aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/Cryptodome/Math
diff options
context:
space:
mode:
Diffstat (limited to 'frozen_deps/Cryptodome/Math')
-rw-r--r--frozen_deps/Cryptodome/Math/Numbers.py42
-rw-r--r--frozen_deps/Cryptodome/Math/Numbers.pyi4
-rw-r--r--frozen_deps/Cryptodome/Math/Primality.py368
-rw-r--r--frozen_deps/Cryptodome/Math/Primality.pyi18
-rw-r--r--frozen_deps/Cryptodome/Math/_IntegerBase.py392
-rw-r--r--frozen_deps/Cryptodome/Math/_IntegerBase.pyi61
-rw-r--r--frozen_deps/Cryptodome/Math/_IntegerCustom.py111
-rw-r--r--frozen_deps/Cryptodome/Math/_IntegerCustom.pyi8
-rw-r--r--frozen_deps/Cryptodome/Math/_IntegerGMP.py708
-rw-r--r--frozen_deps/Cryptodome/Math/_IntegerGMP.pyi3
-rw-r--r--frozen_deps/Cryptodome/Math/_IntegerNative.py380
-rw-r--r--frozen_deps/Cryptodome/Math/_IntegerNative.pyi3
-rw-r--r--frozen_deps/Cryptodome/Math/__init__.py0
-rwxr-xr-xfrozen_deps/Cryptodome/Math/_modexp.cpython-38-x86_64-linux-gnu.sobin0 -> 207274 bytes
14 files changed, 2098 insertions, 0 deletions
diff --git a/frozen_deps/Cryptodome/Math/Numbers.py b/frozen_deps/Cryptodome/Math/Numbers.py
new file mode 100644
index 0000000..c9ff848
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/Numbers.py
@@ -0,0 +1,42 @@
+# ===================================================================
+#
+# Copyright (c) 2014, Legrandin <[email protected]>
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+# ===================================================================
+
+__all__ = ["Integer"]
+
+try:
+ from Cryptodome.Math._IntegerGMP import IntegerGMP as Integer
+ from Cryptodome.Math._IntegerGMP import implementation as _implementation
+except (ImportError, OSError, AttributeError):
+ try:
+ from Cryptodome.Math._IntegerCustom import IntegerCustom as Integer
+ from Cryptodome.Math._IntegerCustom import implementation as _implementation
+ except (ImportError, OSError):
+ from Cryptodome.Math._IntegerNative import IntegerNative as Integer
+ _implementation = {}
diff --git a/frozen_deps/Cryptodome/Math/Numbers.pyi b/frozen_deps/Cryptodome/Math/Numbers.pyi
new file mode 100644
index 0000000..2285a3b
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/Numbers.pyi
@@ -0,0 +1,4 @@
+from Cryptodome.Math._IntegerBase import IntegerBase
+
+class Integer(IntegerBase):
+ pass
diff --git a/frozen_deps/Cryptodome/Math/Primality.py b/frozen_deps/Cryptodome/Math/Primality.py
new file mode 100644
index 0000000..08ea3ff
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/Primality.py
@@ -0,0 +1,368 @@
+# ===================================================================
+#
+# Copyright (c) 2014, Legrandin <[email protected]>
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+# ===================================================================
+
+"""Functions to create and test prime numbers.
+
+:undocumented: __package__
+"""
+
+from Cryptodome import Random
+from Cryptodome.Math.Numbers import Integer
+
+from Cryptodome.Util.py3compat import iter_range
+
+COMPOSITE = 0
+PROBABLY_PRIME = 1
+
+
+def miller_rabin_test(candidate, iterations, randfunc=None):
+ """Perform a Miller-Rabin primality test on an integer.
+
+ The test is specified in Section C.3.1 of `FIPS PUB 186-4`__.
+
+ :Parameters:
+ candidate : integer
+ The number to test for primality.
+ iterations : integer
+ The maximum number of iterations to perform before
+ declaring a candidate a probable prime.
+ randfunc : callable
+ An RNG function where bases are taken from.
+
+ :Returns:
+ ``Primality.COMPOSITE`` or ``Primality.PROBABLY_PRIME``.
+
+ .. __: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
+ """
+
+ if not isinstance(candidate, Integer):
+ candidate = Integer(candidate)
+
+ if candidate in (1, 2, 3, 5):
+ return PROBABLY_PRIME
+
+ if candidate.is_even():
+ return COMPOSITE
+
+ one = Integer(1)
+ minus_one = Integer(candidate - 1)
+
+ if randfunc is None:
+ randfunc = Random.new().read
+
+ # Step 1 and 2
+ m = Integer(minus_one)
+ a = 0
+ while m.is_even():
+ m >>= 1
+ a += 1
+
+ # Skip step 3
+
+ # Step 4
+ for i in iter_range(iterations):
+
+ # Step 4.1-2
+ base = 1
+ while base in (one, minus_one):
+ base = Integer.random_range(min_inclusive=2,
+ max_inclusive=candidate - 2)
+ assert(2 <= base <= candidate - 2)
+
+ # Step 4.3-4.4
+ z = pow(base, m, candidate)
+ if z in (one, minus_one):
+ continue
+
+ # Step 4.5
+ for j in iter_range(1, a):
+ z = pow(z, 2, candidate)
+ if z == minus_one:
+ break
+ if z == one:
+ return COMPOSITE
+ else:
+ return COMPOSITE
+
+ # Step 5
+ return PROBABLY_PRIME
+
+
+def lucas_test(candidate):
+ """Perform a Lucas primality test on an integer.
+
+ The test is specified in Section C.3.3 of `FIPS PUB 186-4`__.
+
+ :Parameters:
+ candidate : integer
+ The number to test for primality.
+
+ :Returns:
+ ``Primality.COMPOSITE`` or ``Primality.PROBABLY_PRIME``.
