
                  MutableFst<Arc> *ofst,
                  vector<typename Arc::Weight> *distance,
                  ShortestPathOptions<Arc, Queue, ArcFilter> &opts) {
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Weight Weight;

  ofst->DeleteStates();
  ofst->SetInputSymbols(ifst.InputSymbols());
  ofst->SetOutputSymbols(ifst.OutputSymbols());

  if (ifst.Start() == kNoStateId) {
    if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
    return;
  }

  vector<bool> enqueued;
  vector<StateId> parent;
  vector<Arc> arc_parent;

  Queue *state_queue = opts.state_queue;
  StateId source = opts.source == kNoStateId ? ifst.Start() : opts.source;
  Weight f_distance = Weight::Zero();
  StateId f_parent = kNoStateId;

  distance->clear();
  state_queue->Clear();
  if (opts.nshortest != 1) {
    FSTERROR() << "SingleShortestPath: for nshortest > 1, use ShortestPath"
               << " instead";
    ofst->SetProperties(kError, kError);
    return;
  }
  if (opts.weight_threshold != Weight::Zero() ||
      opts.state_threshold != kNoStateId) {
    FSTERROR() <<
        "SingleShortestPath: weight and state thresholds not applicable";
    ofst->SetProperties(kError, kError);
    return;
  }
  if ((Weight::Properties() & (kPath | kRightSemiring))
      != (kPath | kRightSemiring)) {
    FSTERROR() << "SingleShortestPath: Weight needs to have the path"
               << " property and be right distributive: " << Weight::Type();
    ofst->SetProperties(kError, kError);
    return;
  }
  while (distance->size() < source) {
    distance->push_back(Weight::Zero());
    enqueued.push_back(false);
    parent.push_back(kNoStateId);
    arc_parent.push_back(Arc(kNoLabel, kNoLabel, Weight::Zero(), kNoStateId));
  }
  distance->push_back(Weight::One());
  parent.push_back(kNoStateId);
  arc_parent.push_back(Arc(kNoLabel, kNoLabel, Weight::Zero(), kNoStateId));
  state_queue->Enqueue(source);
  enqueued.push_back(true);

  while (!state_queue->Empty()) {
    StateId s = state_queue->Head();
    state_queue->Dequeue();
    enqueued[s] = false;
    Weight sd = (*distance)[s];
    if (ifst.Final(s) != Weight::Zero()) {
      Weight w = Times(sd, ifst.Final(s));
      if (f_distance != Plus(f_distance, w)) {
        f_distance = Plus(f_distance, w);
        f_parent = s;
      }
      if (!f_distance.Member()) {
        ofst->SetProperties(kError, kError);
        return;
      }
      if (opts.first_path)
        break;
    }
    for (ArcIterator< Fst<Arc> > aiter(ifst, s);
         !aiter.Done();
         aiter.Next()) {
      const Arc &arc = aiter.Value();
      while (distance->size() <= arc.nextstate) {
        distance->push_back(Weight::Zero());
        enqueued.push_back(false);
        parent.push_back(kNoStateId);
        arc_parent.push_back(Arc(kNoLabel, kNoLabel, Weight::Zero(),
                                 kNoStateId));
      }
      Weight &nd = (*distance)[arc.nextstate];
      Weight w = Times(sd, arc.weight);
      if (nd != Plus(nd, w)) {
        nd = Plus(nd, w);
        if (!nd.Member()) {
          ofst->SetProperties(kError, kError);
          return;
        }
        parent[arc.nextstate] = s;
        arc_parent[arc.nextstate] = arc;
        if (!enqueued[arc.nextstate]) {
          state_queue->Enqueue(arc.nextstate);
          enqueued[arc.nextstate] = true;
        } else {
          state_queue->Update(arc.nextstate);
        }
      }
    }
  }

  StateId s_p = kNoStateId, d_p = kNoStateId;
  for (StateId s = f_parent, d = kNoStateId;
       s != kNoStateId;
       d = s, s = parent[s]) {
    d_p = s_p;
    s_p = ofst->AddState();
    if (d == kNoStateId) {
      ofst->SetFinal(s_p, ifst.Final(f_parent));
    } else {
      arc_parent[d].nextstate = d_p;
      ofst->AddArc(s_p, arc_parent[d]);
    }
  }
  ofst->SetStart(s_p);
  if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
  ofst->SetProperties(
      ShortestPathProperties(ofst->Properties(kFstProperties, false)),
      kFstProperties);
}


template <class S, class W>
class ShortestPathCompare {
 public:
  typedef S StateId;
  typedef W Weight;
  typedef pair<StateId, Weight> Pair;

