summaryrefslogblamecommitdiff
path: root/kaldi_io/src/tools/openfst/include/fst/replace.h
blob: ef5f6ccb8eae0644a1e8d65b1d720c70e1c57c18 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453












































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                
// replace.h

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: [email protected] (Johan Schalkwyk)
//
// \file
// Functions and classes for the recursive replacement of Fsts.
//

#ifndef FST_LIB_REPLACE_H__
#define FST_LIB_REPLACE_H__

#include <tr1/unordered_map>
using std::tr1::unordered_map;
using std::tr1::unordered_multimap;
#include <set>
#include <string>
#include <utility>
using std::pair; using std::make_pair;
#include <vector>
using std::vector;

#include <fst/cache.h>
#include <fst/expanded-fst.h>
#include <fst/fst.h>
#include <fst/matcher.h>
#include <fst/replace-util.h>
#include <fst/state-table.h>
#include <fst/test-properties.h>

namespace fst {

//
// REPLACE STATE TUPLES AND TABLES
//
// The replace state table has the form
//
// template <class A, class P>
// class ReplaceStateTable {
//  public:
//   typedef A Arc;
//   typedef P PrefixId;
//   typedef typename A::StateId StateId;
//   typedef ReplaceStateTuple<StateId, PrefixId> StateTuple;
//   typedef typename A::Label Label;
//
//   // Required constuctor
//   ReplaceStateTable(const vector<pair<Label, const Fst<A>*> > &fst_tuples,
//                     Label root);
//
//   // Required copy constructor that does not copy state
//   ReplaceStateTable(const ReplaceStateTable<A,P> &table);
//
//   // Lookup state ID by tuple. If it doesn't exist, then add it.
//   StateId FindState(const StateTuple &tuple);
//
//   // Lookup state tuple by ID.
//   const StateTuple &Tuple(StateId id) const;
// };


// \struct ReplaceStateTuple
// \brief Tuple of information that uniquely defines a state in replace
template <class S, class P>
struct ReplaceStateTuple {
  typedef S StateId;
  typedef P PrefixId;

  ReplaceStateTuple()
      : prefix_id(-1), fst_id(kNoStateId), fst_state(kNoStateId) {}

  ReplaceStateTuple(PrefixId p, StateId f, StateId s)
      : prefix_id(p), fst_id(f), fst_state(s) {}

  PrefixId prefix_id;  // index in prefix table
  StateId fst_id;      // current fst being walked
  StateId fst_state;   // current state in fst being walked, not to be
                       // confused with the state_id of the combined fst
};


// Equality of replace state tuples.
template <class S, class P>
inline bool operator==(const ReplaceStateTuple<S, P>& x,
                       const ReplaceStateTuple<S, P>& y) {
  return x.prefix_id == y.prefix_id &&
      x.fst_id == y.fst_id &&
      x.fst_state == y.fst_state;
}


// \class ReplaceRootSelector
// Functor returning true for tuples corresponding to states in the root FST
template <class S, class P>
class ReplaceRootSelector {
 public:
  bool operator()(const ReplaceStateTuple<S, P> &tuple) const {
    return tuple.prefix_id == 0;
  }
};


// \class ReplaceFingerprint
// Fingerprint for general replace state tuples.
template <class S, class P>
class ReplaceFingerprint {
 public:
  ReplaceFingerprint(const vector<uint64> *size_array)
      : cumulative_size_array_(size_array) {}

  uint64 operator()(const ReplaceStateTuple<S, P> &tuple) const {
    return tuple.prefix_id * (cumulative_size_array_->back()) +
        cumulative_size_array_->at(tuple.fst_id - 1) +
        tuple.fst_state;
  }

 private:
  const vector<uint64> *cumulative_size_array_;
};


// \class ReplaceFstStateFingerprint
// Useful when the fst_state uniquely define the tuple.
template <class S, class P>
class ReplaceFstStateFingerprint {
 public:
  uint64 operator()(const ReplaceStateTuple<S, P>& tuple) const {
    return tuple.fst_state;
  }
};


// \class ReplaceHash
// A generic hash function for replace state tuples.
template <typename S, typename P>
class ReplaceHash {
 public:
  size_t operator()(const ReplaceStateTuple<S, P>& t) const {
    return t.prefix_id + t.fst_id * kPrime0 + t.fst_state * kPrime1;
  }
 private:
  static const size_t kPrime0;
  static const size_t kPrime1;
};

template <typename S, typename P>
const size_t ReplaceHash<S, P>::kPrime0 = 7853;

template <typename S, typename P>
const size_t ReplaceHash<S, P>::kPrime1 = 7867;

template <class A, class T> class ReplaceFstMatcher;


// \class VectorHashReplaceStateTable
// A two-level state table for replace.
// Warning: calls CountStates to compute the number of states of each
// component Fst.
template <class A, class P = ssize_t>
class VectorHashReplaceStateTable {
 public:
  typedef A Arc;
  typedef typename A::StateId StateId;
  typedef typename A::Label Label;
  typedef P PrefixId;
  typedef ReplaceStateTuple<StateId, P> StateTuple;
  typedef VectorHashStateTable<ReplaceStateTuple<StateId, P>,
                               ReplaceRootSelector<StateId, P>,
                               ReplaceFstStateFingerprint<StateId, P>,
                               ReplaceFingerprint<StateId, P> > StateTable;

  VectorHashReplaceStateTable(
      const vector<pair<Label, const Fst<A>*> > &fst_tuples,
      Label root) : root_size_(0) {
    cumulative_size_array_.push_back(0);
    for (size_t i = 0; i < fst_tuples.size(); ++i) {
      if (fst_tuples[i].first == root) {
        root_size_ = CountStates(*(fst_tuples[i].second));
        cumulative_size_array_.push_back(cumulative_size_array_.back());
      } else {
        cumulative_size_array_.push_back(cumulative_size_array_.back() +
                                         CountStates(*(fst_tuples[i].second)));
      }
    }
    state_table_ = new StateTable(
        new ReplaceRootSelector<StateId, P>,
        new ReplaceFstStateFingerprint<StateId, P>,
        new ReplaceFingerprint<StateId, P>(&cumulative_size_array_),
        root_size_,
        root_size_ + cumulative_size_array_.back());
  }

  VectorHashReplaceStateTable(const VectorHashReplaceStateTable<A, P> &table)
      : root_size_(table.root_size_),
        cumulative_size_array_(table.cumulative_size_array_) {
    state_table_ = new StateTable(
        new ReplaceRootSelector<StateId, P>,
        new ReplaceFstStateFingerprint<StateId, P>,
        new ReplaceFingerprint<StateId, P>(&cumulative_size_array_),
        root_size_,
        root_size_ + cumulative_size_array_.back());
  }

