summaryrefslogtreecommitdiff
path: root/kaldi_io/src/tools/ATLAS/include/atlas_refmisc.h
blob: d8b600e90259522fe2d4cb1eb466eabe3da67ae7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/* ---------------------------------------------------------------------
 *
 * -- Automatically Tuned Linear Algebra Software (ATLAS)
 *    (C) Copyright 2000 All Rights Reserved
 *
 * -- ATLAS routine -- Version 3.2 -- December 25, 2000
 *
 * Author         : Antoine P. Petitet
 * Originally developed at the University of Tennessee,
 * Innovative Computing Laboratory, Knoxville TN, 37996-1301, USA.
 *
 * ---------------------------------------------------------------------
 *
 * -- Copyright notice and Licensing terms:
 *
 *  Redistribution  and  use in  source and binary forms, with or without
 *  modification, are  permitted provided  that the following  conditions
 *  are met:
 *
 * 1. Redistributions  of  source  code  must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce  the above copyright
 *    notice,  this list of conditions, and the  following disclaimer in
 *    the documentation and/or other materials provided with the distri-
 *    bution.
 * 3. The name of the University,  the ATLAS group,  or the names of its
 *    contributors  may not be used to endorse or promote products deri-
 *    ved from this software without specific written permission.
 *
 * -- Disclaimer:
 *
 * THIS  SOFTWARE  IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,  INCLUDING,  BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY
 * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,  INDIRECT, INCIDENTAL, SPE-
 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO,  PROCUREMENT  OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEO-
 * RY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  (IN-
 * CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * ---------------------------------------------------------------------
 */
#ifndef ATL_REFMISC_H
#define ATL_REFMISC_H
/*
 * =====================================================================
 * Include files
 * =====================================================================
 */
#include <math.h>
#include "atlas_enum.h"
/*
 * =====================================================================
 * #define macro constants
 * =====================================================================
 */
#define    ATL_sNONE                     (-1.0f)
#define    ATL_sNTWO                     (-2.0f)
#define    ATL_sONE                      ( 1.0f)
#define    ATL_sZERO                     ( 0.0f)

#define    ATL_dNONE                     (-1.0)
#define    ATL_dNTWO                     (-2.0)
#define    ATL_dONE                      ( 1.0)
#define    ATL_dZERO                     ( 0.0)
/*
 * =====================================================================
 * # macro functions
 * =====================================================================
 */
#define    Msabs( a_ ) ( ( (a_) < ATL_sZERO ) ? -(a_) : (a_) )

#define    Mszero( a_r_, a_i_ )                                        \
           ( ( (a_r_) == ATL_sZERO ) && ( (a_i_) == ATL_sZERO ) )

#define    Msone( a_r_,  a_i_ )                                        \
           ( ( (a_r_) == ATL_sONE  ) && ( (a_i_) == ATL_sZERO ) )

#define    Msscl( a_r_, a_i_, c_r_, c_i_ )                             \
           {                                                           \
              register float tmp_r_, tmp_i_;                           \
              tmp_r_ = (a_r_) * c_r_ - (a_i_) * c_i_;                  \
              tmp_i_ = (a_r_) * c_i_ + (a_i_) * c_r_;                  \
              c_r_   = tmp_r_;                                         \
              c_i_   = tmp_i_;                                         \
           }
/*
 * Msdiv performs complex division in real arithmetic
 *    a_r_ + i * a_i_ = ( a_r_ + i * a_i_ ) / ( b_r_ + i * b_i_ );
 * The algorithm is due to Robert L. Smith and can be found in D. Knuth,
 * The art of Computer Programming, Vol.2, p.195
 */
#define    Msdiv( b_r_, b_i_, a_r_, a_i_ )                             \
           {                                                           \
              register float c_i_, c_r_, tmp1_, tmp2_;                 \
              if( Msabs( b_i_ ) < Msabs( b_r_ ) )                      \
              {                                                        \
                 tmp1_ = (b_i_) / (b_r_);                              \
                 tmp2_ = (b_r_) + (b_i_) * tmp1_;                      \
                 c_r_  = ( (a_r_) + (a_i_) * tmp1_ ) / tmp2_;          \
                 c_i_  = ( (a_i_) - (a_r_) * tmp1_ ) / tmp2_;          \
              }                                                        \
              else                                                     \
              {                                                        \
                 tmp1_ = (b_r_) / (b_i_);                              \
                 tmp2_ = (b_i_) + (b_r_) * tmp1_;                      \
                 c_r_  = (  (a_i_) + (a_r_) * tmp1_ ) / tmp2_;         \
                 c_i_  = ( -(a_r_) + (a_i_) * tmp1_ ) / tmp2_;         \
              }                                                        \
              a_r_ = c_r_;                                             \
              a_i_ = c_i_;                                             \
           }

