aboutsummaryrefslogtreecommitdiff
path: root/freezed_deps/ecdsa/test_numbertheory.py
blob: 4cec4fd6a77ff55cf4d7418a57156439cd82f173 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import operator
from six import print_
from functools import reduce
import operator
try:
    import unittest2 as unittest
except ImportError:
    import unittest
import hypothesis.strategies as st
import pytest
from hypothesis import given, settings, example
try:
    from hypothesis import HealthCheck
    HC_PRESENT=True
except ImportError:  # pragma: no cover
    HC_PRESENT=False
from .numbertheory import (SquareRootError, factorization, gcd, lcm,
                           jacobi, inverse_mod,
                           is_prime, next_prime, smallprimes,
                           square_root_mod_prime)


BIGPRIMES = (999671,
             999683,
             999721,
             999727,
             999749,
             999763,
             999769,
             999773,
             999809,
             999853,
             999863,
             999883,
             999907,
             999917,
             999931,
             999953,
             999959,
             999961,
             999979,
             999983)


@pytest.mark.parametrize(
    "prime, next_p",
    [(p, q) for p, q in zip(BIGPRIMES[:-1], BIGPRIMES[1:])])
def test_next_prime(prime, next_p):
    assert next_prime(prime) == next_p


@pytest.mark.parametrize(
    "val",
    [-1, 0, 1])
def test_next_prime_with_nums_less_2(val):
    assert next_prime(val) == 2


@pytest.mark.parametrize("prime", smallprimes)
def test_square_root_mod_prime_for_small_primes(prime):
    squares = set()
    for num in range(0, 1 + prime // 2):
        sq = num * num % prime
        squares.add(sq)
        root = square_root_mod_prime(sq, prime)
        # tested for real with TestNumbertheory.test_square_root_mod_prime
        assert root * root % prime == sq

    for nonsquare in range(0, prime):
        if nonsquare in squares:
            continue
        with pytest.raises(SquareRootError):
            square_root_mod_prime(nonsquare, prime)


@st.composite
def st_two_nums_rel_prime(draw):
    # 521-bit is the biggest curve we operate on, use 1024 for a bit
    # of breathing space
    mod = draw(st.integers(min_value=2, max_value=2**1024))
    num = draw(st.integers(min_value=1, max_value=mod-1)
               .filter(lambda x: gcd(x, mod) == 1))
    return num, mod


@st.composite
def st_primes(draw, *args, **kwargs):
    if "min_value" not in kwargs:  # pragma: no branch
        kwargs["min_value"] = 1
    prime = draw(st.sampled_from(smallprimes) |
                 st.integers(*args, **kwargs)
                 .filter(is_prime))
    return prime


@st.composite
def st_num_square_prime(draw):
    prime = draw(st_primes(max_value=2**1024))
    num = draw(st.integers(min_value=0, max_value=1 + prime // 2))
    sq = num * num % prime
    return sq, prime


@st.composite
def st_comp_with_com_fac(draw):
    """
    Strategy that returns lists of numbers, all having a common factor.
    """
    primes = draw(st.lists(st_primes(max_value=2**512), min_size=1,
                           max_size=10))
    # select random prime(s) that will make the common factor of composites
    com_fac_primes = draw(st.lists(st.sampled_from(primes),
                                   min_size=1, max_size=20))
    com_fac = reduce(operator.mul, com_fac_primes, 1)

    # select at most 20 lists (returned numbers),
    # each having at most 30 primes (factors) including none (then the number
    # will be 1)
    comp_primes = draw(
        st.integers(min_value=1, max_value=20).
        flatmap(lambda n: st.lists(st.lists(st.sampled_from(primes),
                                            max_size=30),
                                   min_size=1, max_size=n)))

    return [reduce(operator.mul, nums, 1) * com_fac for nums in comp_primes]


@st.composite
def st_comp_no_com_fac(draw):
    """
    Strategy that returns lists of numbers that don't have a common factor.
    """
    primes = draw(st.lists(st_primes(max_value=2**512),
                           min_size=2, max_size=10, unique=True))
    # first select the primes that will create the uncommon factor
    # between returned numbers
    uncom_fac_primes = draw(st.lists(
        st.sampled_from(primes),
        min_size=1, max_size=len(primes)-1, unique=True))
    uncom_fac = reduce(operator.mul, uncom_fac_primes, 1)