  ~VectorHashReplaceStateTable() {
    delete state_table_;
  }

  StateId FindState(const StateTuple &tuple) {
    return state_table_->FindState(tuple);
  }

  const StateTuple &Tuple(StateId id) const {
    return state_table_->Tuple(id);
  }

 private:
  StateId root_size_;
  vector<uint64> cumulative_size_array_;
  StateTable *state_table_;
};


// \class DefaultReplaceStateTable
// Default replace state table
template <class A, class P = ssize_t>
class DefaultReplaceStateTable : public CompactHashStateTable<
  ReplaceStateTuple<typename A::StateId, P>,
  ReplaceHash<typename A::StateId, P> > {
 public:
  typedef A Arc;
  typedef typename A::StateId StateId;
  typedef typename A::Label Label;
  typedef P PrefixId;
  typedef ReplaceStateTuple<StateId, P> StateTuple;
  typedef CompactHashStateTable<StateTuple,
                                ReplaceHash<StateId, PrefixId> > StateTable;

  using StateTable::FindState;
  using StateTable::Tuple;

  DefaultReplaceStateTable(
      const vector<pair<Label, const Fst<A>*> > &fst_tuples,
      Label root) {}

  DefaultReplaceStateTable(const DefaultReplaceStateTable<A, P> &table)
      : StateTable() {}
};

//
// REPLACE FST CLASS
//

// By default ReplaceFst will copy the input label of the 'replace arc'.
// For acceptors we do not want this behaviour. Instead we need to
// create an epsilon arc when recursing into the appropriate Fst.
// The 'epsilon_on_replace' option can be used to toggle this behaviour.
template <class A, class T = DefaultReplaceStateTable<A> >
struct ReplaceFstOptions : CacheOptions {
  int64 root;    // root rule for expansion
  bool  epsilon_on_replace;
  bool  take_ownership;  // take ownership of input Fst(s)
  T*    state_table;

  ReplaceFstOptions(const CacheOptions &opts, int64 r)
      : CacheOptions(opts),
        root(r),
        epsilon_on_replace(false),
        take_ownership(false),
        state_table(0) {}
  explicit ReplaceFstOptions(int64 r)
      : root(r),
        epsilon_on_replace(false),
        take_ownership(false),
        state_table(0) {}
  ReplaceFstOptions(int64 r, bool epsilon_replace_arc)
      : root(r),
        epsilon_on_replace(epsilon_replace_arc),
        take_ownership(false),
        state_table(0) {}
  ReplaceFstOptions()
      : root(kNoLabel),
        epsilon_on_replace(false),
        take_ownership(false),
        state_table(0) {}
};


// \class ReplaceFstImpl
// \brief Implementation class for replace class Fst
//
// The replace implementation class supports a dynamic
// expansion of a recursive transition network represented as Fst
// with dynamic replacable arcs.
//
template <class A, class T>
class ReplaceFstImpl : public CacheImpl<A> {
  friend class ReplaceFstMatcher<A, T>;

 public:
  using FstImpl<A>::SetType;
  using FstImpl<A>::SetProperties;
  using FstImpl<A>::WriteHeader;
  using FstImpl<A>::SetInputSymbols;
  using FstImpl<A>::SetOutputSymbols;
  using FstImpl<A>::InputSymbols;
  using FstImpl<A>::OutputSymbols;

  using CacheImpl<A>::PushArc;
  using CacheImpl<A>::HasArcs;
  using CacheImpl<A>::HasFinal;
  using CacheImpl<A>::HasStart;
  using CacheImpl<A>::SetArcs;
  using CacheImpl<A>::SetFinal;
  using CacheImpl<A>::SetStart;

  typedef typename A::Label   Label;
  typedef typename A::Weight  Weight;
  typedef typename A::StateId StateId;
  typedef CacheState<A> State;
  typedef A Arc;
  typedef unordered_map<Label, Label> NonTerminalHash;

  typedef T StateTable;
  typedef typename T::PrefixId PrefixId;
  typedef ReplaceStateTuple<StateId, PrefixId> StateTuple;

  // constructor for replace class implementation.
  // \param fst_tuples array of label/fst tuples, one for each non-terminal
  ReplaceFstImpl(const vector< pair<Label, const Fst<A>* > >& fst_tuples,
                 const ReplaceFstOptions<A, T> &opts)
      : CacheImpl<A>(opts),
        epsilon_on_replace_(opts.epsilon_on_replace),
        state_table_(opts.state_table ? opts.state_table :
                     new StateTable(fst_tuples, opts.root)) {

    SetType("replace");

    if (fst_tuples.size() > 0) {
      SetInputSymbols(fst_tuples[0].second->InputSymbols());
      SetOutputSymbols(fst_tuples[0].second->OutputSymbols());
    }

    bool all_negative = true;  // all nonterminals are negative?
    bool dense_range = true;   // all nonterminals are positive
                               // and form a dense range containing 1?
    for (size_t i = 0; i < fst_tuples.size(); ++i) {
      Label nonterminal = fst_tuples[i].first;
      if (nonterminal >= 0)
        all_negative = false;
      if (nonterminal > fst_tuples.size() || nonterminal <= 0)
        dense_range = false;
    }

    vector<uint64> inprops;
    bool all_ilabel_sorted = true;
    bool all_olabel_sorted = true;
    bool all_non_empty = true;
    fst_array_.push_back(0);
    for (size_t i = 0; i < fst_tuples.size(); ++i) {
      Label label = fst_tuples[i].first;
      const Fst<A> *fst = fst_tuples[i].second;
      nonterminal_hash_[label] = fst_array_.size();
      nonterminal_set_.insert(label);
      fst_array_.push_back(opts.take_ownership ? fst : fst->Copy());
      if (fst->Start() == kNoStateId)
        all_non_empty = false;
      if(!fst->Properties(kILabelSorted, false))
        all_ilabel_sorted = false;
      if(!fst->Properties(kOLabelSorted, false))
        all_olabel_sorted = false;
      inprops.push_back(fst->Properties(kCopyProperties, false));
      if (i) {
        if (!CompatSymbols(InputSymbols(), fst->InputSymbols())) {
          FSTERROR() << "ReplaceFstImpl: input symbols of Fst " << i
                     << " does not match input symbols of base Fst (0'th fst)";
          SetProperties(kError, kError);
        }
        if (!CompatSymbols(OutputSymbols(), fst->OutputSymbols())) {
          FSTERROR() << "ReplaceFstImpl: output symbols of Fst " << i
                     << " does not match output symbols of base Fst "
                     << "(0'th fst)";
          SetProperties(kError, kError);
        }
      }
    }
    Label nonterminal = nonterminal_hash_[opts.root];
    if ((nonterminal == 0) && (fst_array_.size() > 1)) {
      FSTERROR() << "ReplaceFstImpl: no Fst corresponding to root label '"
                 << opts.root << "' in the input tuple vector";
      SetProperties(kError, kError);
    }
    root_ = (nonterminal > 0) ? nonterminal : 1;