#define    Mdabs( a_ ) ( ( (a_) < ATL_dZERO ) ? -(a_) : (a_) )

#define    Mdzero( a_r_, a_i_ )                                        \
           ( ( (a_r_) == ATL_dZERO ) && ( (a_i_) == ATL_dZERO ) )

#define    Mdone( a_r_, a_i_ )                                         \
           ( ( (a_r_) == ATL_dONE  ) && ( (a_i_) == ATL_dZERO ) )

#define    Mdscl( a_r_, a_i_, c_r_, c_i_ )                             \
           {                                                           \
              register double tmp_r_, tmp_i_;                          \
              tmp_r_ = (a_r_) * c_r_ - (a_i_) * c_i_;                  \
              tmp_i_ = (a_r_) * c_i_ + (a_i_) * c_r_;                  \
              c_r_   = tmp_r_;                                         \
              c_i_   = tmp_i_;                                         \
           }
/*
 * Mddiv performs complex division in real arithmetic
 *    a_r_ + i * a_i_ = ( a_r_ + i * a_i_ ) / ( b_r_ + i * b_i_ );
 * The algorithm is due to Robert L. Smith and can be found in D. Knuth,
 * The art of Computer Programming, Vol.2, p.195
 */
#define    Mddiv( b_r_, b_i_, a_r_, a_i_ )                             \
           {                                                           \
              register double c_i_, c_r_, tmp1_, tmp2_;                \
              if( Mdabs( b_i_ ) < Mdabs( b_r_ ) )                      \
              {                                                        \
                 tmp1_ = (b_i_) / (b_r_);                              \
                 tmp2_ = (b_r_) + (b_i_) * tmp1_;                      \
                 c_r_  = ( (a_r_) + (a_i_) * tmp1_ ) / tmp2_;          \
                 c_i_  = ( (a_i_) - (a_r_) * tmp1_ ) / tmp2_;          \
              }                                                        \
              else                                                     \
              {                                                        \
                 tmp1_ = (b_r_) / (b_i_);                              \
                 tmp2_ = (b_i_) + (b_r_) * tmp1_;                      \
                 c_r_  = (  (a_i_) + (a_r_) * tmp1_ ) / tmp2_;         \
                 c_i_  = ( -(a_r_) + (a_i_) * tmp1_ ) / tmp2_;         \
              }                                                        \
              a_r_ = c_r_;                                             \
              a_i_ = c_i_;                                             \
           }

#define    Mmin( a_, b_ ) ( ( (a_) < (b_) ) ?  (a_) : (b_) )

#define    Mmax( a_, b_ ) ( ( (a_) > (b_) ) ?  (a_) : (b_) )

#define    Mmul( a_r_, a_i_, b_r_, b_i_, c_r_, c_i_ )                  \
           {                                                           \
              c_r_ = (a_r_) * (b_r_) - (a_i_) * (b_i_);                \
              c_i_ = (a_r_) * (b_i_) + (a_i_) * (b_r_);                \
           }

