diff options
Diffstat (limited to 'frozen_deps/ecdsa/test_eddsa.py')
-rw-r--r-- | frozen_deps/ecdsa/test_eddsa.py | 1079 |
1 files changed, 1079 insertions, 0 deletions
diff --git a/frozen_deps/ecdsa/test_eddsa.py b/frozen_deps/ecdsa/test_eddsa.py new file mode 100644 index 0000000..7a09ad7 --- /dev/null +++ b/frozen_deps/ecdsa/test_eddsa.py @@ -0,0 +1,1079 @@ +import pickle +import hashlib +import pytest + +try: + import unittest2 as unittest +except ImportError: + import unittest +from hypothesis import given, settings, example +import hypothesis.strategies as st +from .ellipticcurve import PointEdwards, INFINITY, CurveEdTw +from .eddsa import ( + generator_ed25519, + curve_ed25519, + generator_ed448, + curve_ed448, + PrivateKey, + PublicKey, +) +from .ecdsa import generator_256, curve_256 +from .errors import MalformedPointError +from ._compat import a2b_hex, compat26_str + + +class TestA2B_Hex(unittest.TestCase): + def test_invalid_input(self): + with self.assertRaises(ValueError): + a2b_hex("abcdefghi") + + +def test_ed25519_curve_compare(): + assert curve_ed25519 != curve_256 + + +def test_ed25519_and_ed448_compare(): + assert curve_ed448 != curve_ed25519 + + +def test_ed25519_and_custom_curve_compare(): + a = CurveEdTw(curve_ed25519.p(), -curve_ed25519.a(), 1) + + assert curve_ed25519 != a + + +def test_ed25519_and_almost_exact_curve_compare(): + a = CurveEdTw(curve_ed25519.p(), curve_ed25519.a(), 1) + + assert curve_ed25519 != a + + +def test_ed25519_and_same_curve_params(): + a = CurveEdTw(curve_ed25519.p(), curve_ed25519.a(), curve_ed25519.d()) + + assert curve_ed25519 == a + assert not (curve_ed25519 != a) + + +def test_ed25519_contains_point(): + g = generator_ed25519 + assert curve_ed25519.contains_point(g.x(), g.y()) + + +def test_ed25519_contains_point_bad(): + assert not curve_ed25519.contains_point(1, 1) + + +def test_ed25519_double(): + a = generator_ed25519 + + z = a.double() + + assert isinstance(z, PointEdwards) + + x2 = int( + "24727413235106541002554574571675588834622768167397638456726423" + "682521233608206" + ) + y2 = int( + "15549675580280190176352668710449542251549572066445060580507079" + "593062643049417" + ) + + b = PointEdwards(curve_ed25519, x2, y2, 1, x2 * y2) + + assert z == b + assert a != b + + +def test_ed25519_add_as_double(): + a = generator_ed25519 + + z = a + a + + assert isinstance(z, PointEdwards) + + b = generator_ed25519.double() + + assert z == b + + +def test_ed25519_double_infinity(): + a = PointEdwards(curve_ed25519, 0, 1, 1, 0) + + z = a.double() + + assert z is INFINITY + + +def test_ed25519_double_badly_encoded_infinity(): + # invalid point, mostly to make instrumental happy + a = PointEdwards(curve_ed25519, 1, 1, 1, 0) + + z = a.double() + + assert z is INFINITY + + +def test_ed25519_eq_with_different_z(): + x = generator_ed25519.x() + y = generator_ed25519.y() + p = curve_ed25519.p() + + a = PointEdwards(curve_ed25519, x * 2 % p, y * 2 % p, 2, x * y * 2 % p) + b = PointEdwards(curve_ed25519, x * 3 % p, y * 3 % p, 3, x * y * 3 % p) + + assert a == b + + assert not (a != b) + + +def test_ed25519_eq_against_infinity(): + assert generator_ed25519 != INFINITY + + +def test_ed25519_eq_encoded_infinity_against_infinity(): + a = PointEdwards(curve_ed25519, 0, 1, 1, 0) + assert a == INFINITY + + +def test_ed25519_eq_bad_encode_of_infinity_against_infinity(): + # technically incorrect encoding of the point at infinity, but we check + # both X and T, so verify that just T==0 works + a = PointEdwards(curve_ed25519, 1, 1, 1, 0) + assert a == INFINITY + + +def test_ed25519_eq_against_non_Edwards_point(): + assert generator_ed25519 != generator_256 + + +def test_ed25519_eq_against_negated_point(): + g = generator_ed25519 + neg = PointEdwards(curve_ed25519, -g.x(), g.y(), 1, -g.x() * g.y()) + assert g != neg + + +def test_ed25519_eq_x_different_y(): + # not points on the curve, but __eq__ doesn't care + a = PointEdwards(curve_ed25519, 1, 1, 1, 1) + b = PointEdwards(curve_ed25519, 1, 2, 1, 2) + + assert a != b + + +def test_ed25519_test_normalisation_and_scaling(): + x = generator_ed25519.x() + y = generator_ed25519.y() + p = curve_ed25519.p() + + a = PointEdwards(curve_ed25519, x * 11 % p, y * 11 % p, 11, x * y * 11 % p) + + assert a.x() == x + assert a.y() == y + + a.scale() + + assert a.x() == x + assert a.y() == y + + a.scale() # second execution should be a noop + + assert a.x() == x + assert a.y() == y + + +def test_ed25519_add_three_times(): + a = generator_ed25519 + + z = a + a + a + + x3 = int( + "468967334644549386571235445953867877890461982801326656862413" + "21779790909858396" + ) + y3 = int( + "832484377853344397649037712036920113830141722629755531674120" + "2210403726505172" + ) + + b = PointEdwards(curve_ed25519, x3, y3, 1, x3 * y3) + + assert z == b + + +def test_ed25519_add_to_infinity(): + # generator * (order-1) + x1 = int( + "427838232691226969392843410947554224151809796397784248136826" + "78720006717057747" + ) + y1 = int( + "463168356949264781694283940034751631413079938662562256157830" + "33603165251855960" + ) + inf_m_1 = PointEdwards(curve_ed25519, x1, y1, 1, x1 * y1) + + inf = inf_m_1 + generator_ed25519 + + assert inf is INFINITY + + +def test_ed25519_add_and_mul_equivalence(): + g = generator_ed25519 + + assert g + g == g * 2 + assert g + g + g == g * 3 + + +def test_ed25519_add_literal_infinity(): + g = generator_ed25519 + z = g + INFINITY + + assert z == g + + +def test_ed25519_add_infinity(): + inf = PointEdwards(curve_ed25519, 0, 1, 1, 0) + g = generator_ed25519 + z = g + inf + + assert z == g + + z = inf + g + + assert z == g + + +class TestEd25519(unittest.TestCase): + def test_add_wrong_curves(self): + with self.assertRaises(ValueError) as e: + generator_ed25519 + generator_ed448 + + self.assertIn("different curve", str(e.exception)) + + def test_add_wrong_point_type(self): + with self.assertRaises(ValueError) as e: + generator_ed25519 + generator_256 + + self.assertIn("different curve", str(e.exception)) + + +def test_ed25519_mul_to_order_min_1(): + x1 = int( + "427838232691226969392843410947554224151809796397784248136826" + "78720006717057747" + ) + y1 = int( + "463168356949264781694283940034751631413079938662562256157830" + "33603165251855960" + ) + inf_m_1 = PointEdwards(curve_ed25519, x1, y1, 1, x1 * y1) + + assert generator_ed25519 * (generator_ed25519.order() - 1) == inf_m_1 + + +def test_ed25519_mul_to_infinity(): + assert generator_ed25519 * generator_ed25519.order() == INFINITY + + +def test_ed25519_mul_to_infinity_plus_1(): + g = generator_ed25519 + assert g * (g.order() + 1) == g + + +def test_ed25519_mul_and_add(): + g = generator_ed25519 + a = g * 128 + b = g * 64 + g * 64 + + assert a == b + + +def test_ed25519_mul_and_add_2(): + g = generator_ed25519 + + a = g * 123 + b = g * 120 + g * 3 + + assert a == b + + +def test_ed25519_mul_infinity(): + inf = PointEdwards(curve_ed25519, 0, 1, 1, 0) + + z = inf * 11 + + assert z == INFINITY + + +def test_ed25519_mul_by_zero(): + z = generator_ed25519 * 0 + + assert z == INFINITY + + +def test_ed25519_mul_by_one(): + z = generator_ed25519 * 1 + + assert z == generator_ed25519 + + +def test_ed25519_mul_custom_point(): + # verify that multiplication without order set works + + g = generator_ed25519 + + a = PointEdwards(curve_ed25519, g.x(), g.y(), 1, g.x() * g.y()) + + z = a * 11 + + assert z == g * 11 + + +def test_ed25519_pickle(): + g = generator_ed25519 + assert pickle.loads(pickle.dumps(g)) == g + + +def test_ed448_eq_against_different_curve(): + assert generator_ed25519 != generator_ed448 + + +def test_ed448_double(): + g = generator_ed448 + z = g.double() + + assert isinstance(z, PointEdwards) + + x2 = int( + "4845591495304045936995492052586696895690942404582120401876" + "6013278705691214670908136440114445572635086627683154494739" + "7859048262938744149" + ) + y2 = int( + "4940887598674337276743026725267350893505445523037277237461" + "2648447308771911703729389009346215770388834286503647778745" + "3078312060500281069" + ) + + b = PointEdwards(curve_ed448, x2, y2, 1, x2 * y2) + + assert z == b + assert g != b + + +def test_ed448_add_as_double(): + g = generator_ed448 + z = g + g + + b = g.double() + + assert z == b + + +def test_ed448_mul_as_double(): + g = generator_ed448 + z = g * 2 + b = g.double() + + assert z == b + + +def test_ed448_add_to_infinity(): + # generator * (order - 1) + x1 = int( + "5022586839996825903617194737881084981068517190547539260353" + "6473749366191269932473977736719082931859264751085238669719" + "1187378895383117729" + ) + y1 = int( + "2988192100784814926760179304439306734375440401540802420959" + "2824137233150618983587600353687865541878473398230323350346" + "2500531545062832660" + ) + inf_m_1 = PointEdwards(curve_ed448, x1, y1, 1, x1 * y1) + + inf = inf_m_1 + generator_ed448 + + assert inf is INFINITY + + +def test_ed448_mul_to_infinity(): + g = generator_ed448 + inf = g * g.order() + + assert inf is INFINITY + + +def test_ed448_mul_to_infinity_plus_1(): + g = generator_ed448 + + z = g * (g.order() + 1) + + assert z == g + + +def test_ed448_add_and_mul_equivalence(): + g = generator_ed448 + + assert g + g == g * 2 + assert g + g + g == g * 3 + + +def test_ed25519_encode(): + g = generator_ed25519 + g_bytes = g.to_bytes() + assert len(g_bytes) == 32 + exp_bytes = ( + b"\x58\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" + b"\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" + ) + assert g_bytes == exp_bytes + + +def test_ed25519_decode(): + exp_bytes = ( + b"\x58\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" + b"\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" + ) + a = PointEdwards.from_bytes(curve_ed25519, exp_bytes) + + assert a == generator_ed25519 + + +class TestEdwardsMalformed(unittest.TestCase): + def test_invalid_point(self): + exp_bytes = ( + b"\x78\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" + b"\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" + ) + with self.assertRaises(MalformedPointError): + PointEdwards.from_bytes(curve_ed25519, exp_bytes) + + def test_invalid_length(self): + exp_bytes = ( + b"\x58\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" + b"\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" + b"\x66" + ) + with self.assertRaises(MalformedPointError) as e: + PointEdwards.from_bytes(curve_ed25519, exp_bytes) + + self.assertIn("length", str(e.exception)) + + def test_ed448_invalid(self): + exp_bytes = b"\xff" * 57 + with self.assertRaises(MalformedPointError): + PointEdwards.from_bytes(curve_ed448, exp_bytes) + + +def test_ed448_encode(): + g = generator_ed448 + g_bytes = g.to_bytes() + assert len(g_bytes) == 57 + exp_bytes = ( + b"\x14\xfa\x30\xf2\x5b\x79\x08\x98\xad\xc8\xd7\x4e\x2c\x13\xbd" + b"\xfd\xc4\x39\x7c\xe6\x1c\xff\xd3\x3a\xd7\xc2\xa0\x05\x1e\x9c" + b"\x78\x87\x40\x98\xa3\x6c\x73\x73\xea\x4b\x62\xc7\xc9\x56\x37" + b"\x20\x76\x88\x24\xbc\xb6\x6e\x71\x46\x3f\x69\x00" + ) + assert g_bytes == exp_bytes + + +def test_ed448_decode(): + exp_bytes = ( + b"\x14\xfa\x30\xf2\x5b\x79\x08\x98\xad\xc8\xd7\x4e\x2c\x13\xbd" + b"\xfd\xc4\x39\x7c\xe6\x1c\xff\xd3\x3a\xd7\xc2\xa0\x05\x1e\x9c" + b"\x78\x87\x40\x98\xa3\x6c\x73\x73\xea\x4b\x62\xc7\xc9\x56\x37" + b"\x20\x76\x88\x24\xbc\xb6\x6e\x71\x46\x3f\x69\x00" + ) + + a = PointEdwards.from_bytes(curve_ed448, exp_bytes) + + assert a == generator_ed448 + + +class TestEdDSAEquality(unittest.TestCase): + def test_equal_public_points(self): + key1 = PublicKey(generator_ed25519, b"\x01" * 32) + key2 = PublicKey(generator_ed25519, b"\x01" * 32) + + self.assertEqual(key1, key2) + self.assertFalse(key1 != key2) + + def test_unequal_public_points(self): + key1 = PublicKey(generator_ed25519, b"\x01" * 32) + key2 = PublicKey(generator_ed25519, b"\x03" * 32) + + self.assertNotEqual(key1, key2) + + def test_unequal_to_string(self): + key1 = PublicKey(generator_ed25519, b"\x01" * 32) + key2 = b"\x01" * 32 + + self.assertNotEqual(key1, key2) + + def test_unequal_publickey_curves(self): + key1 = PublicKey(generator_ed25519, b"\x01" * 32) + key2 = PublicKey(generator_ed448, b"\x03" * 56 + b"\x00") + + self.assertNotEqual(key1, key2) + self.assertTrue(key1 != key2) + + def test_equal_private_keys(self): + key1 = PrivateKey(generator_ed25519, b"\x01" * 32) + key2 = PrivateKey(generator_ed25519, b"\x01" * 32) + + self.assertEqual(key1, key2) + self.assertFalse(key1 != key2) + + def test_unequal_private_keys(self): + key1 = PrivateKey(generator_ed25519, b"\x01" * 32) + key2 = PrivateKey(generator_ed25519, b"\x02" * 32) + + self.assertNotEqual(key1, key2) + self.assertTrue(key1 != key2) + + def test_unequal_privatekey_to_string(self): + key1 = PrivateKey(generator_ed25519, b"\x01" * 32) + key2 = b"\x01" * 32 + + self.assertNotEqual(key1, key2) + + def test_unequal_privatekey_curves(self): + key1 = PrivateKey(generator_ed25519, b"\x01" * 32) + key2 = PrivateKey(generator_ed448, b"\x01" * 57) + + self.assertNotEqual(key1, key2) + + +class TestInvalidEdDSAInputs(unittest.TestCase): + def test_wrong_length_of_private_key(self): + with self.assertRaises(ValueError): + PrivateKey(generator_ed25519, b"\x01" * 31) + + def test_wrong_length_of_public_key(self): + with self.assertRaises(ValueError): + PublicKey(generator_ed25519, b"\x01" * 33) + + def test_wrong_cofactor_curve(self): + ed_c = curve_ed25519 + + def _hash(data): + return hashlib.new("sha512", compat26_str(data)).digest() + + curve = CurveEdTw(ed_c.p(), ed_c.a(), ed_c.d(), 1, _hash) + g = generator_ed25519 + fake_gen = PointEdwards(curve, g.x(), g.y(), 1, g.x() * g.y()) + + with self.assertRaises(ValueError) as e: + PrivateKey(fake_gen, g.to_bytes()) + + self.assertIn("cofactor", str(e.exception)) + + def test_invalid_signature_length(self): + key = PublicKey(generator_ed25519, b"\x01" * 32) + + with self.assertRaises(ValueError) as e: + key.verify(b"", b"\x01" * 65) + + self.assertIn("length", str(e.exception)) + + def test_changing_public_key(self): + key = PublicKey(generator_ed25519, b"\x01" * 32) + + g = key.point + + new_g = PointEdwards(curve_ed25519, g.x(), g.y(), 1, g.x() * g.y()) + + key.point = new_g + + self.assertEqual(g, key.point) + + def test_changing_public_key_to_different_point(self): + key = PublicKey(generator_ed25519, b"\x01" * 32) + + with self.assertRaises(ValueError) as e: + key.point = generator_ed25519 + + self.assertIn("coordinates", str(e.exception)) + + def test_invalid_s_value(self): + key = PublicKey( + generator_ed25519, + b"\xd7\x5a\x98\x01\x82\xb1\x0a\xb7\xd5\x4b\xfe\xd3\xc9\x64\x07\x3a" + b"\x0e\xe1\x72\xf3\xda\xa6\x23\x25\xaf\x02\x1a\x68\xf7\x07\x51\x1a", + ) + sig_valid = bytearray( + b"\xe5\x56\x43\x00\xc3\x60\xac\x72\x90\x86\xe2\xcc\x80\x6e\x82\x8a" + b"\x84\x87\x7f\x1e\xb8\xe5\xd9\x74\xd8\x73\xe0\x65\x22\x49\x01\x55" + b"\x5f\xb8\x82\x15\x90\xa3\x3b\xac\xc6\x1e\x39\x70\x1c\xf9\xb4\x6b" + b"\xd2\x5b\xf5\xf0\x59\x5b\xbe\x24\x65\x51\x41\x43\x8e\x7a\x10\x0b" + ) + + self.assertTrue(key.verify(b"", sig_valid)) + + sig_invalid = bytearray(sig_valid) + sig_invalid[-1] = 0xFF + + with self.assertRaises(ValueError): + key.verify(b"", sig_invalid) + + def test_invalid_r_value(self): + key = PublicKey( + generator_ed25519, + b"\xd7\x5a\x98\x01\x82\xb1\x0a\xb7\xd5\x4b\xfe\xd3\xc9\x64\x07\x3a" + b"\x0e\xe1\x72\xf3\xda\xa6\x23\x25\xaf\x02\x1a\x68\xf7\x07\x51\x1a", + ) + sig_valid = bytearray( + b"\xe5\x56\x43\x00\xc3\x60\xac\x72\x90\x86\xe2\xcc\x80\x6e\x82\x8a" + b"\x84\x87\x7f\x1e\xb8\xe5\xd9\x74\xd8\x73\xe0\x65\x22\x49\x01\x55" + b"\x5f\xb8\x82\x15\x90\xa3\x3b\xac\xc6\x1e\x39\x70\x1c\xf9\xb4\x6b" + b"\xd2\x5b\xf5\xf0\x59\x5b\xbe\x24\x65\x51\x41\x43\x8e\x7a\x10\x0b" + ) + + self.assertTrue(key.verify(b"", sig_valid)) + + sig_invalid = bytearray(sig_valid) + sig_invalid[0] = 0xE0 + + with self.assertRaises(ValueError): + key.verify(b"", sig_invalid) + + +HYP_SETTINGS = dict() +HYP_SETTINGS["max_examples"] = 10 + + +@settings(**HYP_SETTINGS) +@example(1) +@example(5) # smallest multiple that requires changing sign of x +@given(st.integers(min_value=1, max_value=int(generator_ed25519.order() - 1))) +def test_ed25519_encode_decode(multiple): + a = generator_ed25519 * multiple + + b = PointEdwards.from_bytes(curve_ed25519, a.to_bytes()) + + assert a == b + + +@settings(**HYP_SETTINGS) +@example(1) +@example(2) # smallest multiple that requires changing the sign of x +@given(st.integers(min_value=1, max_value=int(generator_ed448.order() - 1))) +def test_ed448_encode_decode(multiple): + a = generator_ed448 * multiple + + b = PointEdwards.from_bytes(curve_ed448, a.to_bytes()) + + assert a == b + + +@settings(**HYP_SETTINGS) +@example(1) +@example(2) +@given(st.integers(min_value=1, max_value=int(generator_ed25519.order()) - 1)) +def test_ed25519_mul_precompute_vs_naf(multiple): + """Compare multiplication with and without precomputation.""" + g = generator_ed25519 + new_g = PointEdwards(curve_ed25519, g.x(), g.y(), 1, g.x() * g.y()) + + assert g * multiple == multiple * new_g + + +# Test vectors from RFC 8032 +TEST_VECTORS = [ + # TEST 1 + ( + generator_ed25519, + "9d61b19deffd5a60ba844af492ec2cc4" "4449c5697b326919703bac031cae7f60", + "d75a980182b10ab7d54bfed3c964073a" "0ee172f3daa62325af021a68f707511a", + "", + "e5564300c360ac729086e2cc806e828a" + "84877f1eb8e5d974d873e06522490155" + "5fb8821590a33bacc61e39701cf9b46b" + "d25bf5f0595bbe24655141438e7a100b", + ), + # TEST 2 + ( + generator_ed25519, + "4ccd089b28ff96da9db6c346ec114e0f" "5b8a319f35aba624da8cf6ed4fb8a6fb", + "3d4017c3e843895a92b70aa74d1b7ebc" "9c982ccf2ec4968cc0cd55f12af4660c", + "72", + "92a009a9f0d4cab8720e820b5f642540" + "a2b27b5416503f8fb3762223ebdb69da" + "085ac1e43e15996e458f3613d0f11d8c" + "387b2eaeb4302aeeb00d291612bb0c00", + ), + # TEST 3 + ( + generator_ed25519, + "c5aa8df43f9f837bedb7442f31dcb7b1" "66d38535076f094b85ce3a2e0b4458f7", + "fc51cd8e6218a1a38da47ed00230f058" "0816ed13ba3303ac5deb911548908025", + "af82", + "6291d657deec24024827e69c3abe01a3" + "0ce548a284743a445e3680d7db5ac3ac" + "18ff9b538d16f290ae67f760984dc659" + "4a7c15e9716ed28dc027beceea1ec40a", + ), + # TEST 1024 + ( + generator_ed25519, + "f5e5767cf153319517630f226876b86c" "8160cc583bc013744c6bf255f5cc0ee5", + "278117fc144c72340f67d0f2316e8386" "ceffbf2b2428c9c51fef7c597f1d426e", + "08b8b2b733424243760fe426a4b54908" + "632110a66c2f6591eabd3345e3e4eb98" + "fa6e264bf09efe12ee50f8f54e9f77b1" + "e355f6c50544e23fb1433ddf73be84d8" + "79de7c0046dc4996d9e773f4bc9efe57" + "38829adb26c81b37c93a1b270b20329d" + "658675fc6ea534e0810a4432826bf58c" + "941efb65d57a338bbd2e26640f89ffbc" + "1a858efcb8550ee3a5e1998bd177e93a" + "7363c344fe6b199ee5d02e82d522c4fe" + "ba15452f80288a821a579116ec6dad2b" + "3b310da903401aa62100ab5d1a36553e" + "06203b33890cc9b832f79ef80560ccb9" + "a39ce767967ed628c6ad573cb116dbef" + "efd75499da96bd68a8a97b928a8bbc10" + "3b6621fcde2beca1231d206be6cd9ec7" + "aff6f6c94fcd7204ed3455c68c83f4a4" + "1da4af2b74ef5c53f1d8ac70bdcb7ed1" + "85ce81bd84359d44254d95629e9855a9" + "4a7c1958d1f8ada5d0532ed8a5aa3fb2" + "d17ba70eb6248e594e1a2297acbbb39d" + "502f1a8c6eb6f1ce22b3de1a1f40cc24" + "554119a831a9aad6079cad88425de6bd" + "e1a9187ebb6092cf67bf2b13fd65f270" + "88d78b7e883c8759d2c4f5c65adb7553" + "878ad575f9fad878e80a0c9ba63bcbcc" + "2732e69485bbc9c90bfbd62481d9089b" + "eccf80cfe2df16a2cf65bd92dd597b07" + "07e0917af48bbb75fed413d238f5555a" + "7a569d80c3414a8d0859dc65a46128ba" + "b27af87a71314f318c782b23ebfe808b" + "82b0ce26401d2e22f04d83d1255dc51a" + "ddd3b75a2b1ae0784504df543af8969b" + "e3ea7082ff7fc9888c144da2af58429e" + "c96031dbcad3dad9af0dcbaaaf268cb8" + "fcffead94f3c7ca495e056a9b47acdb7" + "51fb73e666c6c655ade8297297d07ad1" + "ba5e43f1bca32301651339e22904cc8c" + "42f58c30c04aafdb038dda0847dd988d" + "cda6f3bfd15c4b4c4525004aa06eeff8" + "ca61783aacec57fb3d1f92b0fe2fd1a8" + "5f6724517b65e614ad6808d6f6ee34df" + "f7310fdc82aebfd904b01e1dc54b2927" + "094b2db68d6f903b68401adebf5a7e08" + "d78ff4ef5d63653a65040cf9bfd4aca7" + "984a74d37145986780fc0b16ac451649" + "de6188a7dbdf191f64b5fc5e2ab47b57" + "f7f7276cd419c17a3ca8e1b939ae49e4" + "88acba6b965610b5480109c8b17b80e1" + "b7b750dfc7598d5d5011fd2dcc5600a3" + "2ef5b52a1ecc820e308aa342721aac09" + "43bf6686b64b2579376504ccc493d97e" + "6aed3fb0f9cd71a43dd497f01f17c0e2" + "cb3797aa2a2f256656168e6c496afc5f" + "b93246f6b1116398a346f1a641f3b041" + "e989f7914f90cc2c7fff357876e506b5" + "0d334ba77c225bc307ba537152f3f161" + "0e4eafe595f6d9d90d11faa933a15ef1" + "369546868a7f3a45a96768d40fd9d034" + "12c091c6315cf4fde7cb68606937380d" + "b2eaaa707b4c4185c32eddcdd306705e" + "4dc1ffc872eeee475a64dfac86aba41c" + "0618983f8741c5ef68d3a101e8a3b8ca" + "c60c905c15fc910840b94c00a0b9d0", + "0aab4c900501b3e24d7cdf4663326a3a" + "87df5e4843b2cbdb67cbf6e460fec350" + "aa5371b1508f9f4528ecea23c436d94b" + "5e8fcd4f681e30a6ac00a9704a188a03", + ), + # TEST SHA(abc) + ( + generator_ed25519, + "833fe62409237b9d62ec77587520911e" "9a759cec1d19755b7da901b96dca3d42", + "ec172b93ad5e563bf4932c70e1245034" "c35467ef2efd4d64ebf819683467e2bf", + "ddaf35a193617abacc417349ae204131" + "12e6fa4e89a97ea20a9eeee64b55d39a" + "2192992a274fc1a836ba3c23a3feebbd" + "454d4423643ce80e2a9ac94fa54ca49f", + "dc2a4459e7369633a52b1bf277839a00" + "201009a3efbf3ecb69bea2186c26b589" + "09351fc9ac90b3ecfdfbc7c66431e030" + "3dca179c138ac17ad9bef1177331a704", + ), + # Blank + ( + generator_ed448, + "6c82a562cb808d10d632be89c8513ebf" + "6c929f34ddfa8c9f63c9960ef6e348a3" + "528c8a3fcc2f044e39a3fc5b94492f8f" + "032e7549a20098f95b", + "5fd7449b59b461fd2ce787ec616ad46a" + "1da1342485a70e1f8a0ea75d80e96778" + "edf124769b46c7061bd6783df1e50f6c" + "d1fa1abeafe8256180", + "", + "533a37f6bbe457251f023c0d88f976ae" + "2dfb504a843e34d2074fd823d41a591f" + "2b233f034f628281f2fd7a22ddd47d78" + "28c59bd0a21bfd3980ff0d2028d4b18a" + "9df63e006c5d1c2d345b925d8dc00b41" + "04852db99ac5c7cdda8530a113a0f4db" + "b61149f05a7363268c71d95808ff2e65" + "2600", + ), + # 1 octet + ( + generator_ed448, + "c4eab05d357007c632f3dbb48489924d" + "552b08fe0c353a0d4a1f00acda2c463a" + "fbea67c5e8d2877c5e3bc397a659949e" + "f8021e954e0a12274e", + "43ba28f430cdff456ae531545f7ecd0a" + "c834a55d9358c0372bfa0c6c6798c086" + "6aea01eb00742802b8438ea4cb82169c" + "235160627b4c3a9480", + "03", + "26b8f91727bd62897af15e41eb43c377" + "efb9c610d48f2335cb0bd0087810f435" + "2541b143c4b981b7e18f62de8ccdf633" + "fc1bf037ab7cd779805e0dbcc0aae1cb" + "cee1afb2e027df36bc04dcecbf154336" + "c19f0af7e0a6472905e799f1953d2a0f" + "f3348ab21aa4adafd1d234441cf807c0" + "3a00", + ), + # 