    SetProperties(ReplaceProperties(inprops, root_ - 1, epsilon_on_replace_,
                                    all_non_empty));
    // We assume that all terminals are positive.  The resulting
    // ReplaceFst is known to be kILabelSorted when all sub-FSTs are
    // kILabelSorted and one of the 3 following conditions is satisfied:
    //  1. 'epsilon_on_replace' is false, or
    //  2. all non-terminals are negative, or
    //  3. all non-terninals are positive and form a dense range containing 1.
    if (all_ilabel_sorted &&
        (!epsilon_on_replace_ || all_negative || dense_range))
      SetProperties(kILabelSorted, kILabelSorted);
    // Similarly, the resulting ReplaceFst is known to be
    // kOLabelSorted when all sub-FSTs are kOLabelSorted and one of
    // the 2 following conditions is satisfied:
    //  1. all non-terminals are negative, or
    //  2. all non-terninals are positive and form a dense range containing 1.
    if (all_olabel_sorted && (all_negative || dense_range))
      SetProperties(kOLabelSorted, kOLabelSorted);

    // Enable optional caching as long as sorted and all non empty.
    if (Properties(kILabelSorted | kOLabelSorted) && all_non_empty)
      always_cache_ = false;
    else
      always_cache_ = true;
    VLOG(2) << "ReplaceFstImpl::ReplaceFstImpl: always_cache = "
            << (always_cache_ ? "true" : "false");
  }

  ReplaceFstImpl(const ReplaceFstImpl& impl)
      : CacheImpl<A>(impl),
        epsilon_on_replace_(impl.epsilon_on_replace_),
        always_cache_(impl.always_cache_),
        state_table_(new StateTable(*(impl.state_table_))),
        nonterminal_set_(impl.nonterminal_set_),
        nonterminal_hash_(impl.nonterminal_hash_),
        root_(impl.root_) {
    SetType("replace");
    SetProperties(impl.Properties(), kCopyProperties);
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
    fst_array_.reserve(impl.fst_array_.size());
    fst_array_.push_back(0);
    for (size_t i = 1; i < impl.fst_array_.size(); ++i) {
      fst_array_.push_back(impl.fst_array_[i]->Copy(true));
    }
  }

  ~ReplaceFstImpl() {
    VLOG(2) << "~ReplaceFstImpl: gc = "
            << (CacheImpl<A>::GetCacheGc() ? "true" : "false")
            << ", gc_size = " << CacheImpl<A>::GetCacheSize()
            << ", gc_limit = " << CacheImpl<A>::GetCacheLimit();

    delete state_table_;
    for (size_t i = 1; i < fst_array_.size(); ++i) {
      delete fst_array_[i];
    }
  }

  // Computes the dependency graph of the replace class and returns
  // true if the dependencies are cyclic. Cyclic dependencies will result
  // in an un-expandable replace fst.
  bool CyclicDependencies() const {
    ReplaceUtil<A> replace_util(fst_array_, nonterminal_hash_, root_);
    return replace_util.CyclicDependencies();
  }

  // Return or compute start state of replace fst
  StateId Start() {
    if (!HasStart()) {
      if (fst_array_.size() == 1) {      // no fsts defined for replace
        SetStart(kNoStateId);
        return kNoStateId;
      } else {
        const Fst<A>* fst = fst_array_[root_];
        StateId fst_start = fst->Start();
        if (fst_start == kNoStateId)  // root Fst is empty
          return kNoStateId;

        PrefixId prefix = GetPrefixId(StackPrefix());
        StateId start = state_table_->FindState(
            StateTuple(prefix, root_, fst_start));
        SetStart(start);
        return start;
      }
    } else {
      return CacheImpl<A>::Start();
    }
  }

  // return final weight of state (kInfWeight means state is not final)
  Weight Final(StateId s) {
    if (!HasFinal(s)) {
      const StateTuple& tuple  = state_table_->Tuple(s);
      const StackPrefix& stack = stackprefix_array_[tuple.prefix_id];
      const Fst<A>* fst = fst_array_[tuple.fst_id];
      StateId fst_state = tuple.fst_state;

      if (fst->Final(fst_state) != Weight::Zero() && stack.Depth() == 0)
        SetFinal(s, fst->Final(fst_state));
      else
        SetFinal(s, Weight::Zero());
    }
    return CacheImpl<A>::Final(s);
  }

  size_t NumArcs(StateId s) {
    if (HasArcs(s)) {  // If state cached, use the cached value.
      return CacheImpl<A>::NumArcs(s);
    } else if (always_cache_) {  // If always caching, expand and cache state.
      Expand(s);
      return CacheImpl<A>::NumArcs(s);
    } else {  // Otherwise compute the number of arcs without expanding.
      StateTuple tuple  = state_table_->Tuple(s);
      if (tuple.fst_state == kNoStateId)
        return 0;

      const Fst<A>* fst = fst_array_[tuple.fst_id];
      size_t num_arcs = fst->NumArcs(tuple.fst_state);
      if (ComputeFinalArc(tuple, 0))
        num_arcs++;

      return num_arcs;
    }
  }

  // Returns whether a given label is a non terminal
  bool IsNonTerminal(Label l) const {
    // TODO(allauzen): be smarter and take advantage of
    // all_dense or all_negative.
    // Use also in ComputeArc, this would require changes to replace
    // so that recursing into an empty fst lead to a non co-accessible
    // state instead of deleting the arc as done currently.
    // Current use correct, since i/olabel sorted iff all_non_empty.
    typename NonTerminalHash::const_iterator it =
        nonterminal_hash_.find(l);
    return it != nonterminal_hash_.end();
  }

