1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# Implementation of elliptic curves, for cryptographic applications.
#
# This module doesn't provide any way to choose a random elliptic
# curve, nor to verify that an elliptic curve was chosen randomly,
# because one can simply use NIST's standard curves.
#
# Notes from X9.62-1998 (draft):
# Nomenclature:
# - Q is a public key.
# The "Elliptic Curve Domain Parameters" include:
# - q is the "field size", which in our case equals p.
# - p is a big prime.
# - G is a point of prime order (5.1.1.1).
# - n is the order of G (5.1.1.1).
# Public-key validation (5.2.2):
# - Verify that Q is not the point at infinity.
# - Verify that X_Q and Y_Q are in [0,p-1].
# - Verify that Q is on the curve.
# - Verify that nQ is the point at infinity.
# Signature generation (5.3):
# - Pick random k from [1,n-1].
# Signature checking (5.4.2):
# - Verify that r and s are in [1,n-1].
#
# Revision history:
# 2005.12.31 - Initial version.
# 2008.11.25 - Change CurveFp.is_on to contains_point.
#
# Written in 2005 by Peter Pearson and placed in the public domain.
# Modified extensively as part of python-ecdsa.
from __future__ import division
try:
from gmpy2 import mpz
GMPY = True
except ImportError: # pragma: no branch
try:
from gmpy import mpz
GMPY = True
except ImportError:
GMPY = False
from six import python_2_unicode_compatible
from . import numbertheory
from ._compat import normalise_bytes, int_to_bytes, bit_length, bytes_to_int
from .errors import MalformedPointError
from .util import orderlen, string_to_number, number_to_string
@python_2_unicode_compatible
class CurveFp(object):
"""
:term:`Short Weierstrass Elliptic Curve <short Weierstrass curve>` over a
prime field.
"""
if GMPY: # pragma: no branch
def __init__(self, p, a, b, h=None):
"""
The curve of points satisfying y^2 = x^3 + a*x + b (mod p).
h is an integer that is the cofactor of the elliptic curve domain
parameters; it is the number of points satisfying the elliptic
curve equation divided by the order of the base point. It is used
for selection of efficient algorithm for public point verification.
"""
self.__p = mpz(p)
self.__a = mpz(a)
self.__b = mpz(b)
# h is not used in calculations and it can be None, so don't use
# gmpy with it
self.__h = h
else: # pragma: no branch
def __init__(self, p, a, b, h=None):
"""
The curve of points satisfying y^2 = x^3 + a*x + b (mod p).
h is an integer that is the cofactor of the elliptic curve domain
parameters; it is the number of points satisfying the elliptic
curve equation divided by the order of the base point. It is used
for selection of efficient algorithm for public point verification.
"""
self.__p = p
self.__a = a
self.__b = b
self.__h = h
def __eq__(self, other):
"""Return True if other is an identical curve, False otherwise.
Note: the value of the cofactor of the curve is not taken into account
when comparing curves, as it's derived from the base point and
intrinsic curve characteristic (but it's complex to compute),
only the prime and curve parameters are considered.
"""
if isinstance(other, CurveFp):
p = self.__p
return (
self.__p == other.__p
and self.__a % p == other.__a % p
and self.__b % p == other.__b % p
)
return NotImplemented
def __ne__(self, other):
"""Return False if other is an identical curve, True otherwise."""
return not self == other
def __hash__(self):
return hash((self.__p, self.__a, self.__b))
def p(self):
return self.__p
def a(self):
return self.__a
def b(self):
return self.__b
def cofactor(self):
return self.__h
def contains_point(self, x, y):
"""Is the point (x,y) on this curve?"""
return (y * y - ((x * x + self.__a) * x + self.__b)) % self.__p == 0
def __str__(self):
if self.__h is not None:
return "CurveFp(p={0}, a={1}, b={2}, h={3})".format(
self.__p,
self.__a,
self.__b,
self.__h,
)
return "CurveFp(p={0}, a={1}, b={2})".format(
self.__p,
self.__a,
self.__b,
)
class CurveEdTw(object):
"""Parameters for a Twisted Edwards Elliptic Curve"""
if GMPY: # pragma: no branch
def __init__(self, p, a, d, h=None, hash_func=None):
"""
The curve of points satisfying a*x^2 + y^2 = 1 + d*x^2*y^2 (mod p).
h is the cofactor of the curve.
hash_func is the hash function associated with the curve
(like SHA-512 for Ed25519)
"""
self.__p = mpz(p)
self.__a = mpz(a)
self.__d = mpz(d)
self.__h = h
self.__hash_func = hash_func
else:
def __init__(self, p, a, d, h=None, hash_func=None):
"""
The curve of points satisfying a*x^2 + y^2 = 1 + d*x^2*y^2 (mod p).
h is the cofactor of the curve.
hash_func is the hash function associated with the curve
(like SHA-512 for Ed25519)
"""
self.__p = p
self.__a = a
self.__d = d
self.__h = h
self.__hash_func = hash_func
def __eq__(self, other):
"""Returns True if other is an identical curve."""
if isinstance(other, CurveEdTw):
p = self.__p
return (
self.__p == other.__p
and self.__a % p == other.__a % p
and self.__d % p == other.__d % p
)
return NotImplemented
def __ne__(self, other):
"""Return False if the other is an identical curve, True otherwise."""
return not self == other
def __hash__(self):
return hash((self.__p, self.__a, self.__d))
def contains_point(self, x, y):
"""Is the point (x, y) on this curve?"""
return (
self.__a * x * x + y * y - 1 - self.__d * x * x * y * y
) % self.__p == 0
def p(self):
return self.__p
def a(self):
return self.__a
def d(self):
return self.__d
def hash_func(self, data):
return self.__hash_func(data)
def cofactor(self):
return self.__h
def __str__(self):
if self.__h is not None:
return "CurveEdTw(p={0}, a={1}, d={2}, h={3})".format(
self.__p,
self.__a,
self.__d,
self.__h,
)
return "CurveEdTw(p={0}, a={1}, d={2})".format(
self.__p,
self.__a,
self.__d,
)
class AbstractPoint(object):
"""Class for common methods of elliptic curve points."""
