1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
#
# ElGamal.py : ElGamal encryption/decryption and signatures
#
# Part of the Python Cryptography Toolkit
#
# Originally written by: A.M. Kuchling
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
__all__ = ['generate', 'construct', 'ElGamalKey']
from Cryptodome import Random
from Cryptodome.Math.Primality import ( generate_probable_safe_prime,
test_probable_prime, COMPOSITE )
from Cryptodome.Math.Numbers import Integer
# Generate an ElGamal key with N bits
def generate(bits, randfunc):
"""Randomly generate a fresh, new ElGamal key.
The key will be safe for use for both encryption and signature
(although it should be used for **only one** purpose).
Args:
bits (int):
Key length, or size (in bits) of the modulus *p*.
The recommended value is 2048.
randfunc (callable):
Random number generation function; it should accept
a single integer *N* and return a string of random
*N* random bytes.
Return:
an :class:`ElGamalKey` object
"""
obj=ElGamalKey()
# Generate a safe prime p
# See Algorithm 4.86 in Handbook of Applied Cryptography
obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc)
q = (obj.p - 1) >> 1
# Generate generator g
while 1:
# Choose a square residue; it will generate a cyclic group of order q.
obj.g = pow(Integer.random_range(min_inclusive=2,
max_exclusive=obj.p,
randfunc=randfunc), 2, obj.p)
# We must avoid g=2 because of Bleichenbacher's attack described
# in "Generating ElGamal signatures without knowning the secret key",
# 1996
if obj.g in (1, 2):
continue
# Discard g if it divides p-1 because of the attack described
# in Note 11.67 (iii) in HAC
if (obj.p - 1) % obj.g == 0:
continue
# g^{-1} must not divide p-1 because of Khadir's attack
# described in "Conditions of the generator for forging ElGamal
# signature", 2011
ginv = obj.g.inverse(obj.p)
if (obj.p - 1) % ginv == 0:
continue
# Found
break
# Generate private key x
obj.x = Integer.random_range(min_inclusive=2,
max_exclusive=obj.p-1,
randfunc=randfunc)
# Generate public key y
obj.y = pow(obj.g, obj.x, obj.p)
return obj
def construct(tup):
r"""Construct an ElGamal key from a tuple of valid ElGamal components.
The modulus *p* must be a prime.
The following conditions must apply:
.. math::
\begin{align}
&1 < g < p-1 \\
&g^{p-1} = 1 \text{ mod } 1 \\
&1 < x < p-1 \\
&g^x = y \text{ mod } p
\end{align}
Args:
tup (tuple):
A tuple with either 3 or 4 integers,
in the following order:
1. Modulus (*p*).
2. Generator (*g*).
3. Public key (*y*).
4. Private key (*x*). Optional.
Raises:
ValueError: when the key being imported fails the most basic ElGamal validity checks.
Returns:
an :class:`ElGamalKey` object
"""
obj=ElGamalKey()
if len(tup) not in [3,4]:
raise ValueError('argument for construct() wrong length')
for i in range(len(tup)):
field = obj._keydata[i]
setattr(obj, field, Integer(tup[i]))
fmt_error = test_probable_prime(obj.p) == COMPOSITE
fmt_error |= obj.g<=1 or obj.g>=obj.p
fmt_error |= pow(obj.g, obj.p-1, obj.p)!=1
fmt_error |= obj.y<1 or obj.y>=obj.p
if len(tup)==4:
fmt_error |= obj.x<=1 or obj.x>=obj.p
fmt_error |= pow(obj.g, obj.x, obj.p)!=obj.y
if fmt_error:
raise ValueError("Invalid ElGamal key components")
return obj
class ElGamalKey(object):
r"""Class defining an ElGamal key.
Do not instantiate directly.
Use :func:`generate` or :func:`construct` instead.
:ivar p: Modulus
:vartype d: integer
:ivar g: Generator
:vartype e: integer
:ivar y: Public key component
:vartype y: integer
:ivar x: Private key component
:vartype x: integer
"""
#: Dictionary of ElGamal parameters.
#:
#: A public key will only have the following entries:
#:
#: - **y**, the public key.
#: - **g**, the generator.
#: - **p**, the modulus.
#:
#: A private key will also have:
#:
#: - **x**, the private key.
_keydata=['p', 'g', 'y', 'x']
def __init__(self, randfunc=None):
if randfunc is None:
randfunc = Random.new().read
self._randfunc = randfunc
def _encrypt(self, M, K):
a=pow(self.g, K, self.p)
b=( pow(self.y, K, self.p)*M ) % self.p
return [int(a), int(b)]
def _decrypt(self, M):
if (not hasattr(self, 'x')):
raise TypeError('Private key not available in this object')
r = Integer.random_range(min_inclusive=2,
max_exclusive=self.p-1,
randfunc=self._randfunc)
a_blind = (pow(self.g, r, self.p) * M[0]) % self.p
ax=pow(a_blind, self.x, self.p)
plaintext_blind = (ax.inverse(self.p) * M[1] ) % self.p
plaintext = (plaintext_blind * pow(self.y, r, self.p)) % self.p
return int(plaintext)
def _sign(self, M, K):
if (not hasattr(self, 'x')):
raise TypeError('Private key not available in this object')
p1=self.p-1
K = Integer(K)
if (K.gcd(p1)!=1):
raise ValueError('Bad K value: GCD(K,p-1)!=1')
a=pow(self.g, K, self.p)
t=(Integer(M)-self.x*a) % p1
while t<0: t=t+p1
b=(t*K.inverse(p1)) % p1
return [int(a), int(b)]
def _verify(self, M, sig):
sig = [Integer(x) for x in sig]
if sig[0]<1 or sig[0]>self.p-1:
return 0
v1=pow(self.y, sig[0], self.p)
v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
v2=pow(self.g, M, self.p)
if v1==v2:
return 1
return 0
def has_private(self):
"""Whether this is an ElGamal private key"""
if hasattr(self, 'x'):
return 1
else:
return 0
def can_encrypt(self):
return True
def can_sign(self):
return True
def publickey(self):
"""A matching ElGamal public key.
Returns:
a new :class:`ElGamalKey` object
"""
return construct((self.p, self.g, self.y))
def __eq__(self, other):
if bool(self.has_private()) != bool(other.has_private()):
return False
result = True
for comp in self._keydata:
result = result and (getattr(self.key, comp, None) ==
getattr(other.key, comp, None))
return result
def __ne__(self, other):
return not self.__eq__(other)
def __getstate__(self):
# ElGamal key is not pickable
from pickle import PicklingError
raise PicklingError
# Methods defined in PyCryptodome that we don't support anymore
def sign(self, M, K):
raise NotImplementedError
def verify(self, M, signature):
raise NotImplementedError
def encrypt(self, plaintext, K):
raise NotImplementedError
def decrypt(self, ciphertext):
raise NotImplementedError
def blind(self, M, B):
raise NotImplementedError
def unblind(self, M, B):
raise NotImplementedError
def size(self):
raise NotImplementedError
|