  size_t NumInputEpsilons(StateId s) {
    if (HasArcs(s)) {
      // If state cached, use the cached value.
      return CacheImpl<A>::NumInputEpsilons(s);
    } else if (always_cache_ || !Properties(kILabelSorted)) {
      // If always caching or if the number of input epsilons is too expensive
      // to compute without caching (i.e. not ilabel sorted),
      // then expand and cache state.
      Expand(s);
      return CacheImpl<A>::NumInputEpsilons(s);
    } else {
      // Otherwise, compute the number of input epsilons without caching.
      StateTuple tuple  = state_table_->Tuple(s);
      if (tuple.fst_state == kNoStateId)
        return 0;
      const Fst<A>* fst = fst_array_[tuple.fst_id];
      size_t num  = 0;
      if (!epsilon_on_replace_) {
        // If epsilon_on_replace is false, all input epsilon arcs
        // are also input epsilons arcs in the underlying machine.
        fst->NumInputEpsilons(tuple.fst_state);
      } else {
        // Otherwise, one need to consider that all non-terminal arcs
        // in the underlying machine also become input epsilon arc.
        ArcIterator<Fst<A> > aiter(*fst, tuple.fst_state);
        for (; !aiter.Done() &&
                 ((aiter.Value().ilabel == 0) ||
                  IsNonTerminal(aiter.Value().olabel));
             aiter.Next())
          ++num;
      }
      if (ComputeFinalArc(tuple, 0))
        num++;
      return num;
    }
  }

  size_t NumOutputEpsilons(StateId s) {
    if (HasArcs(s)) {
      // If state cached, use the cached value.
      return CacheImpl<A>::NumOutputEpsilons(s);
    } else if(always_cache_ || !Properties(kOLabelSorted)) {
      // If always caching or if the number of output epsilons is too expensive
      // to compute without caching (i.e. not olabel sorted),
      // then expand and cache state.
      Expand(s);
      return CacheImpl<A>::NumOutputEpsilons(s);
    } else {
      // Otherwise, compute the number of output epsilons without caching.
      StateTuple tuple  = state_table_->Tuple(s);
      if (tuple.fst_state == kNoStateId)
        return 0;
      const Fst<A>* fst = fst_array_[tuple.fst_id];
      size_t num  = 0;
      ArcIterator<Fst<A> > aiter(*fst, tuple.fst_state);
      for (; !aiter.Done() &&
               ((aiter.Value().olabel == 0) ||
                IsNonTerminal(aiter.Value().olabel));
           aiter.Next())
        ++num;
      if (ComputeFinalArc(tuple, 0))
        num++;
      return num;
    }
  }

  uint64 Properties() const { return Properties(kFstProperties); }

  // Set error if found; return FST impl properties.
  uint64 Properties(uint64 mask) const {
    if (mask & kError) {
      for (size_t i = 1; i < fst_array_.size(); ++i) {
        if (fst_array_[i]->Properties(kError, false))
          SetProperties(kError, kError);
      }
    }
    return FstImpl<Arc>::Properties(mask);
  }

  // return the base arc iterator, if arcs have not been computed yet,
  // extend/recurse for new arcs.
  void InitArcIterator(StateId s, ArcIteratorData<A> *data) {
    if (!HasArcs(s))
      Expand(s);
    CacheImpl<A>::InitArcIterator(s, data);
    // TODO(allauzen): Set behaviour of generic iterator
    // Warning: ArcIterator<ReplaceFst<A> >::InitCache()
    // relies on current behaviour.
  }


  // Extend current state (walk arcs one level deep)
  void Expand(StateId s) {
    StateTuple tuple = state_table_->Tuple(s);

    // If local fst is empty
    if (tuple.fst_state == kNoStateId) {
      SetArcs(s);
      return;
    }

    ArcIterator< Fst<A> > aiter(
        *(fst_array_[tuple.fst_id]), tuple.fst_state);
    Arc arc;

    // Create a final arc when needed
    if (ComputeFinalArc(tuple, &arc))
      PushArc(s, arc);

    // Expand all arcs leaving the state
    for (;!aiter.Done(); aiter.Next()) {
      if (ComputeArc(tuple, aiter.Value(), &arc))
        PushArc(s, arc);
    }

    SetArcs(s);
  }

  void Expand(StateId s, const StateTuple &tuple,
              const ArcIteratorData<A> &data) {
     // If local fst is empty
    if (tuple.fst_state == kNoStateId) {
      SetArcs(s);
      return;
    }

    ArcIterator< Fst<A> > aiter(data);
    Arc arc;

    // Create a final arc when needed
    if (ComputeFinalArc(tuple, &arc))
      AddArc(s, arc);

    // Expand all arcs leaving the state
    for (; !aiter.Done(); aiter.Next()) {
      if (ComputeArc(tuple, aiter.Value(), &arc))
        AddArc(s, arc);
    }

    SetArcs(s);
  }

  // If arcp == 0, only returns if a final arc is required, does not
  // actually compute it.
  bool ComputeFinalArc(const StateTuple &tuple, A* arcp,
                       uint32 flags = kArcValueFlags) {
    const Fst<A>* fst = fst_array_[tuple.fst_id];
    StateId fst_state = tuple.fst_state;
    if (fst_state == kNoStateId)
      return false;

   // if state is final, pop up stack
    const StackPrefix& stack = stackprefix_array_[tuple.prefix_id];
    if (fst->Final(fst_state) != Weight::Zero() && stack.Depth()) {
      if (arcp) {
        arcp->ilabel = 0;
        arcp->olabel = 0;
        if (flags & kArcNextStateValue) {
          PrefixId prefix_id = PopPrefix(stack);
          const PrefixTuple& top = stack.Top();
          arcp->nextstate = state_table_->FindState(
              StateTuple(prefix_id, top.fst_id, top.nextstate));
        }
        if (flags & kArcWeightValue)
          arcp->weight = fst->Final(fst_state);
      }
      return true;
    } else {
      return false;
    }
  }

  // Compute the arc in the replace fst corresponding to a given
  // in the underlying machine. Returns false if the underlying arc
  // corresponds to no arc in the replace.
  bool ComputeArc(const StateTuple &tuple, const A &arc, A* arcp,
                  uint32 flags = kArcValueFlags) {
    if (!epsilon_on_replace_ &&
        (flags == (flags & (kArcILabelValue | kArcWeightValue)))) {
      *arcp = arc;
      return true;
    }

    if (arc.olabel == 0) {  // expand local fst
      StateId nextstate = flags & kArcNextStateValue
          ? state_table_->FindState(
              StateTuple(tuple.prefix_id, tuple.fst_id, arc.nextstate))
          : kNoStateId;
      *arcp = A(arc.ilabel, arc.olabel, arc.weight, nextstate);
    } else {
      // check for non terminal
      typename NonTerminalHash::const_iterator it =
          nonterminal_hash_.find(arc.olabel);
      if (it != nonterminal_hash_.end()) {  // recurse into non terminal
        Label nonterminal = it->second;
        const Fst<A>* nt_fst = fst_array_[nonterminal];
        PrefixId nt_prefix = PushPrefix(stackprefix_array_[tuple.prefix_id],
                                        tuple.fst_id, arc.nextstate);