+
+ .. __: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
+ """
+
+ if not isinstance(candidate, Integer):
+ candidate = Integer(candidate)
+
+ # Step 1
+ if candidate in (1, 2, 3, 5):
+ return PROBABLY_PRIME
+ if candidate.is_even() or candidate.is_perfect_square():
+ return COMPOSITE
+
+ # Step 2
+ def alternate():
+ value = 5
+ while True:
+ yield value
+ if value > 0:
+ value += 2
+ else:
+ value -= 2
+ value = -value
+
+ for D in alternate():
+ if candidate in (D, -D):
+ continue
+ js = Integer.jacobi_symbol(D, candidate)
+ if js == 0:
+ return COMPOSITE
+ if js == -1:
+ break
+ # Found D. P=1 and Q=(1-D)/4 (note that Q is guaranteed to be an integer)
+
+ # Step 3
+ # This is \delta(n) = n - jacobi(D/n)
+ K = candidate + 1
+ # Step 4
+ r = K.size_in_bits() - 1
+ # Step 5
+ # U_1=1 and V_1=P
+ U_i = Integer(1)
+ V_i = Integer(1)
+ U_temp = Integer(0)
+ V_temp = Integer(0)
+ # Step 6
+ for i in iter_range(r - 1, -1, -1):
+ # Square
+ # U_temp = U_i * V_i % candidate
+ U_temp.set(U_i)
+ U_temp *= V_i
+ U_temp %= candidate
+ # V_temp = (((V_i ** 2 + (U_i ** 2 * D)) * K) >> 1) % candidate
+ V_temp.set(U_i)
+ V_temp *= U_i
+ V_temp *= D
+ V_temp.multiply_accumulate(V_i, V_i)
+ if V_temp.is_odd():
+ V_temp += candidate
+ V_temp >>= 1
+ V_temp %= candidate
+ # Multiply
+ if K.get_bit(i):
+ # U_i = (((U_temp + V_temp) * K) >> 1) % candidate
+ U_i.set(U_temp)
+ U_i += V_temp
+ if U_i.is_odd():
+ U_i += candidate
+ U_i >>= 1
+ U_i %= candidate
+ # V_i = (((V_temp + U_temp * D) * K) >> 1) % candidate
+ V_i.set(V_temp)
+ V_i.multiply_accumulate(U_temp, D)
+ if V_i.is_odd():
+ V_i += candidate
+ V_i >>= 1
+ V_i %= candidate
+ else:
+ U_i.set(U_temp)
+ V_i.set(V_temp)
+ # Step 7
+ if U_i == 0:
+ return PROBABLY_PRIME
+ return COMPOSITE
+
+
+from Cryptodome.Util.number import sieve_base as _sieve_base_large
+## The optimal number of small primes to use for the sieve
+## is probably dependent on the platform and the candidate size
+_sieve_base = set(_sieve_base_large[:100])
+
+
+def test_probable_prime(candidate, randfunc=None):
+ """Test if a number is prime.
+
+ A number is qualified as prime if it passes a certain
+ number of Miller-Rabin tests (dependent on the size
+ of the number, but such that probability of a false
+ positive is less than 10^-30) and a single Lucas test.
+
+ For instance, a 1024-bit candidate will need to pass
+ 4 Miller-Rabin tests.
+
+ :Parameters:
+ candidate : integer
+ The number to test for primality.
+ randfunc : callable
+ The routine to draw random bytes from to select Miller-Rabin bases.
+ :Returns:
+ ``PROBABLE_PRIME`` if the number if prime with very high probability.
+ ``COMPOSITE`` if the number is a composite.
+ For efficiency reasons, ``COMPOSITE`` is also returned for small primes.
+ """
+
+ if randfunc is None:
+ randfunc = Random.new().read
+
+ if not isinstance(candidate, Integer):
+ candidate = Integer(candidate)
+
+ # First, check trial division by the smallest primes
+ if int(candidate) in _sieve_base:
+ return PROBABLY_PRIME
+ try:
+ map(candidate.fail_if_divisible_by, _sieve_base)
+ except ValueError:
+ return COMPOSITE
+
+ # These are the number of Miller-Rabin iterations s.t. p(k, t) < 1E-30,
+ # with p(k, t) being the probability that a randomly chosen k-bit number
+ # is composite but still survives t MR iterations.
+ mr_ranges = ((220, 30), (280, 20), (390, 15), (512, 10),
+ (620, 7), (740, 6), (890, 5), (1200, 4),
+ (1700, 3), (3700, 2))
+
+ bit_size = candidate.size_in_bits()
+ try:
+ mr_iterations = list(filter(lambda x: bit_size < x[0],
+ mr_ranges))[0][1]
+ except IndexError:
+ mr_iterations = 1
+
+ if miller_rabin_test(candidate, mr_iterations,
+ randfunc=randfunc) == COMPOSITE:
+ return COMPOSITE
+ if lucas_test(candidate) == COMPOSITE:
+ return COMPOSITE
+ return PROBABLY_PRIME
+
+
+def generate_probable_prime(**kwargs):
+ """Generate a random probable prime.
+
+ The prime will not have any specific properties
+ (e.g. it will not be a *strong* prime).
+
+ Random numbers are evaluated for primality until one
+ passes all tests, consisting of a certain number of
+ Miller-Rabin tests with random bases followed by
+ a single Lucas test.
+
+ The number of Miller-Rabin iterations is chosen such that
+ the probability that the output number is a non-prime is
+ less than 1E-30 (roughly 2^{-100}).
+
+ This approach is compliant to `FIPS PUB 186-4`__.
+
+ :Keywords:
+ exact_bits : integer
+ The desired size in bits of the probable prime.
+ It must be at least 160.
+ randfunc : callable
+ An RNG function where candidate primes are taken from.
+ prime_filter : callable
+ A function that takes an Integer as parameter and returns
+ True if the number can be passed to further primality tests,
+ False if it should be immediately discarded.
+
+ :Return:
+ A probable prime in the range 2^exact_bits > p > 2^(exact_bits-1).
+
+ .. __: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
+ """
+
+ exact_bits = kwargs.pop("exact_bits", None)
+ randfunc = kwargs.pop("randfunc", None)
+ prime_filter = kwargs.pop("prime_filter", lambda x: True)
+ if kwargs:
+ raise ValueError("Unknown parameters: " + kwargs.keys())
+
+ if exact_bits is None:
+ raise ValueError("Missing exact_bits parameter")
+ if exact_bits < 160:
+ raise ValueError("Prime number is not big enough.")
+
+ if randfunc is None:
+ randfunc = Random.new().read
+
+ result = COMPOSITE
+ while result == COMPOSITE:
+ candidate = Integer.random(exact_bits=exact_bits,
+ randfunc=randfunc) | 1
+ if not prime_filter(candidate):
+ continue
+ result = test_probable_prime(candidate, randfunc)
+ return candidate
+
+
+def generate_probable_safe_prime(**kwargs):
+ """Generate a random, probable safe prime.
