1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
# ===================================================================
#
# Copyright (c) 2014, Legrandin <[email protected]>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
from Cryptodome.Util.py3compat import bchr, bord, iter_range
import Cryptodome.Util.number
from Cryptodome.Util.number import (ceil_div,
long_to_bytes,
bytes_to_long
)
from Cryptodome.Util.strxor import strxor
from Cryptodome import Random
class PSS_SigScheme:
"""A signature object for ``RSASSA-PSS``.
Do not instantiate directly.
Use :func:`Cryptodome.Signature.pss.new`.
"""
def __init__(self, key, mgfunc, saltLen, randfunc):
"""Initialize this PKCS#1 PSS signature scheme object.
:Parameters:
key : an RSA key object
If a private half is given, both signature and
verification are possible.
If a public half is given, only verification is possible.
mgfunc : callable
A mask generation function that accepts two parameters:
a string to use as seed, and the lenth of the mask to
generate, in bytes.
saltLen : integer
Length of the salt, in bytes.
randfunc : callable
A function that returns random bytes.
"""
self._key = key
self._saltLen = saltLen
self._mgfunc = mgfunc
self._randfunc = randfunc
def can_sign(self):
"""Return ``True`` if this object can be used to sign messages."""
return self._key.has_private()
def sign(self, msg_hash):
"""Create the PKCS#1 PSS signature of a message.
This function is also called ``RSASSA-PSS-SIGN`` and
it is specified in
`section 8.1.1 of RFC8017 <https://tools.ietf.org/html/rfc8017#section-8.1.1>`_.
:parameter msg_hash:
This is an object from the :mod:`Cryptodome.Hash` package.
It has been used to digest the message to sign.
:type msg_hash: hash object
:return: the signature encoded as a *byte string*.
:raise ValueError: if the RSA key is not long enough for the given hash algorithm.
:raise TypeError: if the RSA key has no private half.
"""
# Set defaults for salt length and mask generation function
if self._saltLen is None:
sLen = msg_hash.digest_size
else:
sLen = self._saltLen
if self._mgfunc is None:
mgf = lambda x, y: MGF1(x, y, msg_hash)
else:
mgf = self._mgfunc
modBits = Cryptodome.Util.number.size(self._key.n)
# See 8.1.1 in RFC3447
k = ceil_div(modBits, 8) # k is length in bytes of the modulus
# Step 1
em = _EMSA_PSS_ENCODE(msg_hash, modBits-1, self._randfunc, mgf, sLen)
# Step 2a (OS2IP)
em_int = bytes_to_long(em)
# Step 2b (RSASP1) and Step 2c (I2OSP)
signature = self._key._decrypt_to_bytes(em_int)
# Verify no faults occurred
if em_int != pow(bytes_to_long(signature), self._key.e, self._key.n):
raise ValueError("Fault detected in RSA private key operation")
return signature
def verify(self, msg_hash, signature):
"""Check if the PKCS#1 PSS signature over a message is valid.
This function is also called ``RSASSA-PSS-VERIFY`` and
it is specified in
`section 8.1.2 of RFC8037 <https://tools.ietf.org/html/rfc8017#section-8.1.2>`_.
:parameter msg_hash:
The hash that was carried out over the message. This is an object
belonging to the :mod:`Cryptodome.Hash` module.
:type parameter: hash object
:parameter signature:
The signature that needs to be validated.
:type signature: bytes
:raise ValueError: if the signature is not valid.
"""
# Set defaults for salt length and mask generation function
if self._saltLen is None:
sLen = msg_hash.digest_size
else:
sLen = self._saltLen
if self._mgfunc:
mgf = self._mgfunc
else:
mgf = lambda x, y: MGF1(x, y, msg_hash)
modBits = Cryptodome.Util.number.size(self._key.n)
# See 8.1.2 in RFC3447
k = ceil_div(modBits, 8) # Convert from bits to bytes
# Step 1
if len(signature) != k:
raise ValueError("Incorrect signature")
# Step 2a (O2SIP)
signature_int = bytes_to_long(signature)
# Step 2b (RSAVP1)
em_int = self._key._encrypt(signature_int)
# Step 2c (I2OSP)
emLen = ceil_div(modBits - 1, 8)
em = long_to_bytes(em_int, emLen)
# Step 3/4
_EMSA_PSS_VERIFY(msg_hash, em, modBits-1, mgf, sLen)
def MGF1(mgfSeed, maskLen, hash_gen):
"""Mask Generation Function, described in `B.2.1 of RFC8017
<https://tools.ietf.org/html/rfc8017>`_.
:param mfgSeed:
seed from which the mask is generated
:type mfgSeed: byte string
:param maskLen:
intended length in bytes of the mask
:type maskLen: integer
:param hash_gen:
A module or a hash object from :mod:`Cryptodome.Hash`
:type hash_object:
:return: the mask, as a *byte string*
"""
T = b""
for counter in iter_range(ceil_div(maskLen, hash_gen.digest_size)):
c = long_to_bytes(counter, 4)
hobj = hash_gen.new()
hobj.update(mgfSeed + c)
T = T + hobj.digest()
assert(len(T) >= maskLen)
return T[:maskLen]
def _EMSA_PSS_ENCODE(mhash, emBits, randFunc, mgf, sLen):
r"""
Implement the ``EMSA-PSS-ENCODE`` function, as defined
in PKCS#1 v2.1 (RFC3447, 9.1.1).
The original ``EMSA-PSS-ENCODE`` actually accepts the message ``M``
as input, and hash it internally. Here, we expect that the message
has already been hashed instead.
