aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/ecdsa/test_numbertheory.py
blob: 966eca299b43ee48c707a549dc970b07ac6c9136 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import operator
from functools import reduce
import sys

try:
    import unittest2 as unittest
except ImportError:
    import unittest
import hypothesis.strategies as st
import pytest
from hypothesis import given, settings, example

try:
    from hypothesis import HealthCheck

    HC_PRESENT = True
except ImportError:  # pragma: no cover
    HC_PRESENT = False
from .numbertheory import (
    SquareRootError,
    JacobiError,
    factorization,
    gcd,
    lcm,
    jacobi,
    inverse_mod,
    is_prime,
    next_prime,
    smallprimes,
    square_root_mod_prime,
)

try:
    from gmpy2 import mpz
except ImportError:
    try:
        from gmpy import mpz
    except ImportError:

        def mpz(x):
            return x


BIGPRIMES = (
    999671,
    999683,
    999721,
    999727,
    999749,
    999763,
    999769,
    999773,
    999809,
    999853,
    999863,
    999883,
    999907,
    999917,
    999931,
    999953,
    999959,
    999961,
    999979,
    999983,
)


@pytest.mark.parametrize(
    "prime, next_p", [(p, q) for p, q in zip(BIGPRIMES[:-1], BIGPRIMES[1:])]
)
def test_next_prime(prime, next_p):
    assert next_prime(prime) == next_p


@pytest.mark.parametrize("val", [-1, 0, 1])
def test_next_prime_with_nums_less_2(val):
    assert next_prime(val) == 2


@pytest.mark.slow
@pytest.mark.parametrize("prime", smallprimes)
def test_square_root_mod_prime_for_small_primes(prime):
    squares = set()
    for num in range(0, 1 + prime // 2):
        sq = num * num % prime
        squares.add(sq)
        root = square_root_mod_prime(sq, prime)
        # tested for real with TestNumbertheory.test_square_root_mod_prime
        assert root * root % prime == sq

    for nonsquare in range(0, prime):
        if nonsquare in squares:
            continue
        with pytest.raises(SquareRootError):
            square_root_mod_prime(nonsquare, prime)


def test_square_root_mod_prime_for_2():
    a = square_root_mod_prime(1, 2)
    assert a == 1


def test_square_root_mod_prime_for_small_prime():
    root = square_root_mod_prime(98**2 % 101, 101)
    assert root * root % 101 == 9


def test_square_root_mod_prime_for_p_congruent_5():
    p = 13
    assert p % 8 == 5

    root = square_root_mod_prime(3, p)
    assert root * root % p == 3


def test_square_root_mod_prime_for_p_congruent_5_large_d():
    p = 29
    assert p % 8 == 5

    root = square_root_mod_prime(4, p)
    assert root * root % p == 4


class TestSquareRootModPrime(unittest.TestCase):
    def test_power_of_2_p(self):
        with self.assertRaises(JacobiError):
            square_root_mod_prime(12, 32)

    def test_no_square(self):
        with self.assertRaises(SquareRootError) as e:
            square_root_mod_prime(12, 31)

        self.assertIn("no square root", str(e.exception))

    def test_non_prime(self):
        with self.assertRaises(SquareRootError) as e:
            square_root_mod_prime(12, 33)

        self.assertIn("p is not prime", str(e.exception))

    def test_non_prime_with_negative(self):
        with self.assertRaises(SquareRootError) as e:
            square_root_mod_prime(697 - 1, 697)

        self.assertIn("p is not prime", str(e.exception))


@st.composite
def st_two_nums_rel_prime(draw):
    # 521-bit is the biggest curve we operate on, use 1024 for a bit
    # of breathing space
    mod = draw(st.integers(min_value=2, max_value=2**1024))
    num = draw(
        st.integers(min_value=1, max_value=mod - 1).filter(
            lambda x: gcd(x, mod) == 1
        )
    )
    return num, mod


@st.composite
def st_primes(draw, *args, **kwargs):
    if "min_value" not in kwargs:  # pragma: no branch
        kwargs["min_value"] = 1
    prime = draw(
        st.sampled_from(smallprimes)
        | st.integers(*args, **kwargs).filter(is_prime)
    )
    return prime


@st.composite
def st_num_square_prime(draw):
    prime = draw(st_primes(max_value=2**1024))
    num = draw(st.integers(min_value=0, max_value=1 + prime // 2))
    sq = num * num % prime
    return sq, prime


@st.composite
def st_comp_with_com_fac(draw):
    """
    Strategy that returns lists of numbers, all having a common factor.
    """
    primes = draw(
        st.lists(st_primes(max_value=2**512), min_size=1, max_size=10)
    )
    # select random prime(s) that will make the common factor of composites
    com_fac_primes = draw(
        st.lists(st.sampled_from(primes), min_size=1, max_size=20)
    )
    com_fac = reduce(operator.mul, com_fac_primes, 1)