+
+ Note this operation is much slower than generating a simple prime.
+
+ :Keywords:
+ exact_bits : integer
+ The desired size in bits of the probable safe prime.
+ randfunc : callable
+ An RNG function where candidate primes are taken from.
+
+ :Return:
+ A probable safe prime in the range
+ 2^exact_bits > p > 2^(exact_bits-1).
+ """
+
+ exact_bits = kwargs.pop("exact_bits", None)
+ randfunc = kwargs.pop("randfunc", None)
+ if kwargs:
+ raise ValueError("Unknown parameters: " + kwargs.keys())
+
+ if randfunc is None:
+ randfunc = Random.new().read
+
+ result = COMPOSITE
+ while result == COMPOSITE:
+ q = generate_probable_prime(exact_bits=exact_bits - 1, randfunc=randfunc)
+ candidate = q * 2 + 1
+ if candidate.size_in_bits() != exact_bits:
+ continue
+ result = test_probable_prime(candidate, randfunc=randfunc)
+ return candidate
diff --git a/frozen_deps/Cryptodome/Math/Primality.pyi b/frozen_deps/Cryptodome/Math/Primality.pyi
new file mode 100644
index 0000000..7813483
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/Primality.pyi
@@ -0,0 +1,18 @@
+from typing import Callable, Optional, Union, Set
+
+PrimeResult = int
+
+COMPOSITE: PrimeResult
+PROBABLY_PRIME: PrimeResult
+
+def miller_rabin_test(candidate: int, iterations: int, randfunc: Optional[Callable[[int],bytes]]=None) -> PrimeResult: ...
+def lucas_test(candidate: int) -> PrimeResult: ...
+_sieve_base: Set[int]
+def test_probable_prime(candidate: int, randfunc: Optional[Callable[[int],bytes]]=None) -> PrimeResult: ...
+def generate_probable_prime(*,
+ exact_bits: int = ...,
+ randfunc: Callable[[int],bytes] = ...,
+ prime_filter: Callable[[int],bool] = ...) -> int: ...
+def generate_probable_safe_prime(*,
+ exact_bits: int = ...,
+ randfunc: Callable[[int],bytes] = ...) -> int: ...
diff --git a/frozen_deps/Cryptodome/Math/_IntegerBase.py b/frozen_deps/Cryptodome/Math/_IntegerBase.py
new file mode 100644
index 0000000..f8cf333
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/_IntegerBase.py
@@ -0,0 +1,392 @@
+# ===================================================================
+#
+# Copyright (c) 2018, Helder Eijs <[email protected]>
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+# ===================================================================
+
+import abc
+
+from Cryptodome.Util.py3compat import iter_range, bord, bchr, ABC
+
+from Cryptodome import Random
+
+
+class IntegerBase(ABC):
+
+ # Conversions
+ @abc.abstractmethod
+ def __int__(self):
+ pass
+
+ @abc.abstractmethod
+ def __str__(self):
+ pass
+
+ @abc.abstractmethod
+ def __repr__(self):
+ pass
+
+ @abc.abstractmethod
+ def to_bytes(self, block_size=0):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def from_bytes(byte_string):
+ pass
+
+ # Relations
+ @abc.abstractmethod
+ def __eq__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __ne__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __lt__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __le__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __gt__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __ge__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __nonzero__(self):
+ pass
+ __bool__ = __nonzero__
+
+ @abc.abstractmethod
+ def is_negative(self):
+ pass
+
+ # Arithmetic operations
+ @abc.abstractmethod
+ def __add__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __sub__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __mul__(self, factor):
+ pass
+
+ @abc.abstractmethod
+ def __floordiv__(self, divisor):
+ pass
+
+ @abc.abstractmethod
+ def __mod__(self, divisor):
+ pass
+
+ @abc.abstractmethod
+ def inplace_pow(self, exponent, modulus=None):
+ pass
+
+ @abc.abstractmethod
+ def __pow__(self, exponent, modulus=None):
+ pass
+
+ @abc.abstractmethod
+ def __abs__(self):
+ pass
+
+ @abc.abstractmethod
+ def sqrt(self, modulus=None):
+ pass
+
+ @abc.abstractmethod
+ def __iadd__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __isub__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __imul__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __imod__(self, term):
+ pass
+
+ # Boolean/bit operations
+ @abc.abstractmethod
+ def __and__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __or__(self, term):
+ pass
+
+ @abc.abstractmethod
+ def __rshift__(self, pos):
+ pass
+
+ @abc.abstractmethod
+ def __irshift__(self, pos):
+ pass
+
+ @abc.abstractmethod
+ def __lshift__(self, pos):
+ pass
+
+ @abc.abstractmethod
+ def __ilshift__(self, pos):
+ pass
+
+ @abc.abstractmethod
+ def get_bit(self, n):
+ pass
+
+ # Extra
+ @abc.abstractmethod
+ def is_odd(self):
+ pass
+
+ @abc.abstractmethod
+ def is_even(self):
+ pass
+
+ @abc.abstractmethod
+ def size_in_bits(self):
+ pass
+
+ @abc.abstractmethod
+ def size_in_bytes(self):
+ pass
+
+ @abc.abstractmethod
+ def is_perfect_square(self):
+ pass
+
+ @abc.abstractmethod
+ def fail_if_divisible_by(self, small_prime):
+ pass
+
+ @abc.abstractmethod
+ def multiply_accumulate(self, a, b):
+ pass
+
+ @abc.abstractmethod
+ def set(self, source):
+ pass
+
+ @abc.abstractmethod
+ def inplace_inverse(self, modulus):
+ pass
+
+ @abc.abstractmethod
+ def inverse(self, modulus):
+ pass
+
+ @abc.abstractmethod
+ def gcd(self, term):
+ pass
+
+ @abc.abstractmethod
+ def lcm(self, term):
+ pass
+
+ @staticmethod
+ @abc.abstractmethod
+ def jacobi_symbol(a, n):
+ pass
+
+ @staticmethod
+ def _tonelli_shanks(n, p):
+ """Tonelli-shanks algorithm for computing the square root
+ of n modulo a prime p.
+
+ n must be in the range [0..p-1].
+ p must be at least even.
+
+ The return value r is the square root of modulo p. If non-zero,
+ another solution will also exist (p-r).
+
+ Note we cannot assume that p is really a prime: if it's not,
+ we can either raise an exception or return the correct value.
