aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/Cryptodome/Cipher/_mode_openpgp.py
blob: d86ed19a73717602c8b7124cf5c2e1646ac45a1c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in
#    the documentation and/or other materials provided with the
#    distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================

"""
OpenPGP mode.
"""

__all__ = ['OpenPgpMode']

from Cryptodome.Util.py3compat import _copy_bytes
from Cryptodome.Random import get_random_bytes

class OpenPgpMode(object):
    """OpenPGP mode.

    This mode is a variant of CFB, and it is only used in PGP and
    OpenPGP_ applications. If in doubt, use another mode.

    An Initialization Vector (*IV*) is required.

    Unlike CFB, the *encrypted* IV (not the IV itself) is
    transmitted to the receiver.

    The IV is a random data block. For legacy reasons, two of its bytes are
    duplicated to act as a checksum for the correctness of the key, which is now
    known to be insecure and is ignored. The encrypted IV is therefore 2 bytes
    longer than the clean IV.

    .. _OpenPGP: http://tools.ietf.org/html/rfc4880

    :undocumented: __init__
    """

    def __init__(self, factory, key, iv, cipher_params):

        #: The block size of the underlying cipher, in bytes.
        self.block_size = factory.block_size

        self._done_first_block = False  # True after the first encryption

        # Instantiate a temporary cipher to process the IV
        IV_cipher = factory.new(
                        key,
                        factory.MODE_CFB,
                        IV=b'\x00' * self.block_size,
                        segment_size=self.block_size * 8,
                        **cipher_params)

        iv = _copy_bytes(None, None, iv)

        # The cipher will be used for...
        if len(iv) == self.block_size:
            # ... encryption
            self._encrypted_IV = IV_cipher.encrypt(iv + iv[-2:])
        elif len(iv) == self.block_size + 2:
            # ... decryption
            self._encrypted_IV = iv
            # Last two bytes are for a deprecated "quick check" feature that
            # should not be used. (https://eprint.iacr.org/2005/033)
            iv = IV_cipher.decrypt(iv)[:-2]
        else:
            raise ValueError("Length of IV must be %d or %d bytes"
                             " for MODE_OPENPGP"
                             % (self.block_size, self.block_size + 2))

        self.iv = self.IV = iv

        # Instantiate the cipher for the real PGP data
        self._cipher = factory.new(
                            key,
                            factory.MODE_CFB,
                            IV=self._encrypted_IV[-self.block_size:],
                            segment_size=self.block_size * 8,
                            **cipher_params)

    def encrypt(self, plaintext):
        """Encrypt data with the key and the parameters set at initialization.

        A cipher object is stateful: once you have encrypted a message
        you cannot encrypt (or decrypt) another message using the same
        object.

        The data to encrypt can be broken up in two or
        more pieces and `encrypt` can be called multiple times.

        That is, the statement:

            >>> c.encrypt(a) + c.encrypt(b)

        is equivalent to:

             >>> c.encrypt(a+b)

        This function does not add any padding to the plaintext.

        :Parameters:
          plaintext : bytes/bytearray/memoryview
            The piece of data to encrypt.

        :Return:
            the encrypted data, as a byte string.
            It is as long as *plaintext* with one exception:
            when encrypting the first message chunk,
            the encypted IV is prepended to the returned ciphertext.
        """

        res = self._cipher.encrypt(plaintext)
        if not self._done_first_block:
            res = self._encrypted_IV + res
            self._done_first_block = True
        return res

    def decrypt(self, ciphertext):
        """Decrypt data with the key and the parameters set at initialization.

        A cipher object is stateful: once you have decrypted a message
        you cannot decrypt (or encrypt) another message with the same
        object.

        The data to decrypt can be broken up in two or
        more pieces and `decrypt` can be called multiple times.

        That is, the statement:

            >>> c.decrypt(a) + c.decrypt(b)

        is equivalent to:

             >>> c.decrypt(a+b)

        This function does not remove any padding from the plaintext.

        :Parameters:
          ciphertext : bytes/bytearray/memoryview
            The piece of data to decrypt.

        :Return: the decrypted data (byte string).
        """

        return self._cipher.decrypt(ciphertext)


def _create_openpgp_cipher(factory, **kwargs):
    """Create a new block cipher, configured in OpenPGP mode.

    :Parameters:
      factory : module
        The module.

    :Keywords:
      key : bytes/bytearray/memoryview
        The secret key to use in the symmetric cipher.

      IV : bytes/bytearray/memoryview
        The initialization vector to use for encryption or decryption.

        For encryption, the IV must be as long as the cipher block size.

        For decryption, it must be 2 bytes longer (it is actually the
        *encrypted* IV which was prefixed to the ciphertext).
    """

    iv = kwargs.pop("IV", None)
    IV = kwargs.pop("iv", None)

    if (None, None) == (iv, IV):
        iv = get_random_bytes(factory.block_size)
    if iv is not None:
        if IV is not None:
            raise TypeError("You must either use 'iv' or 'IV', not both")
    else:
        iv = IV

    try:
        key = kwargs.pop("key")
    except KeyError as e:
        raise TypeError("Missing component: " + str(e))

    return OpenPgpMode(factory, key, iv, kwargs)