@staticmethod
def _from_raw_encoding(data, raw_encoding_length):
"""
Decode public point from :term:`raw encoding`.
:term:`raw encoding` is the same as the :term:`uncompressed` encoding,
but without the 0x04 byte at the beginning.
"""
# real assert, from_bytes() should not call us with different length
assert len(data) == raw_encoding_length
xs = data[: raw_encoding_length // 2]
ys = data[raw_encoding_length // 2 :]
# real assert, raw_encoding_length is calculated by multiplying an
# integer by two so it will always be even
assert len(xs) == raw_encoding_length // 2
assert len(ys) == raw_encoding_length // 2
coord_x = string_to_number(xs)
coord_y = string_to_number(ys)
return coord_x, coord_y
@staticmethod
def _from_compressed(data, curve):
"""Decode public point from compressed encoding."""
if data[:1] not in (b"\x02", b"\x03"):
raise MalformedPointError("Malformed compressed point encoding")
is_even = data[:1] == b"\x02"
x = string_to_number(data[1:])
p = curve.p()
alpha = (pow(x, 3, p) + (curve.a() * x) + curve.b()) % p
try:
beta = numbertheory.square_root_mod_prime(alpha, p)
except numbertheory.Error as e:
raise MalformedPointError(
"Encoding does not correspond to a point on curve", e
)
if is_even == bool(beta & 1):
y = p - beta
else:
y = beta
return x, y
@classmethod
def _from_hybrid(cls, data, raw_encoding_length, validate_encoding):
"""Decode public point from hybrid encoding."""
# real assert, from_bytes() should not call us with different types
assert data[:1] in (b"\x06", b"\x07")
# primarily use the uncompressed as it's easiest to handle
x, y = cls._from_raw_encoding(data[1:], raw_encoding_length)
# but validate if it's self-consistent if we're asked to do that
if validate_encoding and (
y & 1
and data[:1] != b"\x07"
or (not y & 1)
and data[:1] != b"\x06"
):
raise MalformedPointError("Inconsistent hybrid point encoding")
return x, y
@classmethod
def _from_edwards(cls, curve, data):
"""Decode a point on an Edwards curve."""
data = bytearray(data)
p = curve.p()
# add 1 for the sign bit and then round up
exp_len = (bit_length(p) + 1 + 7) // 8
if len(data) != exp_len:
raise MalformedPointError("Point length doesn't match the curve.")
x_0 = (data[-1] & 0x80) >> 7
data[-1] &= 0x80 - 1
y = bytes_to_int(data, "little")
if GMPY:
y = mpz(y)
x2 = (
(y * y - 1)
* numbertheory.inverse_mod(curve.d() * y * y - curve.a(), p)
% p
)
try:
x = numbertheory.square_root_mod_prime(x2, p)
except numbertheory.Error as e:
raise MalformedPointError(
"Encoding does not correspond to a point on curve", e
)
if x % 2 != x_0:
x = -x % p
return x, y
@classmethod
def from_bytes(
cls, curve, data, validate_encoding=True, valid_encodings=None
):
"""
Initialise the object from byte encoding of a point.
The method does accept and automatically detect the type of point
encoding used. It supports the :term:`raw encoding`,
:term:`uncompressed`, :term:`compressed`, and :term:`hybrid` encodings.
Note: generally you will want to call the ``from_bytes()`` method of
either a child class, PointJacobi or Point.
:param data: single point encoding of the public key
:type data: :term:`bytes-like object`
:param curve: the curve on which the public key is expected to lay
:type curve: ~ecdsa.ellipticcurve.CurveFp
:param validate_encoding: whether to verify that the encoding of the
point is self-consistent, defaults to True, has effect only
on ``hybrid`` encoding
:type validate_encoding: bool
:param valid_encodings: list of acceptable point encoding formats,
supported ones are: :term:`uncompressed`, :term:`compressed`,
:term:`hybrid`, and :term:`raw encoding` (specified with ``raw``
name). All formats by default (specified with ``None``).
:type valid_encodings: :term:`set-like object`
:raises `~ecdsa.errors.MalformedPointError`: if the public point does
not lay on the curve or the encoding is invalid
:return: x and y coordinates of the encoded point
:rtype: tuple(int, int)
"""
if not valid_encodings:
valid_encodings = set(
["uncompressed", "compressed", "hybrid", "raw"]
)
if not all(
i in set(("uncompressed", "compressed", "hybrid", "raw"))
for i in valid_encodings
):
raise ValueError(
"Only uncompressed, compressed, hybrid or raw encoding "
"supported."
)
data = normalise_bytes(data)
if isinstance(curve, CurveEdTw):
return cls._from_edwards(curve, data)
key_len = len(data)
raw_encoding_length = 2 * orderlen(curve.p())
if key_len == raw_encoding_length and "raw" in valid_encodings:
coord_x, coord_y = cls._from_raw_encoding(
data, raw_encoding_length
)
elif key_len == raw_encoding_length + 1 and (
"hybrid" in valid_encodings or "uncompressed" in valid_encodings
):
if data[:1] in (b"\x06", b"\x07") and "hybrid" in valid_encodings:
coord_x, coord_y = cls._from_hybrid(
data, raw_encoding_length, validate_encoding
)
elif data[:1] == b"\x04" and "uncompressed" in valid_encodings:
coord_x, coord_y = cls._from_raw_encoding(
data[1:], raw_encoding_length
)
else:
raise MalformedPointError(
"Invalid X9.62 encoding of the public point"
)
elif (
key_len == raw_encoding_length // 2 + 1
and "compressed" in valid_encodings
):
coord_x, coord_y = cls._from_compressed(data, curve)
else:
raise MalformedPointError(
"Length of string does not match lengths of "
"any of the enabled ({0}) encodings of the "
"curve.".format(", ".join(valid_encodings))
)
return coord_x, coord_y
def _raw_encode(self):
"""Convert the point to the :term:`raw encoding`."""