+ """
+
+ # See https://rosettacode.org/wiki/Tonelli-Shanks_algorithm
+
+ if n in (0, 1):
+ return n
+
+ if p % 4 == 3:
+ root = pow(n, (p + 1) // 4, p)
+ if pow(root, 2, p) != n:
+ raise ValueError("Cannot compute square root")
+ return root
+
+ s = 1
+ q = (p - 1) // 2
+ while not (q & 1):
+ s += 1
+ q >>= 1
+
+ z = n.__class__(2)
+ while True:
+ euler = pow(z, (p - 1) // 2, p)
+ if euler == 1:
+ z += 1
+ continue
+ if euler == p - 1:
+ break
+ # Most probably p is not a prime
+ raise ValueError("Cannot compute square root")
+
+ m = s
+ c = pow(z, q, p)
+ t = pow(n, q, p)
+ r = pow(n, (q + 1) // 2, p)
+
+ while t != 1:
+ for i in iter_range(0, m):
+ if pow(t, 2**i, p) == 1:
+ break
+ if i == m:
+ raise ValueError("Cannot compute square root of %d mod %d" % (n, p))
+ b = pow(c, 2**(m - i - 1), p)
+ m = i
+ c = b**2 % p
+ t = (t * b**2) % p
+ r = (r * b) % p
+
+ if pow(r, 2, p) != n:
+ raise ValueError("Cannot compute square root")
+
+ return r
+
+ @classmethod
+ def random(cls, **kwargs):
+ """Generate a random natural integer of a certain size.
+
+ :Keywords:
+ exact_bits : positive integer
+ The length in bits of the resulting random Integer number.
+ The number is guaranteed to fulfil the relation:
+
+ 2^bits > result >= 2^(bits - 1)
+
+ max_bits : positive integer
+ The maximum length in bits of the resulting random Integer number.
+ The number is guaranteed to fulfil the relation:
+
+ 2^bits > result >=0
+
+ randfunc : callable
+ A function that returns a random byte string. The length of the
+ byte string is passed as parameter. Optional.
+ If not provided (or ``None``), randomness is read from the system RNG.
+
+ :Return: a Integer object
+ """
+
+ exact_bits = kwargs.pop("exact_bits", None)
+ max_bits = kwargs.pop("max_bits", None)
+ randfunc = kwargs.pop("randfunc", None)
+
+ if randfunc is None:
+ randfunc = Random.new().read
+
+ if exact_bits is None and max_bits is None:
+ raise ValueError("Either 'exact_bits' or 'max_bits' must be specified")
+
+ if exact_bits is not None and max_bits is not None:
+ raise ValueError("'exact_bits' and 'max_bits' are mutually exclusive")
+
+ bits = exact_bits or max_bits
+ bytes_needed = ((bits - 1) // 8) + 1
+ significant_bits_msb = 8 - (bytes_needed * 8 - bits)
+ msb = bord(randfunc(1)[0])
+ if exact_bits is not None:
+ msb |= 1 << (significant_bits_msb - 1)
+ msb &= (1 << significant_bits_msb) - 1
+
+ return cls.from_bytes(bchr(msb) + randfunc(bytes_needed - 1))
+
+ @classmethod
+ def random_range(cls, **kwargs):
+ """Generate a random integer within a given internal.
+
+ :Keywords:
+ min_inclusive : integer
+ The lower end of the interval (inclusive).
+ max_inclusive : integer
+ The higher end of the interval (inclusive).
+ max_exclusive : integer
+ The higher end of the interval (exclusive).
+ randfunc : callable
+ A function that returns a random byte string. The length of the
+ byte string is passed as parameter. Optional.
+ If not provided (or ``None``), randomness is read from the system RNG.
+ :Returns:
+ An Integer randomly taken in the given interval.
+ """
+
+ min_inclusive = kwargs.pop("min_inclusive", None)
+ max_inclusive = kwargs.pop("max_inclusive", None)
+ max_exclusive = kwargs.pop("max_exclusive", None)
+ randfunc = kwargs.pop("randfunc", None)
+
+ if kwargs:
+ raise ValueError("Unknown keywords: " + str(kwargs.keys))
+ if None not in (max_inclusive, max_exclusive):
+ raise ValueError("max_inclusive and max_exclusive cannot be both"
+ " specified")
+ if max_exclusive is not None:
+ max_inclusive = max_exclusive - 1
+ if None in (min_inclusive, max_inclusive):
+ raise ValueError("Missing keyword to identify the interval")
+
+ if randfunc is None:
+ randfunc = Random.new().read
+
+ norm_maximum = max_inclusive - min_inclusive
+ bits_needed = cls(norm_maximum).size_in_bits()
+
+ norm_candidate = -1
+ while not 0 <= norm_candidate <= norm_maximum:
+ norm_candidate = cls.random(
+ max_bits=bits_needed,
+ randfunc=randfunc
+ )
+ return norm_candidate + min_inclusive
+
diff --git a/frozen_deps/Cryptodome/Math/_IntegerBase.pyi b/frozen_deps/Cryptodome/Math/_IntegerBase.pyi
new file mode 100644
index 0000000..3f534db
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/_IntegerBase.pyi
@@ -0,0 +1,61 @@
+from typing import Optional, Union, Callable
+
+RandFunc = Callable[[int],int]
+
+class IntegerBase:
+
+ def __int__(self) -> int: ...
+ def __str__(self) -> str: ...
+ def __repr__(self) -> str: ...
+ def to_bytes(self, block_size: Optional[int]=0) -> bytes: ...
+ @staticmethod
+ def from_bytes(byte_string: bytes) -> IntegerBase: ...
+ def __eq__(self, term: object) -> bool: ...
+ def __ne__(self, term: object) -> bool: ...
+ def __lt__(self, term: Union[IntegerBase, int]) -> bool: ...
+ def __le__(self, term: Union[IntegerBase, int]) -> bool: ...
+ def __gt__(self, term: Union[IntegerBase, int]) -> bool: ...
+ def __ge__(self, term: Union[IntegerBase, int]) -> bool: ...
+ def __nonzero__(self) -> bool: ...
+ def is_negative(self) -> bool: ...
+ def __add__(self, term: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __sub__(self, term: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __mul__(self, term: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __floordiv__(self, divisor: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __mod__(self, divisor: Union[IntegerBase, int]) -> IntegerBase: ...
