aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/ecdsa/util.py
diff options
context:
space:
mode:
Diffstat (limited to 'frozen_deps/ecdsa/util.py')
-rw-r--r--frozen_deps/ecdsa/util.py435
1 files changed, 435 insertions, 0 deletions
diff --git a/frozen_deps/ecdsa/util.py b/frozen_deps/ecdsa/util.py
new file mode 100644
index 0000000..e77d61c
--- /dev/null
+++ b/frozen_deps/ecdsa/util.py
@@ -0,0 +1,435 @@
+from __future__ import division
+
+import os
+import math
+import binascii
+import sys
+from hashlib import sha256
+from six import PY2, int2byte, b, next
+from . import der
+from ._compat import normalise_bytes
+
+# RFC5480:
+# The "unrestricted" algorithm identifier is:
+# id-ecPublicKey OBJECT IDENTIFIER ::= {
+# iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
+
+oid_ecPublicKey = (1, 2, 840, 10045, 2, 1)
+encoded_oid_ecPublicKey = der.encode_oid(*oid_ecPublicKey)
+
+# RFC5480:
+# The ECDH algorithm uses the following object identifier:
+# id-ecDH OBJECT IDENTIFIER ::= {
+# iso(1) identified-organization(3) certicom(132) schemes(1)
+# ecdh(12) }
+
+oid_ecDH = (1, 3, 132, 1, 12)
+
+# RFC5480:
+# The ECMQV algorithm uses the following object identifier:
+# id-ecMQV OBJECT IDENTIFIER ::= {
+# iso(1) identified-organization(3) certicom(132) schemes(1)
+# ecmqv(13) }
+
+oid_ecMQV = (1, 3, 132, 1, 13)
+
+if sys.version_info >= (3,):
+
+ def entropy_to_bits(ent_256):
+ """Convert a bytestring to string of 0's and 1's"""
+ return bin(int.from_bytes(ent_256, "big"))[2:].zfill(len(ent_256) * 8)
+
+
+else:
+
+ def entropy_to_bits(ent_256):
+ """Convert a bytestring to string of 0's and 1's"""
+ return "".join(bin(ord(x))[2:].zfill(8) for x in ent_256)
+
+
+if sys.version_info < (2, 7):
+ # Can't add a method to a built-in type so we are stuck with this
+ def bit_length(x):
+ return len(bin(x)) - 2
+
+
+else:
+
+ def bit_length(x):
+ return x.bit_length() or 1
+
+
+def orderlen(order):
+ return (1 + len("%x" % order)) // 2 # bytes
+
+
+def randrange(order, entropy=None):
+ """Return a random integer k such that 1 <= k < order, uniformly
+ distributed across that range. Worst case should be a mean of 2 loops at
+ (2**k)+2.
+
+ Note that this function is not declared to be forwards-compatible: we may
+ change the behavior in future releases. The entropy= argument (which
+ should get a callable that behaves like os.urandom) can be used to
+ achieve stability within a given release (for repeatable unit tests), but
+ should not be used as a long-term-compatible key generation algorithm.
+ """
+ assert order > 1
+ if entropy is None:
+ entropy = os.urandom
+ upper_2 = bit_length(order - 2)
+ upper_256 = upper_2 // 8 + 1
+ while True: # I don't think this needs a counter with bit-wise randrange
+ ent_256 = entropy(upper_256)
+ ent_2 = entropy_to_bits(ent_256)
+ rand_num = int(ent_2[:upper_2], base=2) + 1
+ if 0 < rand_num < order:
+ return rand_num
+
+
+class PRNG:
+ # this returns a callable which, when invoked with an integer N, will
+ # return N pseudorandom bytes. Note: this is a short-term PRNG, meant
+ # primarily for the needs of randrange_from_seed__trytryagain(), which
+ # only needs to run it a few times per seed. It does not provide
+ # protection against state compromise (forward security).