#define    Mmla( a_r_, a_i_, b_r_, b_i_, c_r_, c_i_ )                  \
           {                                                           \
              c_r_ += (a_r_) * (b_r_) - (a_i_) * (b_i_);               \
              c_i_ += (a_r_) * (b_i_) + (a_i_) * (b_r_);               \
           }

#define    Mmls( a_r_, a_i_, b_r_, b_i_, c_r_, c_i_ )                  \
           {                                                           \
              c_r_ -= (a_r_) * (b_r_) - (a_i_) * (b_i_);               \
              c_i_ -= (a_r_) * (b_i_) + (a_i_) * (b_r_);               \
           }

#define    Mset( a_r_, a_i_, b_r_, b_i_ )                              \
           {                                                           \
              b_r_ = (a_r_);                                           \
              b_i_ = (a_i_);                                           \
           }

#define    Mselscal( al_, a_ )                                         \
           {                                                           \
              if(      (al_) == ATL_sZERO ) { (a_)  = ATL_sZERO; }     \
              else if( (al_) != ATL_sONE  ) { (a_) *= (al_);     }     \
           }

#define    Mdelscal( al_, a_ )                                         \
           {                                                           \
              if(      (al_) == ATL_dZERO ) { (a_)  = ATL_dZERO; }     \
              else if( (al_) != ATL_dONE  ) { (a_) *= (al_);     }     \
           }

#define    Mcelscal( al_r_, al_i_, a_r_, a_i_ )                        \
           {                                                           \
              if( Mszero( (al_r_), (al_i_) ) )                         \
              { (a_r_) = (a_i_) = ATL_sZERO; }                         \
              else if( ! Msone( (al_r_), (al_i_) ) )                   \
              { Msscl( (al_r_), (al_i_), (a_r_), (a_i_) ); }           \
           }

#define    Mzelscal( al_r_, al_i_, a_r_, a_i_ )                        \
           {                                                           \
              if( Mdzero( (al_r_), (al_i_) ) )                         \
              { (a_r_) = (a_i_) = ATL_dZERO; }                         \
              else if( ! Mdone( (al_r_), (al_i_) ) )                   \
              { Mdscl( (al_r_), (al_i_), (a_r_), (a_i_) ); }           \
           }

#define    Msvscal( n_, al_, x_, incx_ )                               \
           {                                                           \
            int i_, ix_;                                               \
            if(      (al_) == ATL_sZERO )                              \
            {                                                          \
             for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx_) )   \
             { (x_)[ix_] = ATL_sZERO; }                                \
            }                                                          \
            else if( (al_) != ATL_sONE )                               \
            {                                                          \
             for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx_) )   \
             { (x_)[ix_] *= (al_); }                                   \
            }                                                          \
           }

#define    Mdvscal( n_, al_, x_, incx_ )                               \
           {                                                           \
            int i_, ix_;                                               \
            if(      (al_) == ATL_dZERO )                              \
            {                                                          \
             for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx_) )   \
             { (x_)[ix_] = ATL_dZERO; }                                \
            }                                                          \
            else if( (al_) != ATL_dONE )                               \
            {                                                          \
             for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx_) )   \
             { (x_)[ix_] *= (al_); }                                   \
            }                                                          \
           }

#define    Mcvscal( n_, al_, x_, incx_ )                               \
           {                                                           \
            int i_, ix_, incx2_ = ( 2 * (incx_) );                     \
            if( Mszero( (al_)[0], (al_)[1] ) )                         \
            {                                                          \
             for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx2_) )  \
             { (x_)[ix_] = (x_)[ix_+1] = ATL_sZERO; }                  \
            }                                                          \
            else if( ! Msone( (al_)[0], (al_)[1] ) )                   \
            {                                                          \
             for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx2_) )  \
             { Msscl( (al_)[0], (al_)[1], (x_)[ix_], (x_)[ix_+1] ); }  \
            }                                                          \
           }