11 octets + ( + generator_ed448, + "cd23d24f714274e744343237b93290f5" + "11f6425f98e64459ff203e8985083ffd" + "f60500553abc0e05cd02184bdb89c4cc" + "d67e187951267eb328", + "dcea9e78f35a1bf3499a831b10b86c90" + "aac01cd84b67a0109b55a36e9328b1e3" + "65fce161d71ce7131a543ea4cb5f7e9f" + "1d8b00696447001400", + "0c3e544074ec63b0265e0c", + "1f0a8888ce25e8d458a21130879b840a" + "9089d999aaba039eaf3e3afa090a09d3" + "89dba82c4ff2ae8ac5cdfb7c55e94d5d" + "961a29fe0109941e00b8dbdeea6d3b05" + "1068df7254c0cdc129cbe62db2dc957d" + "bb47b51fd3f213fb8698f064774250a5" + "028961c9bf8ffd973fe5d5c206492b14" + "0e00", + ), + # 12 octets + ( + generator_ed448, + "258cdd4ada32ed9c9ff54e63756ae582" + "fb8fab2ac721f2c8e676a72768513d93" + "9f63dddb55609133f29adf86ec9929dc" + "cb52c1c5fd2ff7e21b", + "3ba16da0c6f2cc1f30187740756f5e79" + "8d6bc5fc015d7c63cc9510ee3fd44adc" + "24d8e968b6e46e6f94d19b945361726b" + "d75e149ef09817f580", + "64a65f3cdedcdd66811e2915", + "7eeeab7c4e50fb799b418ee5e3197ff6" + "bf15d43a14c34389b59dd1a7b1b85b4a" + "e90438aca634bea45e3a2695f1270f07" + "fdcdf7c62b8efeaf00b45c2c96ba457e" + "b1a8bf075a3db28e5c24f6b923ed4ad7" + "47c3c9e03c7079efb87cb110d3a99861" + "e72003cbae6d6b8b827e4e6c143064ff" + "3c00", + ), + # 13 octets + ( + generator_ed448, + "7ef4e84544236752fbb56b8f31a23a10" + "e42814f5f55ca037cdcc11c64c9a3b29" + "49c1bb60700314611732a6c2fea98eeb" + "c0266a11a93970100e", + "b3da079b0aa493a5772029f0467baebe" + "e5a8112d9d3a22532361da294f7bb381" + "5c5dc59e176b4d9f381ca0938e13c6c0" + "7b174be65dfa578e80", + "64a65f3cdedcdd66811e2915e7", + "6a12066f55331b6c22acd5d5bfc5d712" + "28fbda80ae8dec26bdd306743c5027cb" + "4890810c162c027468675ecf645a8317" + "6c0d7323a2ccde2d80efe5a1268e8aca" + "1d6fbc194d3f77c44986eb4ab4177919" + "ad8bec33eb47bbb5fc6e28196fd1caf5" + "6b4e7e0ba5519234d047155ac727a105" + "3100", + ), + # 64 octets + ( + generator_ed448, + "d65df341ad13e008567688baedda8e9d" + "cdc17dc024974ea5b4227b6530e339bf" + "f21f99e68ca6968f3cca6dfe0fb9f4fa" + "b4fa135d5542ea3f01", + "df9705f58edbab802c7f8363cfe5560a" + "b1c6132c20a9f1dd163483a26f8ac53a" + "39d6808bf4a1dfbd261b099bb03b3fb5" + "0906cb28bd8a081f00", + "bd0f6a3747cd561bdddf4640a332461a" + "4a30a12a434cd0bf40d766d9c6d458e5" + "512204a30c17d1f50b5079631f64eb31" + "12182da3005835461113718d1a5ef944", + "554bc2480860b49eab8532d2a533b7d5" + "78ef473eeb58c98bb2d0e1ce488a98b1" + "8dfde9b9b90775e67f47d4a1c3482058" + "efc9f40d2ca033a0801b63d45b3b722e" + "f552bad3b4ccb667da350192b61c508c" + "f7b6b5adadc2c8d9a446ef003fb05cba" + "5f30e88e36ec2703b349ca229c267083" + "3900", + ), + # 256 octets + ( + generator_ed448, + "2ec5fe3c17045abdb136a5e6a913e32a" + "b75ae68b53d2fc149b77e504132d3756" + "9b7e766ba74a19bd6162343a21c8590a" + "a9cebca9014c636df5", + "79756f014dcfe2079f5dd9e718be4171" + "e2ef2486a08f25186f6bff43a9936b9b" + "fe12402b08ae65798a3d81e22e9ec80e" + "7690862ef3d4ed3a00", + "15777532b0bdd0d1389f636c5f6b9ba7" + "34c90af572877e2d272dd078aa1e567c" + "fa80e12928bb542330e8409f31745041" + "07ecd5efac61ae7504dabe2a602ede89" + "e5cca6257a7c77e27a702b3ae39fc769" + "fc54f2395ae6a1178cab4738e543072f" + "c1c177fe71e92e25bf03e4ecb72f47b6" + "4d0465aaea4c7fad372536c8ba516a60" + "39c3c2a39f0e4d832be432dfa9a706a6" + "e5c7e19f397964ca4258002f7c0541b5" + "90316dbc5622b6b2a6fe7a4abffd9610" + "5eca76ea7b98816af0748c10df048ce0" + "12d901015a51f189f3888145c03650aa" + "23ce894c3bd889e030d565071c59f409" + "a9981b51878fd6fc110624dcbcde0bf7" + "a69ccce38fabdf86f3bef6044819de11", + "c650ddbb0601c19ca11439e1640dd931" + "f43c518ea5bea70d3dcde5f4191fe53f" + "00cf966546b72bcc7d58be2b9badef28" + "743954e3a44a23f880e8d4f1cfce2d7a" + "61452d26da05896f0a50da66a239a8a1" + "88b6d825b3305ad77b73fbac0836ecc6" + "0987fd08527c1a8e80d5823e65cafe2a" + "3d00", + ), + # 