prime = self.curve().p()
x_str = number_to_string(self.x(), prime)
y_str = number_to_string(self.y(), prime)
return x_str + y_str
def _compressed_encode(self):
"""Encode the point into the compressed form."""
prime = self.curve().p()
x_str = number_to_string(self.x(), prime)
if self.y() & 1:
return b"\x03" + x_str
return b"\x02" + x_str
def _hybrid_encode(self):
"""Encode the point into the hybrid form."""
raw_enc = self._raw_encode()
if self.y() & 1:
return b"\x07" + raw_enc
return b"\x06" + raw_enc
def _edwards_encode(self):
"""Encode the point according to RFC8032 encoding."""
self.scale()
x, y, p = self.x(), self.y(), self.curve().p()
# add 1 for the sign bit and then round up
enc_len = (bit_length(p) + 1 + 7) // 8
y_str = int_to_bytes(y, enc_len, "little")
if x % 2:
y_str[-1] |= 0x80
return y_str
def to_bytes(self, encoding="raw"):
"""
Convert the point to a byte string.
The method by default uses the :term:`raw encoding` (specified
by `encoding="raw"`. It can also output points in :term:`uncompressed`,
:term:`compressed`, and :term:`hybrid` formats.
For points on Edwards curves `encoding` is ignored and only the
encoding defined in RFC 8032 is supported.
:return: :term:`raw encoding` of a public on the curve
:rtype: bytes
"""
assert encoding in ("raw", "uncompressed", "compressed", "hybrid")
curve = self.curve()
if isinstance(curve, CurveEdTw):
return self._edwards_encode()
elif encoding == "raw":
return self._raw_encode()
elif encoding == "uncompressed":
return b"\x04" + self._raw_encode()
elif encoding == "hybrid":
return self._hybrid_encode()
else:
return self._compressed_encode()
@staticmethod
def _naf(mult):
"""Calculate non-adjacent form of number."""
ret = []
while mult:
if mult % 2:
nd = mult % 4
if nd >= 2:
nd -= 4
ret.append(nd)
mult -= nd
else:
ret.append(0)
mult //= 2
return ret
class PointJacobi(AbstractPoint):
"""
Point on a short Weierstrass elliptic curve. Uses Jacobi coordinates.
In Jacobian coordinates, there are three parameters, X, Y and Z.
They correspond to affine parameters 'x' and 'y' like so:
x = X / Z²
y = Y / Z³
"""
def __init__(self, curve, x, y, z, order=None, generator=False):
"""
Initialise a point that uses Jacobi representation internally.
:param CurveFp curve: curve on which the point resides
:param int x: the X parameter of Jacobi representation (equal to x when
converting from affine coordinates
:param int y: the Y parameter of Jacobi representation (equal to y when
converting from affine coordinates
:param int z: the Z parameter of Jacobi representation (equal to 1 when
converting from affine coordinates
:param int order: the point order, must be non zero when using
generator=True
:param bool generator: the point provided is a curve generator, as
such, it will be commonly used with scalar multiplication. This will
cause to precompute multiplication table generation for it
"""
super(PointJacobi, self).__init__()
self.__curve = curve
if GMPY: # pragma: no branch
self.__coords = (mpz(x), mpz(y), mpz(z))
self.__order = order and mpz(order)
else: # pragma: no branch
self.__coords = (x, y, z)
self.__order = order
self.__generator = generator
self.__precompute = []
@classmethod
def from_bytes(
cls,
curve,
data,
validate_encoding=True,
valid_encodings=None,
order=None,
generator=False,
):
"""
Initialise the object from byte encoding of a point.
The method does accept and automatically detect the type of point
encoding used. It supports the :term:`raw encoding`,
:term:`uncompressed`, :term:`compressed`, and :term:`hybrid` encodings.
:param data: single point encoding of the public key
:type data: :term:`bytes-like object`
:param curve: the curve on which the public key is expected to lay
:type curve: ~ecdsa.ellipticcurve.CurveFp
:param validate_encoding: whether to verify that the encoding of the
point is self-consistent, defaults to True, has effect only
on ``hybrid`` encoding
:type validate_encoding: bool
:param valid_encodings: list of acceptable point encoding formats,
supported ones are: :term:`uncompressed`, :term:`compressed`,
:term:`hybrid`, and :term:`raw encoding` (specified with ``raw``
name). All formats by default (specified with ``None``).
:type valid_encodings: :term:`set-like object`
:param int order: the point order, must be non zero when using
generator=True
:param bool generator: the point provided is a curve generator, as
such, it will be commonly used with scalar multiplication. This
will cause to precompute multiplication table generation for it
:raises `~ecdsa.errors.MalformedPointError`: if the public point does
not lay on the curve or the encoding is invalid
:return: Point on curve
:rtype: PointJacobi
"""
coord_x, coord_y = super(PointJacobi, cls).from_bytes(
curve, data, validate_encoding, valid_encodings
)
return PointJacobi(curve, coord_x, coord_y, 1, order, generator)
def _maybe_precompute(self):
if not self.__generator or self.__precompute:
return
# since this code will execute just once, and it's fully deterministic,
# depend on atomicity of the last assignment to switch from empty
# self.__precompute to filled one and just ignore the unlikely
# situation when two threads execute it at the same time (as it won't
# lead to inconsistent __precompute)
order = self.__order
assert order
precompute = []
i = 1
order *= 2
coord_x, coord_y, coord_z = self.__coords
doubler = PointJacobi(self.__curve, coord_x, coord_y, coord_z, order)
order *= 2
precompute.append((doubler.x(), doubler.y()))
while i < order:
i *= 2
doubler = doubler.double().scale()
precompute.append((doubler.x(), doubler.y()))
self.__precompute = precompute
def __getstate__(self):
# while this code can execute at the same time as _maybe_precompute()
# is updating the __precompute or scale() is updating the __coords,
# there is no requirement for consistency between __coords and
# __precompute
state = self.__dict__.copy()
return state
def __setstate__(self, state):
self.__dict__.update(state)
def __eq__(self, other):
"""Compare for equality two points with each-other.