        // if start state is valid replace, else arc is implicitly
        // deleted
        StateId nt_start = nt_fst->Start();
        if (nt_start != kNoStateId) {
          StateId nt_nextstate =  flags & kArcNextStateValue
              ? state_table_->FindState(
                  StateTuple(nt_prefix, nonterminal, nt_start))
              : kNoStateId;
          Label ilabel = (epsilon_on_replace_) ? 0 : arc.ilabel;
          *arcp = A(ilabel, 0, arc.weight, nt_nextstate);
        } else {
          return false;
        }
      } else {
        StateId nextstate = flags & kArcNextStateValue
            ? state_table_->FindState(
                StateTuple(tuple.prefix_id, tuple.fst_id, arc.nextstate))
            : kNoStateId;
        *arcp = A(arc.ilabel, arc.olabel, arc.weight, nextstate);
      }
    }
    return true;
  }

  // Returns the arc iterator flags supported by this Fst.
  uint32 ArcIteratorFlags() const {
    uint32 flags = kArcValueFlags;
    if (!always_cache_)
      flags |= kArcNoCache;
    return flags;
  }

  T* GetStateTable() const {
    return state_table_;
  }

  const Fst<A>* GetFst(Label fst_id) const {
    return fst_array_[fst_id];
  }

  bool EpsilonOnReplace() const { return epsilon_on_replace_; }

  // private helper classes
 private:
  static const size_t kPrime0;

  // \class PrefixTuple
  // \brief Tuple of fst_id and destination state (entry in stack prefix)
  struct PrefixTuple {
    PrefixTuple(Label f, StateId s) : fst_id(f), nextstate(s) {}

    Label   fst_id;
    StateId nextstate;
  };

  // \class StackPrefix
  // \brief Container for stack prefix.
  class StackPrefix {
   public:
    StackPrefix() {}

    // copy constructor
    StackPrefix(const StackPrefix& x) :
        prefix_(x.prefix_) {
    }

    void Push(StateId fst_id, StateId nextstate) {
      prefix_.push_back(PrefixTuple(fst_id, nextstate));
    }

    void Pop() {
      prefix_.pop_back();
    }

    const PrefixTuple& Top() const {
      return prefix_[prefix_.size()-1];
    }

    size_t Depth() const {
      return prefix_.size();
    }

   public:
    vector<PrefixTuple> prefix_;
  };


  // \class StackPrefixEqual
  // \brief Compare two stack prefix classes for equality
  class StackPrefixEqual {
   public:
    bool operator()(const StackPrefix& x, const StackPrefix& y) const {
      if (x.prefix_.size() != y.prefix_.size()) return false;
      for (size_t i = 0; i < x.prefix_.size(); ++i) {
        if (x.prefix_[i].fst_id    != y.prefix_[i].fst_id ||
           x.prefix_[i].nextstate != y.prefix_[i].nextstate) return false;
      }
      return true;
    }
  };

  //
  // \class StackPrefixKey
  // \brief Hash function for stack prefix to prefix id
  class StackPrefixKey {
   public:
    size_t operator()(const StackPrefix& x) const {
      size_t sum = 0;
      for (size_t i = 0; i < x.prefix_.size(); ++i) {
        sum += x.prefix_[i].fst_id + x.prefix_[i].nextstate*kPrime0;
      }
      return sum;
    }
  };

  typedef unordered_map<StackPrefix, PrefixId, StackPrefixKey, StackPrefixEqual>
  StackPrefixHash;

  // private methods
 private:
  // hash stack prefix (return unique index into stackprefix array)
  PrefixId GetPrefixId(const StackPrefix& prefix) {
    typename StackPrefixHash::iterator it = prefix_hash_.find(prefix);
    if (it == prefix_hash_.end()) {
      PrefixId prefix_id = stackprefix_array_.size();
      stackprefix_array_.push_back(prefix);
      prefix_hash_[prefix] = prefix_id;
      return prefix_id;
    } else {
      return it->second;
    }
  }

  // prefix id after a stack pop
  PrefixId PopPrefix(StackPrefix prefix) {
    prefix.Pop();
    return GetPrefixId(prefix);
  }

  // prefix id after a stack push
  PrefixId PushPrefix(StackPrefix prefix, Label fst_id, StateId nextstate) {
    prefix.Push(fst_id, nextstate);
    return GetPrefixId(prefix);
  }


  // private data
 private:
  // runtime options
  bool epsilon_on_replace_;
  bool always_cache_;  // Optionally caching arc iterator disabled when true

  // state table
  StateTable *state_table_;

  // cross index of unique stack prefix
  // could potentially have one copy of prefix array
  StackPrefixHash prefix_hash_;
  vector<StackPrefix> stackprefix_array_;

  set<Label> nonterminal_set_;
  NonTerminalHash nonterminal_hash_;
  vector<const Fst<A>*> fst_array_;
  Label root_;

  void operator=(const ReplaceFstImpl<A, T> &);  // disallow
};


template <class A, class T>
const size_t ReplaceFstImpl<A, T>::kPrime0 = 7853;

//
// \class ReplaceFst
// \brief Recursivively replaces arcs in the root Fst with other Fsts.
// This version is a delayed Fst.
//
// ReplaceFst supports dynamic replacement of arcs in one Fst with
// another Fst. This replacement is recursive.  ReplaceFst can be used
// to support a variety of delayed constructions such as recursive
// transition networks, union, or closure.  It is constructed with an
// array of Fst(s). One Fst represents the root (or topology)
// machine. The root Fst refers to other Fsts by recursively replacing
// arcs labeled as non-terminals with the matching non-terminal
// Fst. Currently the ReplaceFst uses the output symbols of the arcs
// to determine whether the arc is a non-terminal arc or not. A
// non-terminal can be any label that is not a non-zero terminal label
// in the output alphabet.
//
// Note that the constructor uses a vector of pair<>. These correspond
// to the tuple of non-terminal Label and corresponding Fst. For example
// to implement the closure operation we need 2 Fsts. The first root
// Fst is a single Arc on the start State that self loops, it references
// the particular machine for which we are performing the closure operation.
//
// The ReplaceFst class supports an optionally caching arc iterator:
//    ArcIterator< ReplaceFst<A> >
// The ReplaceFst need to be built such that it is known to be ilabel
// or olabel sorted (see usage below).
//
// Observe that Matcher<Fst<A> > will use the optionally caching arc
// iterator when available (Fst is ilabel sorted and matching on the
// input, or Fst is olabel sorted and matching on the output).
// In order to obtain the most efficient behaviour, it is recommended
// to set 'epsilon_on_replace' to false (this means constructing acceptors
// as transducers with epsilons on the input side of nonterminal arcs)
// and matching on the input side.
//
// This class attaches interface to implementation and handles
// reference counting, delegating most methods to ImplToFst.
template <class A, class T = DefaultReplaceStateTable<A> >
class ReplaceFst : public ImplToFst< ReplaceFstImpl<A, T> > {
 public:
  friend class ArcIterator< ReplaceFst<A, T> >;
  friend class StateIterator< ReplaceFst<A, T> >;
  friend class ReplaceFstMatcher<A, T>;