+ def inplace_pow(self, exponent: int, modulus: Optional[Union[IntegerBase, int]]=None) -> IntegerBase: ...
+ def __pow__(self, exponent: int, modulus: Optional[int]) -> IntegerBase: ...
+ def __abs__(self) -> IntegerBase: ...
+ def sqrt(self, modulus: Optional[int]) -> IntegerBase: ...
+ def __iadd__(self, term: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __isub__(self, term: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __imul__(self, term: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __imod__(self, divisor: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __and__(self, term: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __or__(self, term: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __rshift__(self, pos: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __irshift__(self, pos: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __lshift__(self, pos: Union[IntegerBase, int]) -> IntegerBase: ...
+ def __ilshift__(self, pos: Union[IntegerBase, int]) -> IntegerBase: ...
+ def get_bit(self, n: int) -> bool: ...
+ def is_odd(self) -> bool: ...
+ def is_even(self) -> bool: ...
+ def size_in_bits(self) -> int: ...
+ def size_in_bytes(self) -> int: ...
+ def is_perfect_square(self) -> bool: ...
+ def fail_if_divisible_by(self, small_prime: Union[IntegerBase, int]) -> None: ...
+ def multiply_accumulate(self, a: Union[IntegerBase, int], b: Union[IntegerBase, int]) -> IntegerBase: ...
+ def set(self, source: Union[IntegerBase, int]) -> IntegerBase: ...
+ def inplace_inverse(self, modulus: Union[IntegerBase, int]) -> IntegerBase: ...
+ def inverse(self, modulus: Union[IntegerBase, int]) -> IntegerBase: ...
+ def gcd(self, term: Union[IntegerBase, int]) -> IntegerBase: ...
+ def lcm(self, term: Union[IntegerBase, int]) -> IntegerBase: ...
+ @staticmethod
+ def jacobi_symbol(a: Union[IntegerBase, int], n: Union[IntegerBase, int]) -> IntegerBase: ...
+ @staticmethod
+ def _tonelli_shanks(n: Union[IntegerBase, int], p: Union[IntegerBase, int]) -> IntegerBase : ...
+ @classmethod
+ def random(cls, **kwargs: Union[int,RandFunc]) -> IntegerBase : ...
+ @classmethod
+ def random_range(cls, **kwargs: Union[int,RandFunc]) -> IntegerBase : ...
+
diff --git a/frozen_deps/Cryptodome/Math/_IntegerCustom.py b/frozen_deps/Cryptodome/Math/_IntegerCustom.py
new file mode 100644
index 0000000..b626014
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/_IntegerCustom.py
@@ -0,0 +1,111 @@
+# ===================================================================
+#
+# Copyright (c) 2018, Helder Eijs <[email protected]>
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+# ===================================================================
+
+from ._IntegerNative import IntegerNative
+
+from Cryptodome.Util.number import long_to_bytes, bytes_to_long
+
+from Cryptodome.Util._raw_api import (load_pycryptodome_raw_lib,
+ create_string_buffer,
+ get_raw_buffer, backend,
+ c_size_t, c_ulonglong)
+
+
+from Cryptodome.Random.random import getrandbits
+
+c_defs = """
+int monty_pow(const uint8_t *base,
+ const uint8_t *exp,
+ const uint8_t *modulus,
+ uint8_t *out,
+ size_t len,
+ uint64_t seed);
+"""
+
+
+_raw_montgomery = load_pycryptodome_raw_lib("Cryptodome.Math._modexp", c_defs)
+implementation = {"library": "custom", "api": backend}
+
+
+class IntegerCustom(IntegerNative):
+
+ @staticmethod
+ def from_bytes(byte_string):
+ return IntegerCustom(bytes_to_long(byte_string))
+
+ def inplace_pow(self, exponent, modulus=None):
+ exp_value = int(exponent)
+ if exp_value < 0:
+ raise ValueError("Exponent must not be negative")
+
+ # No modular reduction
+ if modulus is None:
+ self._value = pow(self._value, exp_value)
+ return self
+
+ # With modular reduction
+ mod_value = int(modulus)
+ if mod_value < 0:
+ raise ValueError("Modulus must be positive")
+ if mod_value == 0:
+ raise ZeroDivisionError("Modulus cannot be zero")
+
+ # C extension only works with odd moduli
+ if (mod_value & 1) == 0:
+ self._value = pow(self._value, exp_value, mod_value)
+ return self
+
+ # C extension only works with bases smaller than modulus
+ if self._value >= mod_value:
+ self._value %= mod_value
+
+ max_len = len(long_to_bytes(max(self._value, exp_value, mod_value)))
+
+ base_b = long_to_bytes(self._value, max_len)
+ exp_b = long_to_bytes(exp_value, max_len)
+ modulus_b = long_to_bytes(mod_value, max_len)
+
+ out = create_string_buffer(max_len)
+
+ error = _raw_montgomery.monty_pow(
+ out,
+ base_b,
+ exp_b,
+ modulus_b,
+ c_size_t(max_len),
+ c_ulonglong(getrandbits(64))
+ )
+
+ if error:
+ raise ValueError("monty_pow failed with error: %d" % error)
+
+ result = bytes_to_long(get_raw_buffer(out))
+ self._value = result
+ return self
diff --git a/frozen_deps/Cryptodome/Math/_IntegerCustom.pyi b/frozen_deps/Cryptodome/Math/_IntegerCustom.pyi
new file mode 100644
index 0000000..2dd75c7
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/_IntegerCustom.pyi
@@ -0,0 +1,8 @@
+from typing import Any
+
+from ._IntegerNative import IntegerNative
+
+_raw_montgomery = Any
+
+class IntegerCustom(IntegerNative):
+ pass
diff --git a/frozen_deps/Cryptodome/Math/_IntegerGMP.py b/frozen_deps/Cryptodome/Math/_IntegerGMP.py
new file mode 100644
index 0000000..c860020
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/_IntegerGMP.py
@@ -0,0 +1,708 @@