+ def __init__(self, seed):
+ self.generator = self.block_generator(seed)
+
+ def __call__(self, numbytes):
+ a = [next(self.generator) for i in range(numbytes)]
+
+ if PY2:
+ return "".join(a)
+ else:
+ return bytes(a)
+
+ def block_generator(self, seed):
+ counter = 0
+ while True:
+ for byte in sha256(
+ ("prng-%d-%s" % (counter, seed)).encode()
+ ).digest():
+ yield byte
+ counter += 1
+
+
+def randrange_from_seed__overshoot_modulo(seed, order):
+ # hash the data, then turn the digest into a number in [1,order).
+ #
+ # We use David-Sarah Hopwood's suggestion: turn it into a number that's
+ # sufficiently larger than the group order, then modulo it down to fit.
+ # This should give adequate (but not perfect) uniformity, and simple
+ # code. There are other choices: try-try-again is the main one.
+ base = PRNG(seed)(2 * orderlen(order))
+ number = (int(binascii.hexlify(base), 16) % (order - 1)) + 1
+ assert 1 <= number < order, (1, number, order)
+ return number
+
+
+def lsb_of_ones(numbits):
+ return (1 << numbits) - 1
+
+
+def bits_and_bytes(order):
+ bits = int(math.log(order - 1, 2) + 1)
+ bytes = bits // 8
+ extrabits = bits % 8
+ return bits, bytes, extrabits
+
+
+# the following randrange_from_seed__METHOD() functions take an
+# arbitrarily-sized secret seed and turn it into a number that obeys the same
+# range limits as randrange() above. They are meant for deriving consistent
+# signing keys from a secret rather than generating them randomly, for
+# example a protocol in which three signing keys are derived from a master
+# secret. You should use a uniformly-distributed unguessable seed with about
+# curve.baselen bytes of entropy. To use one, do this:
+# seed = os.urandom(curve.baselen) # or other starting point
+# secexp = ecdsa.util.randrange_from_seed__trytryagain(sed, curve.order)
+# sk = SigningKey.from_secret_exponent(secexp, curve)
+
+
+def randrange_from_seed__truncate_bytes(seed, order, hashmod=sha256):
+ # hash the seed, then turn the digest into a number in [1,order), but
+ # don't worry about trying to uniformly fill the range. This will lose,
+ # on average, four bits of entropy.
+ bits, _bytes, extrabits = bits_and_bytes(order)
+ if extrabits:
+ _bytes += 1
+ base = hashmod(seed).digest()[:_bytes]
+ base = "\x00" * (_bytes - len(base)) + base
+ number = 1 + int(binascii.hexlify(base), 16)
+ assert 1 <= number < order
+ return number
+
+
+def randrange_from_seed__truncate_bits(seed, order, hashmod=sha256):
+ # like string_to_randrange_truncate_bytes, but only lose an average of
+ # half a bit
+ bits = int(math.log(order - 1, 2) + 1)
+ maxbytes = (bits + 7) // 8
+ base = hashmod(seed).digest()[:maxbytes]
+ base = "\x00" * (maxbytes - len(base)) + base
+ topbits = 8 * maxbytes - bits
+ if topbits:
+ base = int2byte(ord(base[0]) & lsb_of_ones(topbits)) + base[1:]
+ number = 1 + int(binascii.hexlify(base), 16)
+ assert 1 <= number < order
+ return number
+
+
+def randrange_from_seed__trytryagain(seed, order):
+ # figure out exactly how many bits we need (rounded up to the nearest
+ # bit), so we can reduce the chance of looping to less than 0.5 . This is
+ # specified to feed from a byte-oriented PRNG, and discards the
+ # high-order bits of the first byte as necessary to get the right number
+ # of bits. The average number of loops will range from 1.0 (when
+ # order=2**k-1) to 2.0 (when order=2**k+1).