1023 octets + ( + generator_ed448, + "872d093780f5d3730df7c212664b37b8" + "a0f24f56810daa8382cd4fa3f77634ec" + "44dc54f1c2ed9bea86fafb7632d8be19" + "9ea165f5ad55dd9ce8", + "a81b2e8a70a5ac94ffdbcc9badfc3feb" + "0801f258578bb114ad44ece1ec0e799d" + "a08effb81c5d685c0c56f64eecaef8cd" + "f11cc38737838cf400", + "6ddf802e1aae4986935f7f981ba3f035" + "1d6273c0a0c22c9c0e8339168e675412" + "a3debfaf435ed651558007db4384b650" + "fcc07e3b586a27a4f7a00ac8a6fec2cd" + "86ae4bf1570c41e6a40c931db27b2faa" + "15a8cedd52cff7362c4e6e23daec0fbc" + "3a79b6806e316efcc7b68119bf46bc76" + "a26067a53f296dafdbdc11c77f7777e9" + "72660cf4b6a9b369a6665f02e0cc9b6e" + "dfad136b4fabe723d2813db3136cfde9" + "b6d044322fee2947952e031b73ab5c60" + "3349b307bdc27bc6cb8b8bbd7bd32321" + "9b8033a581b59eadebb09b3c4f3d2277" + "d4f0343624acc817804728b25ab79717" + "2b4c5c21a22f9c7839d64300232eb66e" + "53f31c723fa37fe387c7d3e50bdf9813" + "a30e5bb12cf4cd930c40cfb4e1fc6225" + "92a49588794494d56d24ea4b40c89fc0" + "596cc9ebb961c8cb10adde976a5d602b" + "1c3f85b9b9a001ed3c6a4d3b1437f520" + "96cd1956d042a597d561a596ecd3d173" + "5a8d570ea0ec27225a2c4aaff26306d1" + "526c1af3ca6d9cf5a2c98f47e1c46db9" + "a33234cfd4d81f2c98538a09ebe76998" + "d0d8fd25997c7d255c6d66ece6fa56f1" + "1144950f027795e653008f4bd7ca2dee" + "85d8e90f3dc315130ce2a00375a318c7" + "c3d97be2c8ce5b6db41a6254ff264fa6" + "155baee3b0773c0f497c573f19bb4f42" + "40281f0b1f4f7be857a4e59d416c06b4" + "c50fa09e1810ddc6b1467baeac5a3668" + "d11b6ecaa901440016f389f80acc4db9" + "77025e7f5924388c7e340a732e554440" + "e76570f8dd71b7d640b3450d1fd5f041" + "0a18f9a3494f707c717b79b4bf75c984" + "00b096b21653b5d217cf3565c9597456" + "f70703497a078763829bc01bb1cbc8fa" + "04eadc9a6e3f6699587a9e75c94e5bab" + "0036e0b2e711392cff0047d0d6b05bd2" + "a588bc109718954259f1d86678a579a3" + "120f19cfb2963f177aeb70f2d4844826" + "262e51b80271272068ef5b3856fa8535" + "aa2a88b2d41f2a0e2fda7624c2850272" + "ac4a2f561f8f2f7a318bfd5caf969614" + "9e4ac824ad3460538fdc25421beec2cc" + "6818162d06bbed0c40a387192349db67" + "a118bada6cd5ab0140ee273204f628aa" + "d1c135f770279a651e24d8c14d75a605" + "9d76b96a6fd857def5e0b354b27ab937" + "a5815d16b5fae407ff18222c6d1ed263" + "be68c95f32d908bd895cd76207ae7264" + "87567f9a67dad79abec316f683b17f2d" + "02bf07e0ac8b5bc6162cf94697b3c27c" + "d1fea49b27f23ba2901871962506520c" + "392da8b6ad0d99f7013fbc06c2c17a56" + "9500c8a7696481c1cd33e9b14e40b82e" + "79a5f5db82571ba97bae3ad3e0479515" + "bb0e2b0f3bfcd1fd33034efc6245eddd" + "7ee2086ddae2600d8ca73e214e8c2b0b" + "db2b047c6a464a562ed77b73d2d841c4" + "b34973551257713b753632efba348169" + "abc90a68f42611a40126d7cb21b58695" + "568186f7e569d2ff0f9e745d0487dd2e" + "b997cafc5abf9dd102e62ff66cba87", + "e301345a41a39a4d72fff8df69c98075" + "a0cc082b802fc9b2b6bc503f926b65bd" + "df7f4c8f1cb49f6396afc8a70abe6d8a" + "ef0db478d4c6b2970076c6a0484fe76d" + "76b3a97625d79f1ce240e7c576750d29" + "5528286f719b413de9ada3e8eb78ed57" + "3603ce30d8bb761785dc30dbc320869e" + "1a00", + ), +] + + + "generator,private_key,public_key,message,signature", + TEST_VECTORS, +) +def test_vectors(generator, private_key, public_key, message, signature): + private_key = a2b_hex(private_key) + public_key = a2b_hex(public_key) + message = a2b_hex(message) + signature = a2b_hex(signature) + + sig_key = PrivateKey(generator, private_key) + ver_key = PublicKey(generator, public_key) + + assert sig_key.public_key().public_key() == ver_key.public_key() + + gen_sig = sig_key.sign(message) + + assert gen_sig == signature + + assert ver_key.verify(message, signature) |