Note: only points that lay on the same curve can be equal.
"""
x1, y1, z1 = self.__coords
if other is INFINITY:
return not y1 or not z1
if isinstance(other, Point):
x2, y2, z2 = other.x(), other.y(), 1
elif isinstance(other, PointJacobi):
x2, y2, z2 = other.__coords
else:
return NotImplemented
if self.__curve != other.curve():
return False
p = self.__curve.p()
zz1 = z1 * z1 % p
zz2 = z2 * z2 % p
# compare the fractions by bringing them to the same denominator
# depend on short-circuit to save 4 multiplications in case of
# inequality
return (x1 * zz2 - x2 * zz1) % p == 0 and (
y1 * zz2 * z2 - y2 * zz1 * z1
) % p == 0
def __ne__(self, other):
"""Compare for inequality two points with each-other."""
return not self == other
def order(self):
"""Return the order of the point.
None if it is undefined.
"""
return self.__order
def curve(self):
"""Return curve over which the point is defined."""
return self.__curve
def x(self):
"""
Return affine x coordinate.
This method should be used only when the 'y' coordinate is not needed.
It's computationally more efficient to use `to_affine()` and then
call x() and y() on the returned instance. Or call `scale()`
and then x() and y() on the returned instance.
"""
x, _, z = self.__coords
if z == 1:
return x
p = self.__curve.p()
z = numbertheory.inverse_mod(z, p)
return x * z**2 % p
def y(self):
"""
Return affine y coordinate.
This method should be used only when the 'x' coordinate is not needed.
It's computationally more efficient to use `to_affine()` and then
call x() and y() on the returned instance. Or call `scale()`
and then x() and y() on the returned instance.
"""
_, y, z = self.__coords
if z == 1:
return y
p = self.__curve.p()
z = numbertheory.inverse_mod(z, p)
return y * z**3 % p
def scale(self):
"""
Return point scaled so that z == 1.
Modifies point in place, returns self.
"""
x, y, z = self.__coords
if z == 1:
return self
# scaling is deterministic, so even if two threads execute the below
# code at the same time, they will set __coords to the same value
p = self.__curve.p()
z_inv = numbertheory.inverse_mod(z, p)
zz_inv = z_inv * z_inv % p
x = x * zz_inv % p
y = y * zz_inv * z_inv % p
self.__coords = (x, y, 1)
return self
def to_affine(self):
"""Return point in affine form."""
_, y, z = self.__coords
if not y or not z:
return INFINITY
self.scale()
x, y, z = self.__coords
return Point(self.__curve, x, y, self.__order)
@staticmethod
def from_affine(point, generator=False):
"""Create from an affine point.
:param bool generator: set to True to make the point to precalculate
multiplication table - useful for public point when verifying many
signatures (around 100 or so) or for generator points of a curve.
"""
return PointJacobi(
point.curve(), point.x(), point.y(), 1, point.order(), generator
)
# please note that all the methods that use the equations from
# hyperelliptic
# are formatted in a way to maximise performance.
# Things that make code faster: multiplying instead of taking to the power
# (`xx = x * x; xxxx = xx * xx % p` is faster than `xxxx = x**4 % p` and
# `pow(x, 4, p)`),
# multiple assignments at the same time (`x1, x2 = self.x1, self.x2` is
# faster than `x1 = self.x1; x2 = self.x2`),
# similarly, sometimes the `% p` is skipped if it makes the calculation
# faster and the result of calculation is later reduced modulo `p`
def _double_with_z_1(self, X1, Y1, p, a):
"""Add a point to itself with z == 1."""
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-mdbl-2007-bl
XX, YY = X1 * X1 % p, Y1 * Y1 % p
if not YY:
return 0, 0, 1
YYYY = YY * YY % p
S = 2 * ((X1 + YY) ** 2 - XX - YYYY) % p
M = 3 * XX + a
T = (M * M - 2 * S) % p
# X3 = T
Y3 = (M * (S - T) - 8 * YYYY) % p
Z3 = 2 * Y1 % p
return T, Y3, Z3
def _double(self, X1, Y1, Z1, p, a):
"""Add a point to itself, arbitrary z."""
if Z1 == 1:
return self._double_with_z_1(X1, Y1, p, a)
if not Y1 or not Z1:
return 0, 0, 1
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
XX, YY = X1 * X1 % p, Y1 * Y1 % p
if not YY:
return 0, 0, 1
YYYY = YY * YY % p
ZZ = Z1 * Z1 % p
S = 2 * ((X1 + YY) ** 2 - XX - YYYY) % p
M = (3 * XX + a * ZZ * ZZ) % p
T = (M * M - 2 * S) % p
# X3 = T
Y3 = (M * (S - T) - 8 * YYYY) % p
Z3 = ((Y1 + Z1) ** 2 - YY - ZZ) % p
return T, Y3, Z3
def double(self):
"""Add a point to itself."""
