1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
try:
import unittest2 as unittest
except ImportError:
import unittest
import hypothesis.strategies as st
from hypothesis import given, assume, settings, example
from .ellipticcurve import Point, PointJacobi, INFINITY
from .ecdsa import generator_256, curve_256, generator_224
from .numbertheory import inverse_mod
class TestJacobi(unittest.TestCase):
def test___init__(self):
curve = object()
x = 2
y = 3
z = 1
order = 4
pj = PointJacobi(curve, x, y, z, order)
self.assertEqual(pj.order(), order)
self.assertIs(pj.curve(), curve)
self.assertEqual(pj.x(), x)
self.assertEqual(pj.y(), y)
def test_add_with_different_curves(self):
p_a = PointJacobi.from_affine(generator_256)
p_b = PointJacobi.from_affine(generator_224)
with self.assertRaises(ValueError):
p_a + p_b
def test_compare_different_curves(self):
self.assertNotEqual(generator_256, generator_224)
def test_equality_with_non_point(self):
pj = PointJacobi.from_affine(generator_256)
self.assertNotEqual(pj, "value")
def test_conversion(self):
pj = PointJacobi.from_affine(generator_256)
pw = pj.to_affine()
self.assertEqual(generator_256, pw)
def test_single_double(self):
pj = PointJacobi.from_affine(generator_256)
pw = generator_256.double()
pj = pj.double()
self.assertEqual(pj.x(), pw.x())
self.assertEqual(pj.y(), pw.y())
def test_double_with_zero_point(self):
pj = PointJacobi(curve_256, 0, 0, 1)
pj = pj.double()
self.assertIs(pj, INFINITY)
def test_double_with_zero_equivalent_point(self):
pj = PointJacobi(curve_256, 0, curve_256.p(), 1)
pj = pj.double()
self.assertIs(pj, INFINITY)
def test_double_with_zero_equivalent_point_non_1_z(self):
pj = PointJacobi(curve_256, 0, curve_256.p(), 2)
pj = pj.double()
self.assertIs(pj, INFINITY)
def test_compare_with_affine_point(self):
pj = PointJacobi.from_affine(generator_256)
pa = pj.to_affine()
self.assertEqual(pj, pa)
self.assertEqual(pa, pj)
def test_to_affine_with_zero_point(self):
pj = PointJacobi(curve_256, 0, 0, 1)
pa = pj.to_affine()
self.assertIs(pa, INFINITY)
def test_add_with_affine_point(self):
pj = PointJacobi.from_affine(generator_256)
pa = pj.to_affine()
s = pj + pa
self.assertEqual(s, pj.double())
def test_radd_with_affine_point(self):
pj = PointJacobi.from_affine(generator_256)
pa = pj.to_affine()
s = pa + pj
self.assertEqual(s, pj.double())
def test_add_with_infinity(self):
pj = PointJacobi.from_affine(generator_256)
s = pj + INFINITY
self.assertEqual(s, pj)
def test_add_zero_point_to_affine(self):
pa = PointJacobi.from_affine(generator_256).to_affine()
pj = PointJacobi(curve_256, 0, 0, 1)
s = pj + pa
self.assertIs(s, pa)
def test_multiply_by_zero(self):
pj = PointJacobi.from_affine(generator_256)
pj = pj * 0
self.assertIs(pj, INFINITY)
def test_zero_point_multiply_by_one(self):
pj = PointJacobi(curve_256, 0, 0, 1)
pj = pj * 1
self.assertIs(pj, INFINITY)
def test_multiply_by_one(self):
pj = PointJacobi.from_affine(generator_256)
pw = generator_256 * 1
pj = pj * 1
self.assertEqual(pj.x(), pw.x())
self.assertEqual(pj.y(), pw.y())
def test_multiply_by_two(self):
pj = PointJacobi.from_affine(generator_256)
pw = generator_256 * 2
pj = pj * 2
self.assertEqual(pj.x(), pw.x())
self.assertEqual(pj.y(), pw.y())
def test_rmul_by_two(self):
pj = PointJacobi.from_affine(generator_256)
pw = generator_256 * 2
pj = 2 * pj
self.assertEqual(pj, pw)
def test_compare_non_zero_with_infinity(self):
pj = PointJacobi.from_affine(generator_256)
self.assertNotEqual(pj, INFINITY)
def test_compare_zero_point_with_infinity(self):
pj = PointJacobi(curve_256, 0, 0, 1)
self.assertEqual(pj, INFINITY)
def test_compare_double_with_multiply(self):
pj = PointJacobi.from_affine(generator_256)
dbl = pj.double()
mlpl = pj * 2
self.assertEqual(dbl, mlpl)
@settings(max_examples=10)
@given(st.integers(min_value=0, max_value=int(generator_256.order())))
def test_multiplications(self, mul):
pj = PointJacobi.from_affine(generator_256)
pw = pj.to_affine() * mul
pj = pj * mul
self.assertEqual((pj.x(), pj.y()), (pw.x(), pw.y()))
self.assertEqual(pj, pw)
@settings(max_examples=10)
@given(st.integers(min_value=0, max_value=int(generator_256.order())))
@example(0)
@example(int(generator_256.order()))
def test_precompute(self, mul):
precomp = PointJacobi.from_affine(generator_256, True)
pj = PointJacobi.from_affine(generator_256)
a = precomp * mul
b = pj * mul
self.assertEqual(a, b)
@settings(max_examples=10)
@given(st.integers(min_value=1, max_value=int(generator_256.order())),