:Parameters:
mhash : hash object
The hash object that holds the digest of the message being signed.
emBits : int
Maximum length of the final encoding, in bits.
randFunc : callable
An RNG function that accepts as only parameter an int, and returns
a string of random bytes, to be used as salt.
mgf : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
sLen : int
Length of the salt, in bytes.
:Return: An ``emLen`` byte long string that encodes the hash
(with ``emLen = \ceil(emBits/8)``).
:Raise ValueError:
When digest or salt length are too big.
"""
emLen = ceil_div(emBits, 8)
# Bitmask of digits that fill up
lmask = 0
for i in iter_range(8*emLen-emBits):
lmask = lmask >> 1 | 0x80
# Step 1 and 2 have been already done
# Step 3
if emLen < mhash.digest_size+sLen+2:
raise ValueError("Digest or salt length are too long"
" for given key size.")
# Step 4
salt = randFunc(sLen)
# Step 5
m_prime = bchr(0)*8 + mhash.digest() + salt
# Step 6
h = mhash.new()
h.update(m_prime)
# Step 7
ps = bchr(0)*(emLen-sLen-mhash.digest_size-2)
# Step 8
db = ps + bchr(1) + salt
# Step 9
dbMask = mgf(h.digest(), emLen-mhash.digest_size-1)
# Step 10
maskedDB = strxor(db, dbMask)
# Step 11
maskedDB = bchr(bord(maskedDB[0]) & ~lmask) + maskedDB[1:]
# Step 12
em = maskedDB + h.digest() + bchr(0xBC)
return em
def _EMSA_PSS_VERIFY(mhash, em, emBits, mgf, sLen):
"""
Implement the ``EMSA-PSS-VERIFY`` function, as defined
in PKCS#1 v2.1 (RFC3447, 9.1.2).
``EMSA-PSS-VERIFY`` actually accepts the message ``M`` as input,
and hash it internally. Here, we expect that the message has already
been hashed instead.
:Parameters:
mhash : hash object
The hash object that holds the digest of the message to be verified.
em : string
The signature to verify, therefore proving that the sender really
signed the message that was received.
emBits : int
Length of the final encoding (em), in bits.
mgf : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
sLen : int
Length of the salt, in bytes.
:Raise ValueError:
When the encoding is inconsistent, or the digest or salt lengths
are too big.
"""
emLen = ceil_div(emBits, 8)
# Bitmask of digits that fill up
lmask = 0
for i in iter_range(8*emLen-emBits):
lmask = lmask >> 1 | 0x80
# Step 1 and 2 have been already done
# Step 3
if emLen < mhash.digest_size+sLen+2:
raise ValueError("Incorrect signature")
# Step 4
if ord(em[-1:]) != 0xBC:
raise ValueError("Incorrect signature")
# Step 5
maskedDB = em[:emLen-mhash.digest_size-1]
h = em[emLen-mhash.digest_size-1:-1]
# Step 6
if lmask & bord(em[0]):
raise ValueError("Incorrect signature")
# Step 7
dbMask = mgf(h, emLen-mhash.digest_size-1)
# Step 8
db = strxor(maskedDB, dbMask)
# Step 9
db = bchr(bord(db[0]) & ~lmask) + db[1:]
# Step 10
if not db.startswith(bchr(0)*(emLen-mhash.digest_size-sLen-2) + bchr(1)):
raise ValueError("Incorrect signature")
# Step 11
if sLen > 0:
salt = db[-sLen:]
else:
salt = b""
# Step 12
m_prime = bchr(0)*8 + mhash.digest() + salt
# Step 13
hobj = mhash.new()
hobj.update(m_prime)
hp = hobj.digest()
# Step 14
if h != hp:
raise ValueError("Incorrect signature")
def new(rsa_key, **kwargs):
"""Create an object for making or verifying PKCS#1 PSS signatures.
:parameter rsa_key:
The RSA key to use for signing or verifying the message.
This is a :class:`Cryptodome.PublicKey.RSA` object.
Signing is only possible when ``rsa_key`` is a **private** RSA key.
:type rsa_key: RSA object
:Keyword Arguments:
* *mask_func* (``callable``) --
A function that returns the mask (as `bytes`).
It must accept two parameters: a seed (as `bytes`)
and the length of the data to return.
If not specified, it will be the function :func:`MGF1` defined in
`RFC8017 <https://tools.ietf.org/html/rfc8017#page-67>`_ and
combined with the same hash algorithm applied to the
message to sign or verify.
If you want to use a different function, for instance still :func:`MGF1`
but together with another hash, you can do::
from Cryptodome.Hash import SHA256
from Cryptodome.Signature.pss import MGF1
mgf = lambda x, y: MGF1(x, y, SHA256)
* *salt_bytes* (``integer``) --
Length of the salt, in bytes.
It is a value between 0 and ``emLen - hLen - 2``, where ``emLen``
is the size of the RSA modulus and ``hLen`` is the size of the digest
applied to the message to sign or verify.
The salt is generated internally, you don't need to provide it.
If not specified, the salt length will be ``hLen``.
If it is zero, the signature scheme becomes deterministic.
Note that in some implementations such as OpenSSL the default
salt length is ``emLen - hLen - 2`` (even though it is not more
secure than ``hLen``).
* *rand_func* (``callable``) --
A function that returns random ``bytes``, of the desired length.
The default is :func:`Cryptodome.Random.get_random_bytes`.
:return: a :class:`PSS_SigScheme` signature object
"""
mask_func = kwargs.pop("mask_func", None)
salt_len = kwargs.pop("salt_bytes", None)
rand_func = kwargs.pop("rand_func", None)
if rand_func is None:
rand_func = Random.get_random_bytes
if kwargs:
raise ValueError("Unknown keywords: " + str(kwargs.keys()))
return PSS_SigScheme(rsa_key, mask_func, salt_len, rand_func)
|