    # select at most 20 lists (returned numbers),
    # each having at most 30 primes (factors) including none (then the number
    # will be 1)
    comp_primes = draw(  # pragma: no branch
        st.integers(min_value=1, max_value=20).flatmap(
            lambda n: st.lists(
                st.lists(st.sampled_from(primes), max_size=30),
                min_size=1,
                max_size=n,
            )
        )
    )

    return [reduce(operator.mul, nums, 1) * com_fac for nums in comp_primes]


@st.composite
def st_comp_no_com_fac(draw):
    """
    Strategy that returns lists of numbers that don't have a common factor.
    """
    primes = draw(
        st.lists(
            st_primes(max_value=2**512), min_size=2, max_size=10, unique=True
        )
    )
    # first select the primes that will create the uncommon factor
    # between returned numbers
    uncom_fac_primes = draw(
        st.lists(
            st.sampled_from(primes),
            min_size=1,
            max_size=len(primes) - 1,
            unique=True,
        )
    )
    uncom_fac = reduce(operator.mul, uncom_fac_primes, 1)

    # then build composites from leftover primes
    leftover_primes = [i for i in primes if i not in uncom_fac_primes]

    assert leftover_primes
    assert uncom_fac_primes

    # select at most 20 lists, each having at most 30 primes
    # selected from the leftover_primes list
    number_primes = draw(  # pragma: no branch
        st.integers(min_value=1, max_value=20).flatmap(
            lambda n: st.lists(
                st.lists(st.sampled_from(leftover_primes), max_size=30),
                min_size=1,
                max_size=n,
            )
        )
    )

    numbers = [reduce(operator.mul, nums, 1) for nums in number_primes]

    insert_at = draw(st.integers(min_value=0, max_value=len(numbers)))
    numbers.insert(insert_at, uncom_fac)
    return numbers


HYP_SETTINGS = {}
if HC_PRESENT:  # pragma: no branch
    HYP_SETTINGS["suppress_health_check"] = [
        HealthCheck.filter_too_much,
        HealthCheck.too_slow,
    ]
    # the factorization() sometimes takes a long time to finish
    HYP_SETTINGS["deadline"] = 5000

if "--fast" in sys.argv:  # pragma: no cover
    HYP_SETTINGS["max_examples"] = 20


HYP_SLOW_SETTINGS = dict(HYP_SETTINGS)
if "--fast" in sys.argv:  # pragma: no cover
    HYP_SLOW_SETTINGS["max_examples"] = 1
else:
    HYP_SLOW_SETTINGS["max_examples"] = 20


class TestIsPrime(unittest.TestCase):
    def test_very_small_prime(self):
        assert is_prime(23)

    def test_very_small_composite(self):
        assert not is_prime(22)

    def test_small_prime(self):
        assert is_prime(123456791)

    def test_special_composite(self):
        assert not is_prime(10261)

    def test_medium_prime_1(self):
        # nextPrime[2^256]
        assert is_prime(2**256 + 0x129)

    def test_medium_prime_2(self):
        # nextPrime(2^256+0x129)
        assert is_prime(2**256 + 0x12D)

    def test_medium_trivial_composite(self):
        assert not is_prime(2**256 + 0x130)

    def test_medium_non_trivial_composite(self):
        assert not is_prime(2**256 + 0x12F)

    def test_large_prime(self):
        # nextPrime[2^2048]
        assert is_prime(mpz(2) ** 2048 + 0x3D5)

    def test_pseudoprime_base_19(self):
        assert not is_prime(1543267864443420616877677640751301)

    def test_pseudoprime_base_300(self):
        # F. Arnault "Constructing Carmichael Numbers Which Are Strong
        # Pseudoprimes to Several Bases". Journal of Symbolic
        # Computation. 20 (2): 151-161. doi:10.1006/jsco.1995.1042.
        # Section 4.4 Large Example (a pseudoprime to all bases up to
        # 300)
        p = int(
            "29 674 495 668 685 510 550 154 174 642 905 332 730 "
            "771 991 799 853 043 350 995 075 531 276 838 753 171 "
            "770 199 594 238 596 428 121 188 033 664 754 218 345 "
            "562 493 168 782 883".replace(" ", "")
        )

        assert is_prime(p)
        for _ in range(10):
            if not is_prime(p * (313 * (p - 1) + 1) * (353 * (p - 1) + 1)):
                break
        else:
            assert False, "composite not detected"


class TestNumbertheory(unittest.TestCase):
    def test_gcd(self):
        assert gcd(3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13) == 3 * 5
        assert gcd([3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13]) == 3 * 5
        assert gcd(3) == 3