+ assert order > 1
+ bits, bytes, extrabits = bits_and_bytes(order)
+ generate = PRNG(seed)
+ while True:
+ extrabyte = b("")
+ if extrabits:
+ extrabyte = int2byte(ord(generate(1)) & lsb_of_ones(extrabits))
+ guess = string_to_number(extrabyte + generate(bytes)) + 1
+ if 1 <= guess < order:
+ return guess
+
+
+def number_to_string(num, order):
+ l = orderlen(order)
+ fmt_str = "%0" + str(2 * l) + "x"
+ string = binascii.unhexlify((fmt_str % num).encode())
+ assert len(string) == l, (len(string), l)
+ return string
+
+
+def number_to_string_crop(num, order):
+ l = orderlen(order)
+ fmt_str = "%0" + str(2 * l) + "x"
+ string = binascii.unhexlify((fmt_str % num).encode())
+ return string[:l]
+
+
+def string_to_number(string):
+ return int(binascii.hexlify(string), 16)
+
+
+def string_to_number_fixedlen(string, order):
+ l = orderlen(order)
+ assert len(string) == l, (len(string), l)
+ return int(binascii.hexlify(string), 16)
+
+
+# these methods are useful for the sigencode= argument to SK.sign() and the
+# sigdecode= argument to VK.verify(), and control how the signature is packed
+# or unpacked.
+
+
+def sigencode_strings(r, s, order):
+ r_str = number_to_string(r, order)
+ s_str = number_to_string(s, order)
+ return (r_str, s_str)
+
+
+def sigencode_string(r, s, order):
+ """
+ Encode the signature to raw format (:term:`raw encoding`)
+
+ It's expected that this function will be used as a `sigencode=` parameter
+ in :func:`ecdsa.keys.SigningKey.sign` method.
+
+ :param int r: first parameter of the signature
+ :param int s: second parameter of the signature
+ :param int order: the order of the curve over which the signature was
+ computed
+
+ :return: raw encoding of ECDSA signature
+ :rtype: bytes
+ """
+ # for any given curve, the size of the signature numbers is
+ # fixed, so just use simple concatenation
+ r_str, s_str = sigencode_strings(r, s, order)
+ return r_str + s_str
+
+
+def sigencode_der(r, s, order):
+ """
+ Encode the signature into the ECDSA-Sig-Value structure using :term:`DER`.
+
+ Encodes the signature to the following :term:`ASN.1` structure::
+
+ Ecdsa-Sig-Value ::= SEQUENCE {
+ r INTEGER,
+ s INTEGER
+ }
+
+ It's expected that this function will be used as a `sigencode=` parameter
+ in :func:`ecdsa.keys.SigningKey.sign` method.
+
+ :param int r: first parameter of the signature
+ :param int s: second parameter of the signature
+ :param int order: the order of the curve over which the signature was
+ computed
+
+ :return: DER encoding of ECDSA signature
+ :rtype: bytes
+ """
+ return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
+
+
+# canonical versions of sigencode methods
+# these enforce low S values, by negating the value (modulo the order) if
+# above order/2 see CECKey::Sign()
+# https://github.com/bitcoin/bitcoin/blob/master/src/key.cpp#L214
+def sigencode_strings_canonize(r, s, order):
+ if s > order / 2:
+ s = order - s
+ return sigencode_strings(r, s, order)
+
+
+def sigencode_string_canonize(r, s, order):
+ if s > order / 2:
+ s = order - s
+ return sigencode_string(r, s, order)
+
+
+def sigencode_der_canonize(r, s, order):
+ if s > order / 2:
+ s = order - s
+ return sigencode_der(r, s, order)
+
+
+class MalformedSignature(Exception):
+ """
+ Raised by decoding functions when the signature is malformed.
+
+ Malformed in this context means that the relevant strings or integers
+ do not match what a signature over provided curve would create. Either
+ because the byte strings have incorrect lengths or because the encoded
+ values are too large.
+ """
+
+ pass
+
+
+def sigdecode_string(signature, order):
+ """
+ Decoder for :term:`raw encoding` of ECDSA signatures.