  ShortestPathCompare(const vector<Pair>& pairs,
                      const vector<Weight>& distance,
                      StateId sfinal, float d)
      : pairs_(pairs), distance_(distance), superfinal_(sfinal), delta_(d)  {}

  bool operator()(const StateId x, const StateId y) const {
    const Pair &px = pairs_[x];
    const Pair &py = pairs_[y];
    Weight dx = px.first == superfinal_ ? Weight::One() :
        px.first < distance_.size() ? distance_[px.first] : Weight::Zero();
    Weight dy = py.first == superfinal_ ? Weight::One() :
        py.first < distance_.size() ? distance_[py.first] : Weight::Zero();
    Weight wx = Times(dx, px.second);
    Weight wy = Times(dy, py.second);
    // Penalize complete paths to ensure correct results with inexact weights.
    // This forms a strict weak order so long as ApproxEqual(a, b) =>
    // ApproxEqual(a, c) for all c s.t. less_(a, c) && less_(c, b).
    if (px.first == superfinal_ && py.first != superfinal_) {
      return less_(wy, wx) || ApproxEqual(wx, wy, delta_);
    } else if (py.first == superfinal_ && px.first != superfinal_) {
      return less_(wy, wx) && !ApproxEqual(wx, wy, delta_);
    } else {
      return less_(wy, wx);
    }
  }

 private:
  const vector<Pair> &pairs_;
  const vector<Weight> &distance_;
  StateId superfinal_;
  float delta_;
  NaturalLess<Weight> less_;
};


// N-Shortest-path algorithm: implements the core n-shortest path
// algorithm. The output is built REVERSED. See below for versions with
// more options and not reversed.
//
// 'ofst' contains the REVERSE of 'n'-shortest paths in 'ifst'.
// 'distance' must contain the shortest distance from each state to a final
// state in 'ifst'. 'delta' is the convergence delta.
//
// The n-shortest paths are the n-lowest weight paths w.r.t. the
// natural semiring order. The single path that can be read from the
// ith of at most n transitions leaving the initial state of 'ofst' is
// the ith shortest path. Disregarding the initial state and initial
// transitions, the n-shortest paths, in fact, form a tree rooted at
// the single final state.
//
// The weights need to be left and right distributive (kSemiring) and
// have the path (kPath) property.
//
// The algorithm is from Mohri and Riley, "An Efficient Algorithm for
// the n-best-strings problem", ICSLP 2002. The algorithm relies on
// the shortest-distance algorithm. There are some issues with the
// pseudo-code as written in the paper (viz., line 11).
//
// IMPLEMENTATION NOTE: The input fst 'ifst' can be a delayed fst and
// and at any state in its expansion the values of distance vector need only
// be defined at that time for the states that are known to exist.
template<class Arc, class RevArc>
void NShortestPath(const Fst<RevArc> &ifst,
                   MutableFst<Arc> *ofst,
                   const vector<typename Arc::Weight> &distance,
                   size_t n,
                   float delta = kDelta,
                   typename Arc::Weight weight_threshold = Arc::Weight::Zero(),
                   typename Arc::StateId state_threshold = kNoStateId) {
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Weight Weight;
  typedef pair<StateId, Weight> Pair;
  typedef typename RevArc::Weight RevWeight;