  typedef A Arc;
  typedef typename A::Label   Label;
  typedef typename A::Weight  Weight;
  typedef typename A::StateId StateId;
  typedef CacheState<A> State;
  typedef ReplaceFstImpl<A, T> Impl;

  using ImplToFst<Impl>::Properties;

  ReplaceFst(const vector<pair<Label, const Fst<A>* > >& fst_array,
             Label root)
      : ImplToFst<Impl>(new Impl(fst_array, ReplaceFstOptions<A, T>(root))) {}

  ReplaceFst(const vector<pair<Label, const Fst<A>* > >& fst_array,
             const ReplaceFstOptions<A, T> &opts)
      : ImplToFst<Impl>(new Impl(fst_array, opts)) {}

  // See Fst<>::Copy() for doc.
  ReplaceFst(const ReplaceFst<A, T>& fst, bool safe = false)
      : ImplToFst<Impl>(fst, safe) {}

  // Get a copy of this ReplaceFst. See Fst<>::Copy() for further doc.
  virtual ReplaceFst<A, T> *Copy(bool safe = false) const {
    return new ReplaceFst<A, T>(*this, safe);
  }

  virtual inline void InitStateIterator(StateIteratorData<A> *data) const;

  virtual void InitArcIterator(StateId s, ArcIteratorData<A> *data) const {
    GetImpl()->InitArcIterator(s, data);
  }

  virtual MatcherBase<A> *InitMatcher(MatchType match_type) const {
    if ((GetImpl()->ArcIteratorFlags() & kArcNoCache) &&
        ((match_type == MATCH_INPUT && Properties(kILabelSorted, false)) ||
         (match_type == MATCH_OUTPUT && Properties(kOLabelSorted, false)))) {
      return new ReplaceFstMatcher<A, T>(*this, match_type);
    }
    else {
      VLOG(2) << "Not using replace matcher";
      return 0;
    }
  }

  bool CyclicDependencies() const {
    return GetImpl()->CyclicDependencies();
  }

 private:
  // Makes visible to friends.
  Impl *GetImpl() const { return ImplToFst<Impl>::GetImpl(); }

  void operator=(const ReplaceFst<A> &fst);  // disallow
};


// Specialization for ReplaceFst.
template<class A, class T>
class StateIterator< ReplaceFst<A, T> >
    : public CacheStateIterator< ReplaceFst<A, T> > {
 public:
  explicit StateIterator(const ReplaceFst<A, T> &fst)
      : CacheStateIterator< ReplaceFst<A, T> >(fst, fst.GetImpl()) {}

 private:
  DISALLOW_COPY_AND_ASSIGN(StateIterator);
};


// Specialization for ReplaceFst.
// Implements optional caching. It can be used as follows:
//
//   ReplaceFst<A> replace;
//   ArcIterator< ReplaceFst<A> > aiter(replace, s);
//   // Note: ArcIterator< Fst<A> > is always a caching arc iterator.
//   aiter.SetFlags(kArcNoCache, kArcNoCache);
//   // Use the arc iterator, no arc will be cached, no state will be expanded.
//   // The varied 'kArcValueFlags' can be used to decide which part
//   // of arc values needs to be computed.
//   aiter.SetFlags(kArcILabelValue, kArcValueFlags);
//   // Only want the ilabel for this arc
//   aiter.Value();  // Does not compute the destination state.
//   aiter.Next();
//   aiter.SetFlags(kArcNextStateValue, kArcNextStateValue);
//   // Want both ilabel and nextstate for that arc
//   aiter.Value();  // Does compute the destination state and inserts it
//                   // in the replace state table.
//   // No Arc has been cached at that point.
//
template <class A, class T>
class ArcIterator< ReplaceFst<A, T> > {
 public:
  typedef A Arc;
  typedef typename A::StateId StateId;

  ArcIterator(const ReplaceFst<A, T> &fst, StateId s)
      : fst_(fst), state_(s), pos_(0), offset_(0), flags_(0), arcs_(0),
        data_flags_(0), final_flags_(0) {
    cache_data_.ref_count = 0;
    local_data_.ref_count = 0;

    // If FST does not support optional caching, force caching.
    if(!(fst_.GetImpl()->ArcIteratorFlags() & kArcNoCache) &&
       !(fst_.GetImpl()->HasArcs(state_)))
       fst_.GetImpl()->Expand(state_);

    // If state is already cached, use cached arcs array.
    if (fst_.GetImpl()->HasArcs(state_)) {
      (fst_.GetImpl())->template CacheImpl<A>::InitArcIterator(state_,
                                                               &cache_data_);
      num_arcs_ = cache_data_.narcs;
      arcs_ = cache_data_.arcs;      // 'arcs_' is a ptr to the cached arcs.
      data_flags_ = kArcValueFlags;  // All the arc member values are valid.
    } else {  // Otherwise delay decision until Value() is called.
      tuple_ = fst_.GetImpl()->GetStateTable()->Tuple(state_);
      if (tuple_.fst_state == kNoStateId) {
        num_arcs_ = 0;
      } else {
        // The decision to cache or not to cache has been defered
        // until Value() or SetFlags() is called. However, the arc
        // iterator is set up now to be ready for non-caching in order
        // to keep the Value() method simple and efficient.
        const Fst<A>* fst = fst_.GetImpl()->GetFst(tuple_.fst_id);
        fst->InitArcIterator(tuple_.fst_state, &local_data_);
        // 'arcs_' is a pointer to the arcs in the underlying machine.
        arcs_ = local_data_.arcs;
        // Compute the final arc (but not its destination state)
        // if a final arc is required.
        bool has_final_arc = fst_.GetImpl()->ComputeFinalArc(
            tuple_,
            &final_arc_,
            kArcValueFlags & ~kArcNextStateValue);
        // Set the arc value flags that hold for 'final_arc_'.
        final_flags_ = kArcValueFlags & ~kArcNextStateValue;
        // Compute the number of arcs.
        num_arcs_ = local_data_.narcs;
        if (has_final_arc)
          ++num_arcs_;
        // Set the offset between the underlying arc positions and
        // the positions in the arc iterator.
        offset_ = num_arcs_ - local_data_.narcs;
        // Defers the decision to cache or not until Value() or
        // SetFlags() is called.
        data_flags_ = 0;
      }
    }
  }