+
+ raw encoding is a simple concatenation of the two integers that comprise
+ the signature, with each encoded using the same amount of bytes depending
+ on curve size/order.
+
+ It's expected that this function will be used as the `sigdecode=`
+ parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
+
+ :param signature: encoded signature
+ :type signature: bytes like object
+ :param order: order of the curve over which the signature was computed
+ :type order: int
+
+ :raises MalformedSignature: when the encoding of the signature is invalid
+
+ :return: tuple with decoded 'r' and 's' values of signature
+ :rtype: tuple of ints
+ """
+ signature = normalise_bytes(signature)
+ l = orderlen(order)
+ if not len(signature) == 2 * l:
+ raise MalformedSignature(
+ "Invalid length of signature, expected {0} bytes long, "
+ "provided string is {1} bytes long".format(2 * l, len(signature))
+ )
+ r = string_to_number_fixedlen(signature[:l], order)
+ s = string_to_number_fixedlen(signature[l:], order)
+ return r, s
+
+
+def sigdecode_strings(rs_strings, order):
+ """
+ Decode the signature from two strings.
+
+ First string needs to be a big endian encoding of 'r', second needs to
+ be a big endian encoding of the 's' parameter of an ECDSA signature.
+
+ It's expected that this function will be used as the `sigdecode=`
+ parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
+
+ :param list rs_strings: list of two bytes-like objects, each encoding one
+ parameter of signature
+ :param int order: order of the curve over which the signature was computed
+
+ :raises MalformedSignature: when the encoding of the signature is invalid
+
+ :return: tuple with decoded 'r' and 's' values of signature
+ :rtype: tuple of ints
+ """
+ if not len(rs_strings) == 2:
+ raise MalformedSignature(
+ "Invalid number of strings provided: {0}, expected 2".format(
+ len(rs_strings)
+ )
+ )
+ (r_str, s_str) = rs_strings
+ r_str = normalise_bytes(r_str)
+ s_str = normalise_bytes(s_str)
+ l = orderlen(order)
+ if not len(r_str) == l:
+ raise MalformedSignature(
+ "Invalid length of first string ('r' parameter), "
+ "expected {0} bytes long, provided string is {1} "
+ "bytes long".format(l, len(r_str))
+ )
+ if not len(s_str) == l:
+ raise MalformedSignature(
+ "Invalid length of second string ('s' parameter), "
+ "expected {0} bytes long, provided string is {1} "
+ "bytes long".format(l, len(s_str))
+ )
+ r = string_to_number_fixedlen(r_str, order)
+ s = string_to_number_fixedlen(s_str, order)
+ return r, s
+
+
+def sigdecode_der(sig_der, order):
+ """
+ Decoder for DER format of ECDSA signatures.
+
+ DER format of signature is one that uses the :term:`ASN.1` :term:`DER`
+ rules to encode it as a sequence of two integers::
+
+ Ecdsa-Sig-Value ::= SEQUENCE {
+ r INTEGER,
+ s INTEGER
+ }
+
+ It's expected that this function will be used as as the `sigdecode=`
+ parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
+
+ :param sig_der: encoded signature
+ :type sig_der: bytes like object
+ :param order: order of the curve over which the signature was computed
+ :type order: int
+
+ :raises UnexpectedDER: when the encoding of signature is invalid
+
+ :return: tuple with decoded 'r' and 's' values of signature
+ :rtype: tuple of ints
+ """
+ sig_der = normalise_bytes(sig_der)
+ # return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
+ rs_strings, empty = der.remove_sequence(sig_der)
+ if empty != b"":
+ raise der.UnexpectedDER(
+ "trailing junk after DER sig: %s" % binascii.hexlify(empty)
+ )
+ r, rest = der.remove_integer(rs_strings)
+ s, empty = der.remove_integer(rest)
+ if empty != b"":
+ raise der.UnexpectedDER(
+ "trailing junk after DER numbers: %s" % binascii.hexlify(empty)
+ )
+ return r, s