    # then build composites from leftover primes
    leftover_primes = [i for i in primes if i not in uncom_fac_primes]

    assert leftover_primes
    assert uncom_fac_primes

    # select at most 20 lists, each having at most 30 primes
    # selected from the leftover_primes list
    number_primes = draw(
        st.integers(min_value=1, max_value=20).
        flatmap(lambda n: st.lists(st.lists(st.sampled_from(leftover_primes),
                                            max_size=30),
                                   min_size=1, max_size=n)))

    numbers = [reduce(operator.mul, nums, 1) for nums in number_primes]

    insert_at = draw(st.integers(min_value=0, max_value=len(numbers)))
    numbers.insert(insert_at, uncom_fac)
    return numbers


HYP_SETTINGS = {}
if HC_PRESENT:  # pragma: no branch
    HYP_SETTINGS['suppress_health_check']=[HealthCheck.filter_too_much,
                                           HealthCheck.too_slow]
    # the factorization() sometimes takes a long time to finish
    HYP_SETTINGS['deadline'] = 5000


HYP_SLOW_SETTINGS=dict(HYP_SETTINGS)
HYP_SLOW_SETTINGS["max_examples"] = 10


class TestNumbertheory(unittest.TestCase):
    def test_gcd(self):
        assert gcd(3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13) == 3 * 5
        assert gcd([3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13]) == 3 * 5
        assert gcd(3) == 3

    @unittest.skipUnless(HC_PRESENT,
                         "Hypothesis 2.0.0 can't be made tolerant of hard to "
                         "meet requirements (like `is_prime()`), the test "
                         "case times-out on it")
    @settings(**HYP_SLOW_SETTINGS)
    @given(st_comp_with_com_fac())
    def test_gcd_with_com_factor(self, numbers):
        n = gcd(numbers)
        assert 1 in numbers or n != 1
        for i in numbers:
            assert i % n == 0

    @unittest.skipUnless(HC_PRESENT,
                         "Hypothesis 2.0.0 can't be made tolerant of hard to "
                         "meet requirements (like `is_prime()`), the test "
                         "case times-out on it")
    @settings(**HYP_SLOW_SETTINGS)
    @given(st_comp_no_com_fac())
    def test_gcd_with_uncom_factor(self, numbers):
        n = gcd(numbers)
        assert n == 1

    @given(st.lists(st.integers(min_value=1, max_value=2**8192),
                    min_size=1, max_size=20))
    def test_gcd_with_random_numbers(self, numbers):
        n = gcd(numbers)
        for i in numbers:
            # check that at least it's a divider
            assert i % n == 0

    def test_lcm(self):
        assert lcm(3, 5 * 3, 7 * 3) == 3 * 5 * 7
        assert lcm([3, 5 * 3, 7 * 3]) == 3 * 5 * 7
        assert lcm(3) == 3

    @given(st.lists(st.integers(min_value=1, max_value=2**8192),
                    min_size=1, max_size=20))
    def test_lcm_with_random_numbers(self, numbers):
        n = lcm(numbers)
        for i in numbers:
            assert n % i == 0

    @unittest.skipUnless(HC_PRESENT,
                         "Hypothesis 2.0.0 can't be made tolerant of hard to "
                         "meet requirements (like `is_prime()`), the test "
                         "case times-out on it")
    @settings(**HYP_SETTINGS)
    @given(st_num_square_prime())
    def test_square_root_mod_prime(self, vals):
        square, prime = vals

        calc = square_root_mod_prime(square, prime)
        assert calc * calc % prime == square

    @settings(**HYP_SETTINGS)
    @given(st.integers(min_value=1, max_value=10**12))
    @example(265399 * 1526929)
    @example(373297 ** 2 * 553991)
    def test_factorization(self, num):
        factors = factorization(num)
        mult = 1
        for i in factors:
            mult *= i[0] ** i[1]
        assert mult == num

    @settings(**HYP_SETTINGS)
    @given(st.integers(min_value=3, max_value=1000).filter(lambda x: x % 2))
    def test_jacobi(self, mod):
        if is_prime(mod):
            squares = set()
            for root in range(1, mod):
                assert jacobi(root * root, mod) == 1
                squares.add(root * root % mod)
            for i in range(1, mod):
                if i not in squares:
                    assert jacobi(i, mod) == -1
        else:
            factors = factorization(mod)
            for a in range(1, mod):
                c = 1
                for i in factors:
                    c *= jacobi(a, i[0]) ** i[1]
                assert c == jacobi(a, mod)

    @given(st_two_nums_rel_prime())
    def test_inverse_mod(self, nums):
        num, mod = nums

        inv = inverse_mod(num, mod)

        assert 0 < inv < mod
        assert num * inv % mod == 1

    def test_inverse_mod_with_zero(self):
        assert 0 == inverse_mod(0, 11)