X1, Y1, Z1 = self.__coords
if not Y1:
return INFINITY
p, a = self.__curve.p(), self.__curve.a()
X3, Y3, Z3 = self._double(X1, Y1, Z1, p, a)
if not Y3 or not Z3:
return INFINITY
return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)
def _add_with_z_1(self, X1, Y1, X2, Y2, p):
"""add points when both Z1 and Z2 equal 1"""
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-mmadd-2007-bl
H = X2 - X1
HH = H * H
I = 4 * HH % p
J = H * I
r = 2 * (Y2 - Y1)
if not H and not r:
return self._double_with_z_1(X1, Y1, p, self.__curve.a())
V = X1 * I
X3 = (r**2 - J - 2 * V) % p
Y3 = (r * (V - X3) - 2 * Y1 * J) % p
Z3 = 2 * H % p
return X3, Y3, Z3
def _add_with_z_eq(self, X1, Y1, Z1, X2, Y2, p):
"""add points when Z1 == Z2"""
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-zadd-2007-m
A = (X2 - X1) ** 2 % p
B = X1 * A % p
C = X2 * A
D = (Y2 - Y1) ** 2 % p
if not A and not D:
return self._double(X1, Y1, Z1, p, self.__curve.a())
X3 = (D - B - C) % p
Y3 = ((Y2 - Y1) * (B - X3) - Y1 * (C - B)) % p
Z3 = Z1 * (X2 - X1) % p
return X3, Y3, Z3
def _add_with_z2_1(self, X1, Y1, Z1, X2, Y2, p):
"""add points when Z2 == 1"""
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-madd-2007-bl
Z1Z1 = Z1 * Z1 % p
U2, S2 = X2 * Z1Z1 % p, Y2 * Z1 * Z1Z1 % p
H = (U2 - X1) % p
HH = H * H % p
I = 4 * HH % p
J = H * I
r = 2 * (S2 - Y1) % p
if not r and not H:
return self._double_with_z_1(X2, Y2, p, self.__curve.a())
V = X1 * I
X3 = (r * r - J - 2 * V) % p
Y3 = (r * (V - X3) - 2 * Y1 * J) % p
Z3 = ((Z1 + H) ** 2 - Z1Z1 - HH) % p
return X3, Y3, Z3
def _add_with_z_ne(self, X1, Y1, Z1, X2, Y2, Z2, p):
"""add points with arbitrary z"""
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
Z1Z1 = Z1 * Z1 % p
Z2Z2 = Z2 * Z2 % p
U1 = X1 * Z2Z2 % p
U2 = X2 * Z1Z1 % p
S1 = Y1 * Z2 * Z2Z2 % p
S2 = Y2 * Z1 * Z1Z1 % p
H = U2 - U1
I = 4 * H * H % p
J = H * I % p
r = 2 * (S2 - S1) % p
if not H and not r:
return self._double(X1, Y1, Z1, p, self.__curve.a())
V = U1 * I
X3 = (r * r - J - 2 * V) % p
Y3 = (r * (V - X3) - 2 * S1 * J) % p
Z3 = ((Z1 + Z2) ** 2 - Z1Z1 - Z2Z2) * H % p
return X3, Y3, Z3
def __radd__(self, other):
"""Add other to self."""
return self + other
def _add(self, X1, Y1, Z1, X2, Y2, Z2, p):
"""add two points, select fastest method."""
if not Y1 or not Z1:
return X2, Y2, Z2
if not Y2 or not Z2:
return X1, Y1, Z1
if Z1 == Z2:
if Z1 == 1:
return self._add_with_z_1(X1, Y1, X2, Y2, p)
return self._add_with_z_eq(X1, Y1, Z1, X2, Y2, p)
if Z1 == 1:
return self._add_with_z2_1(X2, Y2, Z2, X1, Y1, p)
if Z2 == 1:
return self._add_with_z2_1(X1, Y1, Z1, X2, Y2, p)
return self._add_with_z_ne(X1, Y1, Z1, X2, Y2, Z2, p)
def __add__(self, other):
"""Add two points on elliptic curve."""
if self == INFINITY:
return other
if other == INFINITY:
return self
if isinstance(other, Point):
other = PointJacobi.from_affine(other)
if self.__curve != other.__curve:
raise ValueError("The other point is on different curve")
p = self.__curve.p()
X1, Y1, Z1 = self.__coords
X2, Y2, Z2 = other.__coords
X3, Y3, Z3 = self._add(X1, Y1, Z1, X2, Y2, Z2, p)
if not Y3 or not Z3:
return INFINITY
return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)
def __rmul__(self, other):
"""Multiply point by an integer."""
return self * other
def _mul_precompute(self, other):
"""Multiply point by integer with precomputation table."""
X3, Y3, Z3, p = 0, 0, 1, self.__curve.p()
_add = self._add
for X2, Y2 in self.__precompute:
if other % 2:
if other % 4 >= 2:
other = (other + 1) // 2
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, 1, p)
else:
other = (other - 1) // 2
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p)
else:
other //= 2
if not Y3 or not Z3:
return INFINITY
return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)
def __mul__(self, other):
"""Multiply point by an integer."""
if not self.__coords[1] or not other:
return INFINITY
if other == 1:
return self
if self.__order:
# order*2 as a protection for Minerva
other = other % (self.__order * 2)
self._maybe_precompute()
if self.__precompute:
return self._mul_precompute(other)
self = self.scale()
X2, Y2, _ = self.__coords
X3, Y3, Z3 = 0, 0, 1
p, a = self.__curve.p(), self.__curve.a()
_double = self._double
_add = self._add
# since adding points when at least one of them is scaled
# is quicker, reverse the NAF order
for i in reversed(self._naf(other)):
X3, Y3, Z3 = _double(X3, Y3, Z3, p, a)
if i < 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, 1, p)
elif i > 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p)
if not Y3 or not Z3:
return INFINITY
return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)
def mul_add(self, self_mul, other, other_mul):
"""
Do two multiplications at the same time, add results.