  if (n <= 0) return;
  if ((Weight::Properties() & (kPath | kSemiring)) != (kPath | kSemiring)) {
    FSTERROR() << "NShortestPath: Weight needs to have the "
                 << "path property and be distributive: "
                 << Weight::Type();
    ofst->SetProperties(kError, kError);
    return;
  }
  ofst->DeleteStates();
  ofst->SetInputSymbols(ifst.InputSymbols());
  ofst->SetOutputSymbols(ifst.OutputSymbols());
  // Each state in 'ofst' corresponds to a path with weight w from the
  // initial state of 'ifst' to a state s in 'ifst', that can be
  // characterized by a pair (s,w).  The vector 'pairs' maps each
  // state in 'ofst' to the corresponding pair maps states in OFST to
  // the corresponding pair (s,w).
  vector<Pair> pairs;
  // The supefinal state is denoted by -1, 'compare' knows that the
  // distance from 'superfinal' to the final state is 'Weight::One()',
  // hence 'distance[superfinal]' is not needed.
  StateId superfinal = -1;
  ShortestPathCompare<StateId, Weight>
    compare(pairs, distance, superfinal, delta);
  vector<StateId> heap;
  // 'r[s + 1]', 's' state in 'fst', is the number of states in 'ofst'
  // which corresponding pair contains 's' ,i.e. , it is number of
  // paths computed so far to 's'. Valid for 's == -1' (superfinal).
  vector<int> r;
  NaturalLess<Weight> less;
  if (ifst.Start() == kNoStateId ||
      distance.size() <= ifst.Start() ||
      distance[ifst.Start()] == Weight::Zero() ||
      less(weight_threshold, Weight::One()) ||
      state_threshold == 0) {
    if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
    return;
  }
  ofst->SetStart(ofst->AddState());
  StateId final = ofst->AddState();
  ofst->SetFinal(final, Weight::One());
  while (pairs.size() <= final)
    pairs.push_back(Pair(kNoStateId, Weight::Zero()));
  pairs[final] = Pair(ifst.Start(), Weight::One());
  heap.push_back(final);
  Weight limit = Times(distance[ifst.Start()], weight_threshold);

  while (!heap.empty()) {
    pop_heap(heap.begin(), heap.end(), compare);
    StateId state = heap.back();
    Pair p = pairs[state];
    heap.pop_back();
    Weight d = p.first == superfinal ? Weight::One() :
        p.first < distance.size() ? distance[p.first] : Weight::Zero();

    if (less(limit, Times(d, p.second)) ||
        (state_threshold != kNoStateId &&
         ofst->NumStates() >= state_threshold))
      continue;

    while (r.size() <= p.first + 1) r.push_back(0);
    ++r[p.first + 1];
    if (p.first == superfinal)
      ofst->AddArc(ofst->Start(), Arc(0, 0, Weight::One(), state));
    if ((p.first == superfinal) && (r[p.first + 1] == n)) break;
    if (r[p.first + 1] > n) continue;
    if (p.first == superfinal) continue;

    for (ArcIterator< Fst<RevArc> > aiter(ifst, p.first);
         !aiter.Done();
         aiter.Next()) {
      const RevArc &rarc = aiter.Value();
      Arc arc(rarc.ilabel, rarc.olabel, rarc.weight.Reverse(), rarc.nextstate);
      Weight w = Times(p.second, arc.weight);
      StateId next = ofst->AddState();
      pairs.push_back(Pair(arc.nextstate, w));
      arc.nextstate = state;
      ofst->AddArc(next, arc);
      heap.push_back(next);
      push_heap(heap.begin(), heap.end(), compare);
    }

    Weight finalw = ifst.Final(p.first).Reverse();
    if (finalw != Weight::Zero()) {
      Weight w = Times(p.second, finalw);
      StateId next = ofst->AddState();
      pairs.push_back(Pair(superfinal, w));
      ofst->AddArc(next, Arc(0, 0, finalw, state));
      heap.push_back(next);
      push_heap(heap.begin(), heap.end(), compare);
    }
  }
  Connect(ofst);
  if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
  ofst->SetProperties(
      ShortestPathProperties(ofst->Properties(kFstProperties, false)),
      kFstProperties);
}


// N-Shortest-path algorithm:  this version allow fine control
// via the options argument. See below for a simpler interface.
//
// 'ofst' contains the n-shortest paths in 'ifst'. 'distance' returns
// the shortest distances from the source state to each state in
// 'ifst'. 'opts' is used to specify options such as the number of
// paths to return, whether they need to have distinct input
// strings, the queue discipline, the arc filter and the convergence
// delta.
//
// The n-shortest paths are the n-lowest weight paths w.r.t. the
// natural semiring order. The single path that can be read from the
// ith of at most n transitions leaving the initial state of 'ofst' is
// the ith shortest path. Disregarding the initial state and initial
// transitions, The n-shortest paths, in fact, form a tree rooted at
// the single final state.