+# ===================================================================
+#
+# Copyright (c) 2014, Legrandin <[email protected]>
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+# ===================================================================
+
+import sys
+
+from Cryptodome.Util.py3compat import tobytes, is_native_int
+
+from Cryptodome.Util._raw_api import (backend, load_lib,
+ get_raw_buffer, get_c_string,
+ null_pointer, create_string_buffer,
+ c_ulong, c_size_t)
+
+from ._IntegerBase import IntegerBase
+
+gmp_defs = """typedef unsigned long UNIX_ULONG;
+ typedef struct { int a; int b; void *c; } MPZ;
+ typedef MPZ mpz_t[1];
+ typedef UNIX_ULONG mp_bitcnt_t;
+ void __gmpz_init (mpz_t x);
+ void __gmpz_init_set (mpz_t rop, const mpz_t op);
+ void __gmpz_init_set_ui (mpz_t rop, UNIX_ULONG op);
+ int __gmp_sscanf (const char *s, const char *fmt, ...);
+ void __gmpz_set (mpz_t rop, const mpz_t op);
+ int __gmp_snprintf (uint8_t *buf, size_t size, const char *fmt, ...);
+ void __gmpz_add (mpz_t rop, const mpz_t op1, const mpz_t op2);
+ void __gmpz_add_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
+ void __gmpz_sub_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
+ void __gmpz_addmul (mpz_t rop, const mpz_t op1, const mpz_t op2);
+ void __gmpz_addmul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
+ void __gmpz_submul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
+ void __gmpz_import (mpz_t rop, size_t count, int order, size_t size,
+ int endian, size_t nails, const void *op);
+ void * __gmpz_export (void *rop, size_t *countp, int order,
+ size_t size,
+ int endian, size_t nails, const mpz_t op);
+ size_t __gmpz_sizeinbase (const mpz_t op, int base);
+ void __gmpz_sub (mpz_t rop, const mpz_t op1, const mpz_t op2);
+ void __gmpz_mul (mpz_t rop, const mpz_t op1, const mpz_t op2);
+ void __gmpz_mul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
+ int __gmpz_cmp (const mpz_t op1, const mpz_t op2);
+ void __gmpz_powm (mpz_t rop, const mpz_t base, const mpz_t exp, const
+ mpz_t mod);
+ void __gmpz_powm_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp,
+ const mpz_t mod);
+ void __gmpz_pow_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp);
+ void __gmpz_sqrt(mpz_t rop, const mpz_t op);
+ void __gmpz_mod (mpz_t r, const mpz_t n, const mpz_t d);
+ void __gmpz_neg (mpz_t rop, const mpz_t op);
+ void __gmpz_abs (mpz_t rop, const mpz_t op);
+ void __gmpz_and (mpz_t rop, const mpz_t op1, const mpz_t op2);
+ void __gmpz_ior (mpz_t rop, const mpz_t op1, const mpz_t op2);
+ void __gmpz_clear (mpz_t x);
+ void __gmpz_tdiv_q_2exp (mpz_t q, const mpz_t n, mp_bitcnt_t b);
+ void __gmpz_fdiv_q (mpz_t q, const mpz_t n, const mpz_t d);
+ void __gmpz_mul_2exp (mpz_t rop, const mpz_t op1, mp_bitcnt_t op2);
+ int __gmpz_tstbit (const mpz_t op, mp_bitcnt_t bit_index);
+ int __gmpz_perfect_square_p (const mpz_t op);
+ int __gmpz_jacobi (const mpz_t a, const mpz_t b);
+ void __gmpz_gcd (mpz_t rop, const mpz_t op1, const mpz_t op2);
+ UNIX_ULONG __gmpz_gcd_ui (mpz_t rop, const mpz_t op1,
+ UNIX_ULONG op2);
+ void __gmpz_lcm (mpz_t rop, const mpz_t op1, const mpz_t op2);
+ int __gmpz_invert (mpz_t rop, const mpz_t op1, const mpz_t op2);
+ int __gmpz_divisible_p (const mpz_t n, const mpz_t d);
+ int __gmpz_divisible_ui_p (const mpz_t n, UNIX_ULONG d);
+ """
+
+if sys.platform == "win32":
+ raise ImportError("Not using GMP on Windows")
+
+lib = load_lib("gmp", gmp_defs)
+implementation = {"library": "gmp", "api": backend}
+
+if hasattr(lib, "__mpir_version"):
+ raise ImportError("MPIR library detected")
+
+# In order to create a function that returns a pointer to
+# a new MPZ structure, we need to break the abstraction
+# and know exactly what ffi backend we have
+if implementation["api"] == "ctypes":
+ from ctypes import Structure, c_int, c_void_p, byref
+
+ class _MPZ(Structure):
+ _fields_ = [('_mp_alloc', c_int),
+ ('_mp_size', c_int),
+ ('_mp_d', c_void_p)]
+
+ def new_mpz():
+ return byref(_MPZ())
+
+else:
+ # We are using CFFI
+ from Cryptodome.Util._raw_api import ffi
+
+ def new_mpz():
+ return ffi.new("MPZ*")
+
+
+# Lazy creation of GMP methods
+class _GMP(object):
+
+ def __getattr__(self, name):
+ if name.startswith("mpz_"):
+ func_name = "__gmpz_" + name[4:]
+ elif name.startswith("gmp_"):
+ func_name = "__gmp_" + name[4:]
+ else:
+ raise AttributeError("Attribute %s is invalid" % name)
+ func = getattr(lib, func_name)
+ setattr(self, name, func)
+ return func
+
+
+_gmp = _GMP()
+
+
+class IntegerGMP(IntegerBase):
+ """A fast, arbitrary precision integer"""
+
+ _zero_mpz_p = new_mpz()
+ _gmp.mpz_init_set_ui(_zero_mpz_p, c_ulong(0))
+
+ def __init__(self, value):
+ """Initialize the integer to the given value."""
+
+ self._mpz_p = new_mpz()
+ self._initialized = False
+
+ if isinstance(value, float):
+ raise ValueError("A floating point type is not a natural number")
+
+ self._initialized = True
+
+ if is_native_int(value):
+ _gmp.mpz_init(self._mpz_p)
+ result = _gmp.gmp_sscanf(tobytes(str(value)), b"%Zd", self._mpz_p)
+ if result != 1:
+ raise ValueError("Error converting '%d'" % value)
+ elif isinstance(value, IntegerGMP):
+ _gmp.mpz_init_set(self._mpz_p, value._mpz_p)
+ else:
+ raise NotImplementedError
+
+ # Conversions
+ def __int__(self):
+ # buf will contain the integer encoded in decimal plus the trailing
+ # zero, and possibly the negative sign.