st.integers(min_value=1, max_value=int(generator_256.order())))
@example(3, 3)
def test_add_scaled_points(self, a_mul, b_mul):
j_g = PointJacobi.from_affine(generator_256)
a = PointJacobi.from_affine(j_g * a_mul)
b = PointJacobi.from_affine(j_g * b_mul)
c = a + b
self.assertEqual(c, j_g * (a_mul + b_mul))
@settings(max_examples=10)
@given(st.integers(min_value=1, max_value=int(generator_256.order())),
st.integers(min_value=1, max_value=int(generator_256.order())),
st.integers(min_value=1, max_value=int(curve_256.p()-1)))
def test_add_one_scaled_point(self, a_mul, b_mul, new_z):
j_g = PointJacobi.from_affine(generator_256)
a = PointJacobi.from_affine(j_g * a_mul)
b = PointJacobi.from_affine(j_g * b_mul)
p = curve_256.p()
assume(inverse_mod(new_z, p))
new_zz = new_z * new_z % p
b = PointJacobi(
curve_256, b.x() * new_zz % p, b.y() * new_zz * new_z % p, new_z)
c = a + b
self.assertEqual(c, j_g * (a_mul + b_mul))
@settings(max_examples=10)
@given(st.integers(min_value=1, max_value=int(generator_256.order())),
st.integers(min_value=1, max_value=int(generator_256.order())),
st.integers(min_value=1, max_value=int(curve_256.p()-1)))
@example(1, 1, 1)
@example(3, 3, 3)
@example(2, int(generator_256.order()-2), 1)
@example(2, int(generator_256.order()-2), 3)
def test_add_same_scale_points(self, a_mul, b_mul, new_z):
j_g = PointJacobi.from_affine(generator_256)
a = PointJacobi.from_affine(j_g * a_mul)
b = PointJacobi.from_affine(j_g * b_mul)
p = curve_256.p()
assume(inverse_mod(new_z, p))
new_zz = new_z * new_z % p
a = PointJacobi(
curve_256, a.x() * new_zz % p, a.y() * new_zz * new_z % p, new_z)
b = PointJacobi(
curve_256, b.x() * new_zz % p, b.y() * new_zz * new_z % p, new_z)
c = a + b
self.assertEqual(c, j_g * (a_mul + b_mul))
@settings(max_examples=14)
@given(st.integers(min_value=1, max_value=int(generator_256.order())),
st.integers(min_value=1, max_value=int(generator_256.order())),
st.lists(st.integers(min_value=1, max_value=int(curve_256.p()-1)),
min_size=2, max_size=2, unique=True))
@example(2, 2, [2, 1])
@example(2, 2, [2, 3])
@example(2, int(generator_256.order()-2), [2, 3])
@example(2, int(generator_256.order()-2), [2, 1])
def test_add_different_scale_points(self, a_mul, b_mul, new_z):
j_g = PointJacobi.from_affine(generator_256)
a = PointJacobi.from_affine(j_g * a_mul)
b = PointJacobi.from_affine(j_g * b_mul)
p = curve_256.p()
assume(inverse_mod(new_z[0], p))
assume(inverse_mod(new_z[1], p))
new_zz0 = new_z[0] * new_z[0] % p
new_zz1 = new_z[1] * new_z[1] % p
a = PointJacobi(
curve_256,
a.x() * new_zz0 % p,
a.y() * new_zz0 * new_z[0] % p,
new_z[0])
b = PointJacobi(
curve_256,
b.x() * new_zz1 % p,
b.y() * new_zz1 * new_z[1] % p,
new_z[1])
c = a + b
self.assertEqual(c, j_g * (a_mul + b_mul))
def test_add_point_3_times(self):
j_g = PointJacobi.from_affine(generator_256)
self.assertEqual(j_g * 3, j_g + j_g + j_g)
def test_mul_add_inf(self):
j_g = PointJacobi.from_affine(generator_256)
self.assertEqual(j_g, j_g.mul_add(1, INFINITY, 1))
def test_mul_add_same(self):
j_g = PointJacobi.from_affine(generator_256)
self.assertEqual(j_g * 2, j_g.mul_add(1, j_g, 1))
def test_mul_add_precompute(self):
j_g = PointJacobi.from_affine(generator_256, True)
b = PointJacobi.from_affine(j_g * 255, True)
self.assertEqual(j_g * 256, j_g + b)
self.assertEqual(j_g * (5 + 255 * 7), j_g * 5 + b * 7)
self.assertEqual(j_g * (5 + 255 * 7), j_g.mul_add(5, b, 7))
def test_mul_add_precompute_large(self):
j_g = PointJacobi.from_affine(generator_256, True)
b = PointJacobi.from_affine(j_g * 255, True)
self.assertEqual(j_g * 256, j_g + b)
self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0),
j_g * 0xff00 + b * 0xf0f0)
self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0),
j_g.mul_add(0xff00, b, 0xf0f0))
def test_mul_add_to_mul(self):
j_g = PointJacobi.from_affine(generator_256)
a = j_g * 3
b = j_g.mul_add(2, j_g, 1)
self.assertEqual(a, b)
def test_mul_add(self):
j_g = PointJacobi.from_affine(generator_256)
w_a = generator_256 * 255
w_b = generator_256 * (0xa8*0xf0)
j_b = j_g * 0xa8
ret = j_g.mul_add(255, j_b, 0xf0)
self.assertEqual(ret.to_affine(), w_a + w_b)
def test_mul_add_large(self):
j_g = PointJacobi.from_affine(generator_256)
b = PointJacobi.from_affine(j_g * 255)
self.assertEqual(j_g * 256, j_g + b)
self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0),
j_g * 0xff00 + b * 0xf0f0)
self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0),
j_g.mul_add(0xff00, b, 0xf0f0))
|