#define    Mzvscal( n_, al_, x_, incx_ )                               \
           {                                                           \
            int i_, ix_, incx2_ = ( 2 * (incx_) );                     \
            if( Mdzero( (al_)[0], (al_)[1] ) )                         \
            {                                                          \
             for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx2_) )  \
             { (x_)[ix_] = (x_)[ix_+1] = ATL_dZERO; }                  \
            }                                                          \
            else if( ! Mdone( (al_)[0], (al_)[1] ) )                   \
            {                                                          \
             for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx2_) )  \
             { Mdscl( (al_)[0], (al_)[1], (x_)[ix_], (x_)[ix_+1] ); }  \
            }                                                          \
           }

#define    Msgescal( m_, n_, al_, a_, lda_ )                           \
           {                                                           \
            int i_, iaij_, j_, jaj_;                                   \
            if(      (al_) == ATL_sZERO )                              \
            {                                                          \
             for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += (lda_) )  \
             {                                                         \
              for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 1 ) \
              { (a_)[iaij_] = ATL_sZERO; }                             \
             }                                                         \
            }                                                          \
            else if( (al_) != ATL_sONE )                               \
            {                                                          \
             for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += (lda_) )  \
             {                                                         \
              for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 1 ) \
              { (a_)[iaij_] *= (al_); }                                \
             }                                                         \
            }                                                          \
           }

#define    Mdgescal( m_, n_, al_, a_, lda_ )                           \
           {                                                           \
            int i_, iaij_, j_, jaj_;                                   \
            if(      (al_) == ATL_dZERO )                              \
            {                                                          \
             for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += (lda_) )  \
             {                                                         \
              for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 1 ) \
              { (a_)[iaij_] = ATL_dZERO; }                             \
             }                                                         \
            }                                                          \
            else if( (al_) != ATL_dONE )                               \
            {                                                          \
             for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += (lda_) )  \
             {                                                         \
              for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 1 ) \
              { (a_)[iaij_] *= (al_); }                                \
             }                                                         \
            }                                                          \
           }

#define    Mcgescal( m_, n_, al_, a_, lda_ )                           \
           {                                                           \
            int i_, iaij_, j_, jaj_, lda2_ = ( (lda_) << 1 );          \
            if( Mszero( (al_)[0], (al_)[1] ) )                         \
            {                                                          \
             for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += lda2_ )   \
             {                                                         \
              for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 2 ) \
              { (a_)[iaij_] = (a_)[iaij_+1] = ATL_sZERO; }             \
             }                                                         \
            }                                                          \
            else if( ! Msone( (al_)[0], (al_)[1] ) )                   \
            {                                                          \
             for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += lda2_ )   \
             {                                                         \
              for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 2 ) \
              {                                                        \
              Msscl( (al_)[0], (al_)[1], (a_)[iaij_], (a_)[iaij_+1] ); \
              }                                                        \
             }                                                         \
            }                                                          \
           }

#define    Mzgescal( m_, n_, al_, a_, lda_ )                           \
           {                                                           \
            int i_, iaij_, j_, jaj_, lda2_ = ( (lda_) << 1 );          \
            if( Mdzero( (al_)[0], (al_)[1] ) )                         \
            {                                                          \
             for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += lda2_ )   \
             {                                                         \
              for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 2 ) \
              { (a_)[iaij_] = (a_)[iaij_+1] = ATL_dZERO; }             \
             }                                                         \
            }                                                          \
            else if( ! Mdone( (al_)[0], (al_)[1] ) )                   \
            {                                                          \
             for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += lda2_ )   \
             {                                                         \
              for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 2 ) \
              {                                                        \
              Mdscl( (al_)[0], (al_)[1], (a_)[iaij_], (a_)[iaij_+1] ); \
              }                                                        \
             }                                                         \
            }                                                          \
           }

#endif
/*
 * End of atlas_refmisc.h
 */