+ # dig10(x) < log10(x) + 1 = log2(x)/log2(10) + 1 < log2(x)/3 + 1
+ buf_len = _gmp.mpz_sizeinbase(self._mpz_p, 2) // 3 + 3
+ buf = create_string_buffer(buf_len)
+
+ _gmp.gmp_snprintf(buf, c_size_t(buf_len), b"%Zd", self._mpz_p)
+ return int(get_c_string(buf))
+
+ def __str__(self):
+ return str(int(self))
+
+ def __repr__(self):
+ return "Integer(%s)" % str(self)
+
+ # Only Python 2.x
+ def __hex__(self):
+ return hex(int(self))
+
+ # Only Python 3.x
+ def __index__(self):
+ return int(self)
+
+ def to_bytes(self, block_size=0):
+ """Convert the number into a byte string.
+
+ This method encodes the number in network order and prepends
+ as many zero bytes as required. It only works for non-negative
+ values.
+
+ :Parameters:
+ block_size : integer
+ The exact size the output byte string must have.
+ If zero, the string has the minimal length.
+ :Returns:
+ A byte string.
+ :Raise ValueError:
+ If the value is negative or if ``block_size`` is
+ provided and the length of the byte string would exceed it.
+ """
+
+ if self < 0:
+ raise ValueError("Conversion only valid for non-negative numbers")
+
+ buf_len = (_gmp.mpz_sizeinbase(self._mpz_p, 2) + 7) // 8
+ if buf_len > block_size > 0:
+ raise ValueError("Number is too big to convert to byte string"
+ "of prescribed length")
+ buf = create_string_buffer(buf_len)
+
+ _gmp.mpz_export(
+ buf,
+ null_pointer, # Ignore countp
+ 1, # Big endian
+ c_size_t(1), # Each word is 1 byte long
+ 0, # Endianess within a word - not relevant
+ c_size_t(0), # No nails
+ self._mpz_p)
+
+ return b'\x00' * max(0, block_size - buf_len) + get_raw_buffer(buf)
+
+ @staticmethod
+ def from_bytes(byte_string):
+ """Convert a byte string into a number.
+
+ :Parameters:
+ byte_string : byte string
+ The input number, encoded in network order.
+ It can only be non-negative.
+ :Return:
+ The ``Integer`` object carrying the same value as the input.
+ """
+ result = IntegerGMP(0)
+ _gmp.mpz_import(
+ result._mpz_p,
+ c_size_t(len(byte_string)), # Amount of words to read
+ 1, # Big endian
+ c_size_t(1), # Each word is 1 byte long
+ 0, # Endianess within a word - not relevant
+ c_size_t(0), # No nails
+ byte_string)
+ return result
+
+ # Relations
+ def _apply_and_return(self, func, term):
+ if not isinstance(term, IntegerGMP):
+ term = IntegerGMP(term)
+ return func(self._mpz_p, term._mpz_p)
+
+ def __eq__(self, term):
+ if not (isinstance(term, IntegerGMP) or is_native_int(term)):
+ return False
+ return self._apply_and_return(_gmp.mpz_cmp, term) == 0
+
+ def __ne__(self, term):
+ if not (isinstance(term, IntegerGMP) or is_native_int(term)):
+ return True
+ return self._apply_and_return(_gmp.mpz_cmp, term) != 0
+
+ def __lt__(self, term):
+ return self._apply_and_return(_gmp.mpz_cmp, term) < 0
+
+ def __le__(self, term):
+ return self._apply_and_return(_gmp.mpz_cmp, term) <= 0
+
+ def __gt__(self, term):
+ return self._apply_and_return(_gmp.mpz_cmp, term) > 0
+
+ def __ge__(self, term):
+ return self._apply_and_return(_gmp.mpz_cmp, term) >= 0
+
+ def __nonzero__(self):
+ return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) != 0
+ __bool__ = __nonzero__
+
+ def is_negative(self):
+ return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) < 0
+
+ # Arithmetic operations
+ def __add__(self, term):
+ result = IntegerGMP(0)
+ if not isinstance(term, IntegerGMP):
+ try:
+ term = IntegerGMP(term)
+ except NotImplementedError:
+ return NotImplemented
+ _gmp.mpz_add(result._mpz_p,
+ self._mpz_p,
+ term._mpz_p)
+ return result
+
+ def __sub__(self, term):
+ result = IntegerGMP(0)
+ if not isinstance(term, IntegerGMP):
+ try:
+ term = IntegerGMP(term)
+ except NotImplementedError:
+ return NotImplemented
+ _gmp.mpz_sub(result._mpz_p,
+ self._mpz_p,
+ term._mpz_p)
+ return result
+
+ def __mul__(self, term):
+ result = IntegerGMP(0)
+ if not isinstance(term, IntegerGMP):
+ try:
+ term = IntegerGMP(term)
+ except NotImplementedError:
+ return NotImplemented
+ _gmp.mpz_mul(result._mpz_p,
+ self._mpz_p,
+ term._mpz_p)
+ return result
+
+ def __floordiv__(self, divisor):
+ if not isinstance(divisor, IntegerGMP):
+ divisor = IntegerGMP(divisor)
+ if _gmp.mpz_cmp(divisor._mpz_p,
+ self._zero_mpz_p) == 0:
+ raise ZeroDivisionError("Division by zero")
+ result = IntegerGMP(0)
+ _gmp.mpz_fdiv_q(result._mpz_p,
+ self._mpz_p,
+ divisor._mpz_p)
+ return result
+
+ def __mod__(self, divisor):
+ if not isinstance(divisor, IntegerGMP):
+ divisor = IntegerGMP(divisor)
+ comp = _gmp.mpz_cmp(divisor._mpz_p,
+ self._zero_mpz_p)
+ if comp == 0:
+ raise ZeroDivisionError("Division by zero")
+ if comp < 0:
+ raise ValueError("Modulus must be positive")
+ result = IntegerGMP(0)
+ _gmp.mpz_mod(result._mpz_p,
+ self._mpz_p,
+ divisor._mpz_p)
+ return result
+
+ def inplace_pow(self, exponent, modulus=None):