  ~ArcIterator() {
    if (cache_data_.ref_count)
      --(*cache_data_.ref_count);
    if (local_data_.ref_count)
      --(*local_data_.ref_count);
  }

  void ExpandAndCache() const   {
    // TODO(allauzen): revisit this
    // fst_.GetImpl()->Expand(state_, tuple_, local_data_);
    // (fst_.GetImpl())->CacheImpl<A>*>::InitArcIterator(state_,
    //                                               &cache_data_);
    //
    fst_.InitArcIterator(state_, &cache_data_);  // Expand and cache state.
    arcs_ = cache_data_.arcs;  // 'arcs_' is a pointer to the cached arcs.
    data_flags_ = kArcValueFlags;  // All the arc member values are valid.
    offset_ = 0;  // No offset

  }

  void Init() {
    if (flags_ & kArcNoCache) {  // If caching is disabled
      // 'arcs_' is a pointer to the arcs in the underlying machine.
      arcs_ = local_data_.arcs;
      // Set the arcs value flags that hold for 'arcs_'.
      data_flags_ = kArcWeightValue;
      if (!fst_.GetImpl()->EpsilonOnReplace())
          data_flags_ |= kArcILabelValue;
      // Set the offset between the underlying arc positions and
      // the positions in the arc iterator.
      offset_ = num_arcs_ - local_data_.narcs;
    } else {  // Otherwise, expand and cache
      ExpandAndCache();
    }
  }

  bool Done() const { return pos_ >= num_arcs_; }

  const A& Value() const {
    // If 'data_flags_' was set to 0, non-caching was not requested
    if (!data_flags_) {
      // TODO(allauzen): revisit this.
      if (flags_ & kArcNoCache) {
        // Should never happen.
        FSTERROR() << "ReplaceFst: inconsistent arc iterator flags";
      }
      ExpandAndCache();  // Expand and cache.
    }

    if (pos_ - offset_ >= 0) {  // The requested arc is not the 'final' arc.
      const A& arc = arcs_[pos_ - offset_];
      if ((data_flags_ & flags_) == (flags_ & kArcValueFlags)) {
        // If the value flags for 'arc' match the recquired value flags
        // then return 'arc'.
        return arc;
      } else {
        // Otherwise, compute the corresponding arc on-the-fly.
        fst_.GetImpl()->ComputeArc(tuple_, arc, &arc_, flags_ & kArcValueFlags);
        return arc_;
      }
    } else {  // The requested arc is the 'final' arc.
      if ((final_flags_ & flags_) != (flags_ & kArcValueFlags)) {
        // If the arc value flags that hold for the final arc
        // do not match the requested value flags, then
        // 'final_arc_' needs to be updated.
        fst_.GetImpl()->ComputeFinalArc(tuple_, &final_arc_,
                                    flags_ & kArcValueFlags);
        final_flags_ = flags_ & kArcValueFlags;
      }
      return final_arc_;
    }
  }

  void Next() { ++pos_; }

  size_t Position() const { return pos_; }

  void Reset() { pos_ = 0;  }

  void Seek(size_t pos) { pos_ = pos; }

  uint32 Flags() const { return flags_; }

  void SetFlags(uint32 f, uint32 mask) {
    // Update the flags taking into account what flags are supported
    // by the Fst.
    flags_ &= ~mask;
    flags_ |= (f & fst_.GetImpl()->ArcIteratorFlags());
    // If non-caching is not requested (and caching has not already
    // been performed), then flush 'data_flags_' to request caching
    // during the next call to Value().
    if (!(flags_ & kArcNoCache) && data_flags_ != kArcValueFlags) {
      if (!fst_.GetImpl()->HasArcs(state_))
         data_flags_ = 0;
    }
    // If 'data_flags_' has been flushed but non-caching is requested
    // before calling Value(), then set up the iterator for non-caching.
    if ((f & kArcNoCache) && (!data_flags_))
      Init();
  }

 private:
  const ReplaceFst<A, T> &fst_;           // Reference to the FST
  StateId state_;                         // State in the FST
  mutable typename T::StateTuple tuple_;  // Tuple corresponding to state_

  ssize_t pos_;             // Current position
  mutable ssize_t offset_;  // Offset between position in iterator and in arcs_
  ssize_t num_arcs_;        // Number of arcs at state_
  uint32 flags_;            // Behavorial flags for the arc iterator
  mutable Arc arc_;         // Memory to temporarily store computed arcs

  mutable ArcIteratorData<Arc> cache_data_;  // Arc iterator data in cache
  mutable ArcIteratorData<Arc> local_data_;  // Arc iterator data in local fst

  mutable const A* arcs_;       // Array of arcs
  mutable uint32 data_flags_;   // Arc value flags valid for data in arcs_
  mutable Arc final_arc_;       // Final arc (when required)
  mutable uint32 final_flags_;  // Arc value flags valid for final_arc_

  DISALLOW_COPY_AND_ASSIGN(ArcIterator);
};


template <class A, class T>
class ReplaceFstMatcher : public MatcherBase<A> {
 public:
  typedef A Arc;
  typedef typename A::StateId StateId;
  typedef typename A::Label Label;
  typedef MultiEpsMatcher<Matcher<Fst<A> > > LocalMatcher;

  ReplaceFstMatcher(const ReplaceFst<A, T> &fst, fst::MatchType match_type)
      : fst_(fst),
        impl_(fst_.GetImpl()),
        s_(fst::kNoStateId),
        match_type_(match_type),
        current_loop_(false),
        final_arc_(false),
        loop_(fst::kNoLabel, 0, A::Weight::One(), fst::kNoStateId) {
    if (match_type_ == fst::MATCH_OUTPUT)
      swap(loop_.ilabel, loop_.olabel);
    InitMatchers();
  }

  ReplaceFstMatcher(const ReplaceFstMatcher<A, T> &matcher, bool safe = false)
      : fst_(matcher.fst_),
        impl_(fst_.GetImpl()),
        s_(fst::kNoStateId),
        match_type_(matcher.match_type_),
        current_loop_(false),
        loop_(fst::kNoLabel, 0, A::Weight::One(), fst::kNoStateId) {
    if (match_type_ == fst::MATCH_OUTPUT)
      swap(loop_.ilabel, loop_.olabel);
    InitMatchers();
  }