calculates self*self_mul + other*other_mul
"""
if other == INFINITY or other_mul == 0:
return self * self_mul
if self_mul == 0:
return other * other_mul
if not isinstance(other, PointJacobi):
other = PointJacobi.from_affine(other)
# when the points have precomputed answers, then multiplying them alone
# is faster (as it uses NAF and no point doublings)
self._maybe_precompute()
other._maybe_precompute()
if self.__precompute and other.__precompute:
return self * self_mul + other * other_mul
if self.__order:
self_mul = self_mul % self.__order
other_mul = other_mul % self.__order
# (X3, Y3, Z3) is the accumulator
X3, Y3, Z3 = 0, 0, 1
p, a = self.__curve.p(), self.__curve.a()
# as we have 6 unique points to work with, we can't scale all of them,
# but do scale the ones that are used most often
self.scale()
X1, Y1, Z1 = self.__coords
other.scale()
X2, Y2, Z2 = other.__coords
_double = self._double
_add = self._add
# with NAF we have 3 options: no add, subtract, add
# so with 2 points, we have 9 combinations:
# 0, -A, +A, -B, -A-B, +A-B, +B, -A+B, +A+B
# so we need 4 combined points:
mAmB_X, mAmB_Y, mAmB_Z = _add(X1, -Y1, Z1, X2, -Y2, Z2, p)
pAmB_X, pAmB_Y, pAmB_Z = _add(X1, Y1, Z1, X2, -Y2, Z2, p)
mApB_X, mApB_Y, mApB_Z = pAmB_X, -pAmB_Y, pAmB_Z
pApB_X, pApB_Y, pApB_Z = mAmB_X, -mAmB_Y, mAmB_Z
# when the self and other sum to infinity, we need to add them
# one by one to get correct result but as that's very unlikely to
# happen in regular operation, we don't need to optimise this case
if not pApB_Y or not pApB_Z:
return self * self_mul + other * other_mul
# gmp object creation has cumulatively higher overhead than the
# speedup we get from calculating the NAF using gmp so ensure use
# of int()
self_naf = list(reversed(self._naf(int(self_mul))))
other_naf = list(reversed(self._naf(int(other_mul))))
# ensure that the lists are the same length (zip() will truncate
# longer one otherwise)
if len(self_naf) < len(other_naf):
self_naf = [0] * (len(other_naf) - len(self_naf)) + self_naf
elif len(self_naf) > len(other_naf):
other_naf = [0] * (len(self_naf) - len(other_naf)) + other_naf
for A, B in zip(self_naf, other_naf):
X3, Y3, Z3 = _double(X3, Y3, Z3, p, a)
# conditions ordered from most to least likely
if A == 0:
if B == 0:
pass
elif B < 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, Z2, p)
else:
assert B > 0
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, Z2, p)
elif A < 0:
if B == 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, X1, -Y1, Z1, p)
elif B < 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, mAmB_X, mAmB_Y, mAmB_Z, p)
else:
assert B > 0
X3, Y3, Z3 = _add(X3, Y3, Z3, mApB_X, mApB_Y, mApB_Z, p)
else:
assert A > 0
if B == 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, X1, Y1, Z1, p)
elif B < 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, pAmB_X, pAmB_Y, pAmB_Z, p)
else:
assert B > 0
X3, Y3, Z3 = _add(X3, Y3, Z3, pApB_X, pApB_Y, pApB_Z, p)
if not Y3 or not Z3:
return INFINITY
return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)
def __neg__(self):
"""Return negated point."""
x, y, z = self.__coords
return PointJacobi(self.__curve, x, -y, z, self.__order)
class Point(AbstractPoint):
"""A point on a short Weierstrass elliptic curve. Altering x and y is
forbidden, but they can be read by the x() and y() methods."""
def __init__(self, curve, x, y, order=None):
"""curve, x, y, order; order (optional) is the order of this point."""
super(Point, self).__init__()
self.__curve = curve
if GMPY:
self.__x = x and mpz(x)
self.__y = y and mpz(y)
self.__order = order and mpz(order)
else:
self.__x = x
self.__y = y
self.__order = order
# self.curve is allowed to be None only for INFINITY:
if self.__curve:
assert self.__curve.contains_point(x, y)
# for curves with cofactor 1, all points that are on the curve are
# scalar multiples of the base point, so performing multiplication is
# not necessary to verify that. See Section 3.2.2.1 of SEC 1 v2
if curve and curve.cofactor() != 1 and order:
assert self * order == INFINITY
@classmethod
def from_bytes(
cls,
curve,
data,
validate_encoding=True,
valid_encodings=None,
order=None,
):
"""
Initialise the object from byte encoding of a point.
The method does accept and automatically detect the type of point
encoding used. It supports the :term:`raw encoding`,
:term:`uncompressed`, :term:`compressed`, and :term:`hybrid` encodings.
:param data: single point encoding of the public key
:type data: :term:`bytes-like object`
:param curve: the curve on which the public key is expected to lay
:type curve: ~ecdsa.ellipticcurve.CurveFp
:param validate_encoding: whether to verify that the encoding of the
point is self-consistent, defaults to True, has effect only
on ``hybrid`` encoding
:type validate_encoding: bool
:param valid_encodings: list of acceptable point encoding formats,
supported ones are: :term:`uncompressed`, :term:`compressed`,
:term:`hybrid`, and :term:`raw encoding` (specified with ``raw``
name). All formats by default (specified with ``None``).
:type valid_encodings: :term:`set-like object`
:param int order: the point order, must be non zero when using
generator=True
:raises `~ecdsa.errors.MalformedPointError`: if the public point does
not lay on the curve or the encoding is invalid
:return: Point on curve
:rtype: Point
"""
coord_x, coord_y = super(Point, cls).from_bytes(
curve, data, validate_encoding, valid_encodings
)
return Point(curve, coord_x, coord_y, order)
def __eq__(self, other):
"""Return True if the points are identical, False otherwise.
Note: only points that lay on the same curve can be equal.
"""
if isinstance(other, Point):
return (
self.__curve == other.__curve
and self.__x == other.__x
and self.__y == other.__y
)
return NotImplemented
def __ne__(self, other):
"""Returns False if points are identical, True otherwise."""
return not self == other
def __neg__(self):
return Point(self.__curve, self.__x, self.__curve.p() - self.__y)
def __add__(self, other):
"""Add one point to another point."""