// The weights need to be right distributive and have the path (kPath)
// property. They need to be left distributive as well for nshortest
// > 1.
//
// The algorithm is from Mohri and Riley, "An Efficient Algorithm for
// the n-best-strings problem", ICSLP 2002. The algorithm relies on
// the shortest-distance algorithm. There are some issues with the
// pseudo-code as written in the paper (viz., line 11).
template<class Arc, class Queue, class ArcFilter>
void ShortestPath(const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
                  vector<typename Arc::Weight> *distance,
                  ShortestPathOptions<Arc, Queue, ArcFilter> &opts) {
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Weight Weight;
  typedef ReverseArc<Arc> ReverseArc;

  size_t n = opts.nshortest;
  if (n == 1) {
    SingleShortestPath(ifst, ofst, distance, opts);
    return;
  }
  if (n <= 0) return;
  if ((Weight::Properties() & (kPath | kSemiring)) != (kPath | kSemiring)) {
    FSTERROR() << "ShortestPath: n-shortest: Weight needs to have the "
               << "path property and be distributive: "
               << Weight::Type();
    ofst->SetProperties(kError, kError);
    return;
  }
  if (!opts.has_distance) {
    ShortestDistance(ifst, distance, opts);
    if (distance->size() == 1 && !(*distance)[0].Member()) {
      ofst->SetProperties(kError, kError);
      return;
    }
  }
  // Algorithm works on the reverse of 'fst' : 'rfst', 'distance' is
  // the distance to the final state in 'rfst', 'ofst' is built as the
  // reverse of the tree of n-shortest path in 'rfst'.
  VectorFst<ReverseArc> rfst;
  Reverse(ifst, &rfst);
  Weight d = Weight::Zero();
  for (ArcIterator< VectorFst<ReverseArc> > aiter(rfst, 0);
       !aiter.Done(); aiter.Next()) {
    const ReverseArc &arc = aiter.Value();
    StateId s = arc.nextstate - 1;
    if (s < distance->size())
      d = Plus(d, Times(arc.weight.Reverse(), (*distance)[s]));
  }
  distance->insert(distance->begin(), d);

  if (!opts.unique) {
    NShortestPath(rfst, ofst, *distance, n, opts.delta,
                  opts.weight_threshold, opts.state_threshold);
  } else {
    vector<Weight> ddistance;
    DeterminizeFstOptions<ReverseArc> dopts(opts.delta);
    DeterminizeFst<ReverseArc> dfst(rfst, distance, &ddistance, dopts);
    NShortestPath(dfst, ofst, ddistance, n, opts.delta,
                  opts.weight_threshold, opts.state_threshold);
  }
  distance->erase(distance->begin());
}


// Shortest-path algorithm: simplified interface. See above for a
// version that allows finer control.
//
// 'ofst' contains the 'n'-shortest paths in 'ifst'. The queue
// discipline is automatically selected. When 'unique' == true, only
// paths with distinct input labels are returned.
//
// The n-shortest paths are the n-lowest weight paths w.r.t. the
// natural semiring order. The single path that can be read from the
// ith of at most n transitions leaving the initial state of 'ofst' is
// the ith best path.
//
// The weights need to be right distributive and have the path
// (kPath) property.
template<class Arc>
void ShortestPath(const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
                  size_t n = 1, bool unique = false,
                  bool first_path = false,
                  typename Arc::Weight weight_threshold = Arc::Weight::Zero(),
                  typename Arc::StateId state_threshold = kNoStateId) {
  vector<typename Arc::Weight> distance;
  AnyArcFilter<Arc> arc_filter;
  AutoQueue<typename Arc::StateId> state_queue(ifst, &distance, arc_filter);
  ShortestPathOptions< Arc, AutoQueue<typename Arc::StateId>,
      AnyArcFilter<Arc> > opts(&state_queue, arc_filter, n, unique, false,
                               kDelta, first_path, weight_threshold,
                               state_threshold);
  ShortestPath(ifst, ofst, &distance, opts);
}

}  // namespace fst

#endif  // FST_LIB_SHORTEST_PATH_H__