1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
#
# SecretSharing.py : distribute a secret amongst a group of participants
#
# ===================================================================
#
# Copyright (c) 2014, Legrandin <[email protected]>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
from Cryptodome.Util.py3compat import is_native_int
from Cryptodome.Util import number
from Cryptodome.Util.number import long_to_bytes, bytes_to_long
from Cryptodome.Random import get_random_bytes as rng
def _mult_gf2(f1, f2):
"""Multiply two polynomials in GF(2)"""
# Ensure f2 is the smallest
if f2 > f1:
f1, f2 = f2, f1
z = 0
while f2:
if f2 & 1:
z ^= f1
f1 <<= 1
f2 >>= 1
return z
def _div_gf2(a, b):
"""
Compute division of polynomials over GF(2).
Given a and b, it finds two polynomials q and r such that:
a = b*q + r with deg(r)<deg(b)
"""
if (a < b):
return 0, a
deg = number.size
q = 0
r = a
d = deg(b)
while deg(r) >= d:
s = 1 << (deg(r) - d)
q ^= s
r ^= _mult_gf2(b, s)
return (q, r)
class _Element(object):
"""Element of GF(2^128) field"""
# The irreducible polynomial defining this field is 1+x+x^2+x^7+x^128
irr_poly = 1 + 2 + 4 + 128 + 2 ** 128
def __init__(self, encoded_value):
"""Initialize the element to a certain value.
The value passed as parameter is internally encoded as
a 128-bit integer, where each bit represents a polynomial
coefficient. The LSB is the constant coefficient.
"""
if is_native_int(encoded_value):
self._value = encoded_value
elif len(encoded_value) == 16:
self._value = bytes_to_long(encoded_value)
else:
raise ValueError("The encoded value must be an integer or a 16 byte string")
def __eq__(self, other):
return self._value == other._value
def __int__(self):
"""Return the field element, encoded as a 128-bit integer."""
return self._value
def encode(self):
"""Return the field element, encoded as a 16 byte string."""
return long_to_bytes(self._value, 16)
def __mul__(self, factor):
f1 = self._value
f2 = factor._value
# Make sure that f2 is the smallest, to speed up the loop
if f2 > f1:
f1, f2 = f2, f1
if self.irr_poly in (f1, f2):
return _Element(0)
mask1 = 2 ** 128
v, z = f1, 0
while f2:
# if f2 ^ 1: z ^= v
mask2 = int(bin(f2 & 1)[2:] * 128, base=2)
z = (mask2 & (z ^ v)) | ((mask1 - mask2 - 1) & z)
v <<= 1
# if v & mask1: v ^= self.irr_poly
mask3 = int(bin((v >> 128) & 1)[2:] * 128, base=2)
v = (mask3 & (v ^ self.irr_poly)) | ((mask1 - mask3 - 1) & v)
f2 >>= 1
return _Element(z)
def __add__(self, term):
return _Element(self._value ^ term._value)
def inverse(self):
"""Return the inverse of this element in GF(2^128)."""
# We use the Extended GCD algorithm
# http://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor
if self._value == 0:
raise ValueError("Inversion of zero")
r0, r1 = self._value, self.irr_poly
s0, s1 = 1, 0
while r1 > 0:
q = _div_gf2(r0, r1)[0]
r0, r1 = r1, r0 ^ _mult_gf2(q, r1)
s0, s1 = s1, s0 ^ _mult_gf2(q, s1)
return _Element(s0)
def __pow__(self, exponent):
result = _Element(self._value)
for _ in range(exponent - 1):
result = result * self
return result
class Shamir(object):
"""Shamir's secret sharing scheme.
A secret is split into ``n`` shares, and it is sufficient to collect
``k`` of them to reconstruct the secret.
"""
@staticmethod
def split(k, n, secret, ssss=False):
"""Split a secret into ``n`` shares.
The secret can be reconstructed later using just ``k`` shares
out of the original ``n``.
Each share must be kept confidential to the person it was
assigned to.
Each share is associated to an index (starting from 1).
Args:
k (integer):
The sufficient number of shares to reconstruct the secret (``k < n``).
n (integer):
The number of shares that this method will create.
secret (byte string):
A byte string of 16 bytes (e.g. the AES 128 key).
ssss (bool):
If ``True``, the shares can be used with the ``ssss`` utility.
Default: ``False``.
Return (tuples):
``n`` tuples. A tuple is meant for each participant and it contains two items:
1. the unique index (an integer)
2. the share (a byte string, 16 bytes)
"""
#
# We create a polynomial with random coefficients in GF(2^128):
#
# p(x) = \sum_{i=0}^{k-1} c_i * x^i
#
# c_0 is the encoded secret
#
coeffs = [_Element(rng(16)) for i in range(k - 1)]
coeffs.append(_Element(secret))
# Each share is y_i = p(x_i) where x_i is the public index
# associated to each of the n users.
def make_share(user, coeffs, ssss):
idx = _Element(user)
share = _Element(0)
for coeff in coeffs:
share = idx * share + coeff
if ssss:
share += _Element(user) ** len(coeffs)
return share.encode()
return [(i, make_share(i, coeffs, ssss)) for i in range(1, n + 1)]
@staticmethod
def combine(shares, ssss=False):
"""Recombine a secret, if enough shares are presented.
Args:
shares (tuples):
The *k* tuples, each containin the index (an integer) and
the share (a byte string, 16 bytes long) that were assigned to
a participant.
ssss (bool):
If ``True``, the shares were produced by the ``ssss`` utility.
Default: ``False``.
Return:
The original secret, as a byte string (16 bytes long).
"""
#
# Given k points (x,y), the interpolation polynomial of degree k-1 is:
#
# L(x) = \sum_{j=0}^{k-1} y_i * l_j(x)
#
# where:
#
# l_j(x) = \prod_{ \overset{0 \le m \le k-1}{m \ne j} }
# \frac{x - x_m}{x_j - x_m}
#
# However, in this case we are purely interested in the constant
# coefficient of L(x).
#
k = len(shares)
gf_shares = []
for x in shares:
idx = _Element(x[0])
value = _Element(x[1])
if any(y[0] == idx for y in gf_shares):
raise ValueError("Duplicate share")
if ssss:
value += idx ** k
gf_shares.append((idx, value))
result = _Element(0)
for j in range(k):
x_j, y_j = gf_shares[j]
numerator = _Element(1)
denominator = _Element(1)
for m in range(k):
x_m = gf_shares[m][0]
if m != j:
numerator *= x_m
denominator *= x_j + x_m
result += y_j * numerator * denominator.inverse()
return result.encode()
|