# X9.62 B.3:
if not isinstance(other, Point):
return NotImplemented
if other == INFINITY:
return self
if self == INFINITY:
return other
assert self.__curve == other.__curve
if self.__x == other.__x:
if (self.__y + other.__y) % self.__curve.p() == 0:
return INFINITY
else:
return self.double()
p = self.__curve.p()
l = (
(other.__y - self.__y)
* numbertheory.inverse_mod(other.__x - self.__x, p)
) % p
x3 = (l * l - self.__x - other.__x) % p
y3 = (l * (self.__x - x3) - self.__y) % p
return Point(self.__curve, x3, y3)
def __mul__(self, other):
"""Multiply a point by an integer."""
def leftmost_bit(x):
assert x > 0
result = 1
while result <= x:
result = 2 * result
return result // 2
e = other
if e == 0 or (self.__order and e % self.__order == 0):
return INFINITY
if self == INFINITY:
return INFINITY
if e < 0:
return (-self) * (-e)
# From X9.62 D.3.2:
e3 = 3 * e
negative_self = Point(self.__curve, self.__x, -self.__y, self.__order)
i = leftmost_bit(e3) // 2
result = self
# print_("Multiplying %s by %d (e3 = %d):" % (self, other, e3))
while i > 1:
result = result.double()
if (e3 & i) != 0 and (e & i) == 0:
result = result + self
if (e3 & i) == 0 and (e & i) != 0:
result = result + negative_self
# print_(". . . i = %d, result = %s" % ( i, result ))
i = i // 2
return result
def __rmul__(self, other):
"""Multiply a point by an integer."""
return self * other
def __str__(self):
if self == INFINITY:
return "infinity"
return "(%d,%d)" % (self.__x, self.__y)
def double(self):
"""Return a new point that is twice the old."""
if self == INFINITY:
return INFINITY
# X9.62 B.3:
p = self.__curve.p()
a = self.__curve.a()
l = (
(3 * self.__x * self.__x + a)
* numbertheory.inverse_mod(2 * self.__y, p)
) % p
x3 = (l * l - 2 * self.__x) % p
y3 = (l * (self.__x - x3) - self.__y) % p
return Point(self.__curve, x3, y3)
def x(self):
return self.__x
def y(self):
return self.__y
def curve(self):
return self.__curve
def order(self):
return self.__order
class PointEdwards(AbstractPoint):
"""Point on Twisted Edwards curve.
Internally represents the coordinates on the curve using four parameters,
X, Y, Z, T. They correspond to affine parameters 'x' and 'y' like so:
x = X / Z
y = Y / Z
x*y = T / Z
"""
def __init__(self, curve, x, y, z, t, order=None, generator=False):
"""
Initialise a point that uses the extended coordinates internally.
"""
super(PointEdwards, self).__init__()
self.__curve = curve
if GMPY: # pragma: no branch
self.__coords = (mpz(x), mpz(y), mpz(z), mpz(t))
self.__order = order and mpz(order)
else: # pragma: no branch
self.__coords = (x, y, z, t)
self.__order = order
self.__generator = generator
self.__precompute = []
@classmethod
def from_bytes(
cls,
curve,
data,
validate_encoding=None,
valid_encodings=None,
order=None,
generator=False,
):
"""
Initialise the object from byte encoding of a point.
`validate_encoding` and `valid_encodings` are provided for
compatibility with Weierstrass curves, they are ignored for Edwards
points.
:param data: single point encoding of the public key
:type data: :term:`bytes-like object`
:param curve: the curve on which the public key is expected to lay
:type curve: ecdsa.ellipticcurve.CurveEdTw
:param None validate_encoding: Ignored, encoding is always validated
:param None valid_encodings: Ignored, there is just one encoding
supported
:param int order: the point order, must be non zero when using
generator=True
:param bool generator: Flag to mark the point as a curve generator,
this will cause the library to pre-compute some values to
make repeated usages of the point much faster
:raises `~ecdsa.errors.MalformedPointError`: if the public point does
not lay on the curve or the encoding is invalid
:return: Initialised point on an Edwards curve
:rtype: PointEdwards
"""
coord_x, coord_y = super(PointEdwards, cls).from_bytes(
curve, data, validate_encoding, valid_encodings
)
return PointEdwards(
curve, coord_x, coord_y, 1, coord_x * coord_y, order, generator
)
def _maybe_precompute(self):
if not self.__generator or self.__precompute:
return self.__precompute
# since this code will execute just once, and it's fully deterministic,
# depend on atomicity of the last assignment to switch from empty
# self.__precompute to filled one and just ignore the unlikely
# situation when two threads execute it at the same time (as it won't
# lead to inconsistent __precompute)
order = self.__order
assert order
precompute = []
i = 1
order *= 2
coord_x, coord_y, coord_z, coord_t = self.__coords
prime = self.__curve.p()
doubler = PointEdwards(
self.__curve, coord_x, coord_y, coord_z, coord_t, order
)
# for "protection" against Minerva we need 1 or 2 more bits depending
# on order bit size, but it's easier to just calculate one
# point more always
order *= 4
while i < order:
doubler = doubler.scale()
coord_x, coord_y = doubler.x(), doubler.y()
coord_t = coord_x * coord_y % prime
precompute.append((coord_x, coord_y, coord_t))
i *= 2
doubler = doubler.double()
self.__precompute = precompute
return self.__precompute
def x(self):
"""Return affine x coordinate."""
X1, _, Z1, _ = self.__coords
if Z1 == 1:
return X1
p = self.__curve.p()
z_inv = numbertheory.inverse_mod(Z1, p)
return X1 * z_inv % p
def y(self):
"""Return affine y coordinate."""
_, Y1, Z1, _ = self.__coords
if Z1 == 1:
return Y1
p = self.__curve.p()
z_inv = numbertheory.inverse_mod(Z1, p)
return Y1 * z_inv % p
def curve(self):
"""Return the curve of the point."""
return self.__curve
def order(self):
return self.__order
def scale(self):
"""
Return point scaled so that z == 1.