  // Create a local matcher for each component Fst of replace.
  // LocalMatcher is a multi epsilon wrapper matcher. MultiEpsilonMatcher
  // is used to match each non-terminal arc, since these non-terminal
  // turn into epsilons on recursion.
  void InitMatchers() {
    const vector<const Fst<A>*>& fst_array = impl_->fst_array_;
    matcher_.resize(fst_array.size(), 0);
    for (size_t i = 0; i < fst_array.size(); ++i) {
      if (fst_array[i]) {
        matcher_[i] =
            new LocalMatcher(*fst_array[i], match_type_, kMultiEpsList);

        typename set<Label>::iterator it = impl_->nonterminal_set_.begin();
        for (; it != impl_->nonterminal_set_.end(); ++it) {
          matcher_[i]->AddMultiEpsLabel(*it);
        }
      }
    }
  }

  virtual ReplaceFstMatcher<A, T> *Copy(bool safe = false) const {
    return new ReplaceFstMatcher<A, T>(*this, safe);
  }

  virtual ~ReplaceFstMatcher() {
    for (size_t i = 0; i < matcher_.size(); ++i)
      delete matcher_[i];
  }

  virtual MatchType Type(bool test) const {
    if (match_type_ == MATCH_NONE)
      return match_type_;

    uint64 true_prop =  match_type_ == MATCH_INPUT ?
        kILabelSorted : kOLabelSorted;
    uint64 false_prop = match_type_ == MATCH_INPUT ?
        kNotILabelSorted : kNotOLabelSorted;
    uint64 props = fst_.Properties(true_prop | false_prop, test);

    if (props & true_prop)
      return match_type_;
    else if (props & false_prop)
      return MATCH_NONE;
    else
      return MATCH_UNKNOWN;
  }

  virtual const Fst<A> &GetFst() const {
    return fst_;
  }

  virtual uint64 Properties(uint64 props) const {
    return props;
  }

 private:
  // Set the sate from which our matching happens.
  virtual void SetState_(StateId s) {
    if (s_ == s) return;

    s_ = s;
    tuple_ = impl_->GetStateTable()->Tuple(s_);
    if (tuple_.fst_state == kNoStateId) {
      done_ = true;
      return;
    }
    // Get current matcher. Used for non epsilon matching
    current_matcher_ = matcher_[tuple_.fst_id];
    current_matcher_->SetState(tuple_.fst_state);
    loop_.nextstate = s_;

    final_arc_ = false;
  }

  // Search for label, from previous set state. If label == 0, first
  // hallucinate and epsilon loop, else use the underlying matcher to
  // search for the label or epsilons.
  // - Note since the ReplaceFST recursion on non-terminal arcs causes
  //   epsilon transitions to be created we use the MultiEpsilonMatcher
  //   to search for possible matches of non terminals.
  // - If the component Fst reaches a final state we also need to add
  //   the exiting final arc.
  virtual bool Find_(Label label) {
    bool found = false;
    label_ = label;
    if (label_ == 0 || label_ == kNoLabel) {
      // Compute loop directly, saving Replace::ComputeArc
      if (label_ == 0) {
        current_loop_ = true;
        found = true;
      }
      // Search for matching multi epsilons
      final_arc_ = impl_->ComputeFinalArc(tuple_, 0);
      found = current_matcher_->Find(kNoLabel) || final_arc_ || found;
    } else {
      // Search on sub machine directly using sub machine matcher.
      found = current_matcher_->Find(label_);
    }
    return found;
  }

  virtual bool Done_() const {
    return !current_loop_ && !final_arc_ && current_matcher_->Done();
  }

  virtual const Arc& Value_() const {
    if (current_loop_) {
      return loop_;
    }
    if (final_arc_) {
      impl_->ComputeFinalArc(tuple_, &arc_);
      return arc_;
    }
    const Arc& component_arc = current_matcher_->Value();
    impl_->ComputeArc(tuple_, component_arc, &arc_);
    return arc_;
  }

  virtual void Next_() {
    if (current_loop_) {
      current_loop_ = false;
      return;
    }
    if (final_arc_) {
      final_arc_ = false;
      return;
    }
    current_matcher_->Next();
  }

  const ReplaceFst<A, T>& fst_;
  ReplaceFstImpl<A, T> *impl_;
  LocalMatcher* current_matcher_;
  vector<LocalMatcher*> matcher_;

  StateId s_;                        // Current state
  Label label_;                      // Current label

  MatchType match_type_;             // Supplied by caller
  mutable bool done_;
  mutable bool current_loop_;        // Current arc is the implicit loop
  mutable bool final_arc_;           // Current arc for exiting recursion
  mutable typename T::StateTuple tuple_;  // Tuple corresponding to state_
  mutable Arc arc_;
  Arc loop_;
};

template <class A, class T> inline
void ReplaceFst<A, T>::InitStateIterator(StateIteratorData<A> *data) const {
  data->base = new StateIterator< ReplaceFst<A, T> >(*this);
}

typedef ReplaceFst<StdArc> StdReplaceFst;


// // Recursivively replaces arcs in the root Fst with other Fsts.
// This version writes the result of replacement to an output MutableFst.
//
// Replace supports replacement of arcs in one Fst with another
// Fst. This replacement is recursive.  Replace takes an array of
// Fst(s). One Fst represents the root (or topology) machine. The root
// Fst refers to other Fsts by recursively replacing arcs labeled as
// non-terminals with the matching non-terminal Fst. Currently Replace
// uses the output symbols of the arcs to determine whether the arc is
// a non-terminal arc or not. A non-terminal can be any label that is
// not a non-zero terminal label in the output alphabet.  Note that
// input argument is a vector of pair<>. These correspond to the tuple
// of non-terminal Label and corresponding Fst.
template<class Arc>
void Replace(const vector<pair<typename Arc::Label,
             const Fst<Arc>* > >& ifst_array,
             MutableFst<Arc> *ofst, typename Arc::Label root,
             bool epsilon_on_replace) {
  ReplaceFstOptions<Arc> opts(root, epsilon_on_replace);
  opts.gc_limit = 0;  // Cache only the last state for fastest copy.
  *ofst = ReplaceFst<Arc>(ifst_array, opts);
}

template<class Arc>
void Replace(const vector<pair<typename Arc::Label,
             const Fst<Arc>* > >& ifst_array,
             MutableFst<Arc> *ofst, typename Arc::Label root) {
  Replace(ifst_array, ofst, root, false);
}

}  // namespace fst

#endif  // FST_LIB_REPLACE_H__