    @unittest.skipUnless(
        HC_PRESENT,
        "Hypothesis 2.0.0 can't be made tolerant of hard to "
        "meet requirements (like `is_prime()`), the test "
        "case times-out on it",
    )
    @settings(**HYP_SLOW_SETTINGS)
    @example([877 * 1151, 877 * 1009])
    @given(st_comp_with_com_fac())
    def test_gcd_with_com_factor(self, numbers):
        n = gcd(numbers)
        assert 1 in numbers or n != 1
        for i in numbers:
            assert i % n == 0

    @unittest.skipUnless(
        HC_PRESENT,
        "Hypothesis 2.0.0 can't be made tolerant of hard to "
        "meet requirements (like `is_prime()`), the test "
        "case times-out on it",
    )
    @settings(**HYP_SLOW_SETTINGS)
    @example([1151, 1069, 1009])
    @given(st_comp_no_com_fac())
    def test_gcd_with_uncom_factor(self, numbers):
        n = gcd(numbers)
        assert n == 1

    @settings(**HYP_SLOW_SETTINGS)
    @given(
        st.lists(
            st.integers(min_value=1, max_value=2**8192),
            min_size=1,
            max_size=20,
        )
    )
    def test_gcd_with_random_numbers(self, numbers):
        n = gcd(numbers)
        for i in numbers:
            # check that at least it's a divider
            assert i % n == 0

    def test_lcm(self):
        assert lcm(3, 5 * 3, 7 * 3) == 3 * 5 * 7
        assert lcm([3, 5 * 3, 7 * 3]) == 3 * 5 * 7
        assert lcm(3) == 3

    @settings(**HYP_SLOW_SETTINGS)
    @given(
        st.lists(
            st.integers(min_value=1, max_value=2**8192),
            min_size=1,
            max_size=20,
        )
    )
    def test_lcm_with_random_numbers(self, numbers):
        n = lcm(numbers)
        for i in numbers:
            assert n % i == 0

    @unittest.skipUnless(
        HC_PRESENT,
        "Hypothesis 2.0.0 can't be made tolerant of hard to "
        "meet requirements (like `is_prime()`), the test "
        "case times-out on it",
    )
    @settings(**HYP_SLOW_SETTINGS)
    @given(st_num_square_prime())
    def test_square_root_mod_prime(self, vals):
        square, prime = vals

        calc = square_root_mod_prime(square, prime)
        assert calc * calc % prime == square

    @pytest.mark.slow
    @settings(**HYP_SLOW_SETTINGS)
    @given(st.integers(min_value=1, max_value=10**12))
    @example(265399 * 1526929)
    @example(373297**2 * 553991)
    def test_factorization(self, num):
        factors = factorization(num)
        mult = 1
        for i in factors:
            mult *= i[0] ** i[1]
        assert mult == num

    def test_factorisation_smallprimes(self):
        exp = 101 * 103
        assert 101 in smallprimes
        assert 103 in smallprimes
        factors = factorization(exp)
        mult = 1
        for i in factors:
            mult *= i[0] ** i[1]
        assert mult == exp

    def test_factorisation_not_smallprimes(self):
        exp = 1231 * 1237
        assert 1231 not in smallprimes
        assert 1237 not in smallprimes
        factors = factorization(exp)
        mult = 1
        for i in factors:
            mult *= i[0] ** i[1]
        assert mult == exp

    def test_jacobi_with_zero(self):
        assert jacobi(0, 3) == 0

    def test_jacobi_with_one(self):
        assert jacobi(1, 3) == 1

    @settings(**HYP_SLOW_SETTINGS)
    @given(st.integers(min_value=3, max_value=1000).filter(lambda x: x % 2))
    def test_jacobi(self, mod):
        mod = mpz(mod)
        if is_prime(mod):
            squares = set()
            for root in range(1, mod):
                root = mpz(root)
                assert jacobi(root * root, mod) == 1
                squares.add(root * root % mod)
            for i in range(1, mod):
                if i not in squares:
                    i = mpz(i)
                    assert jacobi(i, mod) == -1
        else:
            factors = factorization(mod)
            for a in range(1, mod):
                c = 1
                for i in factors:
                    c *= jacobi(a, i[0]) ** i[1]
                assert c == jacobi(a, mod)

    @settings(**HYP_SLOW_SETTINGS)
    @given(st_two_nums_rel_prime())
    def test_inverse_mod(self, nums):
        num, mod = nums

        inv = inverse_mod(num, mod)

        assert 0 < inv < mod
        assert num * inv % mod == 1

    def test_inverse_mod_with_zero(self):
        assert 0 == inverse_mod(0, 11)