Modifies point in place, returns self.
"""
X1, Y1, Z1, _ = self.__coords
if Z1 == 1:
return self
p = self.__curve.p()
z_inv = numbertheory.inverse_mod(Z1, p)
x = X1 * z_inv % p
y = Y1 * z_inv % p
t = x * y % p
self.__coords = (x, y, 1, t)
return self
def __eq__(self, other):
"""Compare for equality two points with each-other.
Note: only points on the same curve can be equal.
"""
x1, y1, z1, t1 = self.__coords
if other is INFINITY:
return not x1 or not t1
if isinstance(other, PointEdwards):
x2, y2, z2, t2 = other.__coords
else:
return NotImplemented
if self.__curve != other.curve():
return False
p = self.__curve.p()
# cross multiply to eliminate divisions
xn1 = x1 * z2 % p
xn2 = x2 * z1 % p
yn1 = y1 * z2 % p
yn2 = y2 * z1 % p
return xn1 == xn2 and yn1 == yn2
def __ne__(self, other):
"""Compare for inequality two points with each-other."""
return not self == other
def _add(self, X1, Y1, Z1, T1, X2, Y2, Z2, T2, p, a):
"""add two points, assume sane parameters."""
# after add-2008-hwcd-2
# from https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html
# NOTE: there are more efficient formulas for Z1 or Z2 == 1
A = X1 * X2 % p
B = Y1 * Y2 % p
C = Z1 * T2 % p
D = T1 * Z2 % p
E = D + C
F = ((X1 - Y1) * (X2 + Y2) + B - A) % p
G = B + a * A
H = D - C
if not H:
return self._double(X1, Y1, Z1, T1, p, a)
X3 = E * F % p
Y3 = G * H % p
T3 = E * H % p
Z3 = F * G % p
return X3, Y3, Z3, T3
def __add__(self, other):
"""Add point to another."""
if other == INFINITY:
return self
if (
not isinstance(other, PointEdwards)
or self.__curve != other.__curve
):
raise ValueError("The other point is on a different curve.")
p, a = self.__curve.p(), self.__curve.a()
X1, Y1, Z1, T1 = self.__coords
X2, Y2, Z2, T2 = other.__coords
X3, Y3, Z3, T3 = self._add(X1, Y1, Z1, T1, X2, Y2, Z2, T2, p, a)
if not X3 or not T3:
return INFINITY
return PointEdwards(self.__curve, X3, Y3, Z3, T3, self.__order)
def __radd__(self, other):
"""Add other to self."""
return self + other
def _double(self, X1, Y1, Z1, T1, p, a):
"""Double the point, assume sane parameters."""
# after "dbl-2008-hwcd"
# from https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html
# NOTE: there are more efficient formulas for Z1 == 1
A = X1 * X1 % p
B = Y1 * Y1 % p
C = 2 * Z1 * Z1 % p
D = a * A % p
E = ((X1 + Y1) * (X1 + Y1) - A - B) % p
G = D + B
F = G - C
H = D - B
X3 = E * F % p
Y3 = G * H % p
T3 = E * H % p
Z3 = F * G % p
return X3, Y3, Z3, T3
def double(self):
"""Return point added to itself."""
X1, Y1, Z1, T1 = self.__coords
if not X1 or not T1:
return INFINITY
p, a = self.__curve.p(), self.__curve.a()
X3, Y3, Z3, T3 = self._double(X1, Y1, Z1, T1, p, a)
# both Ed25519 and Ed448 have prime order, so no point added to
# itself will equal zero
if not X3 or not T3: # pragma: no branch
return INFINITY
return PointEdwards(self.__curve, X3, Y3, Z3, T3, self.__order)
def __rmul__(self, other):
"""Multiply point by an integer."""
return self * other
def _mul_precompute(self, other):
"""Multiply point by integer with precomputation table."""
X3, Y3, Z3, T3, p, a = 0, 1, 1, 0, self.__curve.p(), self.__curve.a()
_add = self._add
for X2, Y2, T2 in self.__precompute:
rem = other % 4
if rem == 0 or rem == 2:
other //= 2
elif rem == 3:
other = (other + 1) // 2
X3, Y3, Z3, T3 = _add(X3, Y3, Z3, T3, -X2, Y2, 1, -T2, p, a)
else:
assert rem == 1
other = (other - 1) // 2
X3, Y3, Z3, T3 = _add(X3, Y3, Z3, T3, X2, Y2, 1, T2, p, a)
if not X3 or not T3:
return INFINITY
return PointEdwards(self.__curve, X3, Y3, Z3, T3, self.__order)
def __mul__(self, other):
"""Multiply point by an integer."""
X2, Y2, Z2, T2 = self.__coords
if not X2 or not T2 or not other:
return INFINITY
if other == 1:
return self
if self.__order:
# order*2 as a "protection" for Minerva
other = other % (self.__order * 2)
if self._maybe_precompute():
return self._mul_precompute(other)
X3, Y3, Z3, T3 = 0, 1, 1, 0 # INFINITY in extended coordinates
p, a = self.__curve.p(), self.__curve.a()
_double = self._double
_add = self._add
for i in reversed(self._naf(other)):
X3, Y3, Z3, T3 = _double(X3, Y3, Z3, T3, p, a)
if i < 0:
X3, Y3, Z3, T3 = _add(X3, Y3, Z3, T3, -X2, Y2, Z2, -T2, p, a)
elif i > 0:
X3, Y3, Z3, T3 = _add(X3, Y3, Z3, T3, X2, Y2, Z2, T2, p, a)
if not X3 or not T3:
return INFINITY
return PointEdwards(self.__curve, X3, Y3, Z3, T3, self.__order)
# This one point is the Point At Infinity for all purposes:
INFINITY = Point(None, None, None)
|