+
+ if modulus is None:
+ if exponent < 0:
+ raise ValueError("Exponent must not be negative")
+
+ # Normal exponentiation
+ if exponent > 256:
+ raise ValueError("Exponent is too big")
+ _gmp.mpz_pow_ui(self._mpz_p,
+ self._mpz_p, # Base
+ c_ulong(int(exponent))
+ )
+ else:
+ # Modular exponentiation
+ if not isinstance(modulus, IntegerGMP):
+ modulus = IntegerGMP(modulus)
+ if not modulus:
+ raise ZeroDivisionError("Division by zero")
+ if modulus.is_negative():
+ raise ValueError("Modulus must be positive")
+ if is_native_int(exponent):
+ if exponent < 0:
+ raise ValueError("Exponent must not be negative")
+ if exponent < 65536:
+ _gmp.mpz_powm_ui(self._mpz_p,
+ self._mpz_p,
+ c_ulong(exponent),
+ modulus._mpz_p)
+ return self
+ exponent = IntegerGMP(exponent)
+ elif exponent.is_negative():
+ raise ValueError("Exponent must not be negative")
+ _gmp.mpz_powm(self._mpz_p,
+ self._mpz_p,
+ exponent._mpz_p,
+ modulus._mpz_p)
+ return self
+
+ def __pow__(self, exponent, modulus=None):
+ result = IntegerGMP(self)
+ return result.inplace_pow(exponent, modulus)
+
+ def __abs__(self):
+ result = IntegerGMP(0)
+ _gmp.mpz_abs(result._mpz_p, self._mpz_p)
+ return result
+
+ def sqrt(self, modulus=None):
+ """Return the largest Integer that does not
+ exceed the square root"""
+
+ if modulus is None:
+ if self < 0:
+ raise ValueError("Square root of negative value")
+ result = IntegerGMP(0)
+ _gmp.mpz_sqrt(result._mpz_p,
+ self._mpz_p)
+ else:
+ if modulus <= 0:
+ raise ValueError("Modulus must be positive")
+ modulus = int(modulus)
+ result = IntegerGMP(self._tonelli_shanks(int(self) % modulus, modulus))
+
+ return result
+
+ def __iadd__(self, term):
+ if is_native_int(term):
+ if 0 <= term < 65536:
+ _gmp.mpz_add_ui(self._mpz_p,
+ self._mpz_p,
+ c_ulong(term))
+ return self
+ if -65535 < term < 0:
+ _gmp.mpz_sub_ui(self._mpz_p,
+ self._mpz_p,
+ c_ulong(-term))
+ return self
+ term = IntegerGMP(term)
+ _gmp.mpz_add(self._mpz_p,
+ self._mpz_p,
+ term._mpz_p)
+ return self
+
+ def __isub__(self, term):
+ if is_native_int(term):
+ if 0 <= term < 65536:
+ _gmp.mpz_sub_ui(self._mpz_p,
+ self._mpz_p,
+ c_ulong(term))
+ return self
+ if -65535 < term < 0:
+ _gmp.mpz_add_ui(self._mpz_p,
+ self._mpz_p,
+ c_ulong(-term))
+ return self
+ term = IntegerGMP(term)
+ _gmp.mpz_sub(self._mpz_p,
+ self._mpz_p,
+ term._mpz_p)
+ return self
+
+ def __imul__(self, term):
+ if is_native_int(term):
+ if 0 <= term < 65536:
+ _gmp.mpz_mul_ui(self._mpz_p,
+ self._mpz_p,
+ c_ulong(term))
+ return self
+ if -65535 < term < 0:
+ _gmp.mpz_mul_ui(self._mpz_p,
+ self._mpz_p,
+ c_ulong(-term))
+ _gmp.mpz_neg(self._mpz_p, self._mpz_p)
+ return self
+ term = IntegerGMP(term)
+ _gmp.mpz_mul(self._mpz_p,
+ self._mpz_p,
+ term._mpz_p)
+ return self
+
+ def __imod__(self, divisor):
+ if not isinstance(divisor, IntegerGMP):
+ divisor = IntegerGMP(divisor)
+ comp = _gmp.mpz_cmp(divisor._mpz_p,
+ divisor._zero_mpz_p)
+ if comp == 0:
+ raise ZeroDivisionError("Division by zero")
+ if comp < 0:
+ raise ValueError("Modulus must be positive")
+ _gmp.mpz_mod(self._mpz_p,
+ self._mpz_p,
+ divisor._mpz_p)
+ return self
+
+ # Boolean/bit operations
+ def __and__(self, term):
+ result = IntegerGMP(0)
+ if not isinstance(term, IntegerGMP):
+ term = IntegerGMP(term)
+ _gmp.mpz_and(result._mpz_p,
+ self._mpz_p,
+ term._mpz_p)
+ return result
+
+ def __or__(self, term):
+ result = IntegerGMP(0)
+ if not isinstance(term, IntegerGMP):
+ term = IntegerGMP(term)
+ _gmp.mpz_ior(result._mpz_p,
+ self._mpz_p,
+ term._mpz_p)
+ return result
+
+ def __rshift__(self, pos):
+ result = IntegerGMP(0)
+ if pos < 0:
+ raise ValueError("negative shift count")
+ if pos > 65536:
+ if self < 0:
+ return -1
+ else:
+ return 0
+ _gmp.mpz_tdiv_q_2exp(result._mpz_p,
+ self._mpz_p,
+ c_ulong(int(pos)))
+ return result
+
+ def __irshift__(self, pos):
+ if pos < 0:
+ raise ValueError("negative shift count")
+ if pos > 65536:
+ if self < 0:
+ return -1
+ else:
+ return 0
+ _gmp.mpz_tdiv_q_2exp(self._mpz_p,
+ self._mpz_p,
+ c_ulong(int(pos)))
+ return self
+
+ def __lshift__(self, pos):
+ result = IntegerGMP(0)
+ if not 0 <= pos < 65536:
+ raise ValueError("Incorrect shift count")
+ _gmp.mpz_mul_2exp(result._mpz_p,
+ self._mpz_p,
+ c_ulong(int(pos)))
+ return result
+
+ def __ilshift__(self, pos):
+ if not 0 <= pos < 65536:
+ raise ValueError("Incorrect shift count")
+ _gmp.mpz_mul_2exp(self._mpz_p,
+ self._mpz_p,
+ c_ulong(int(pos)))
+ return self
+
+ def get_bit(self, n):
+ """Return True if the n-th bit is set to 1.
+ Bit 0 is the least significant."""
+
+ if self < 0:
+ raise ValueError("no bit representation for negative values")
+ if n < 0:
+ raise ValueError("negative bit count")
+ if n > 65536:
+ return 0
+ return bool(_gmp.mpz_tstbit(self._mpz_p,
+ c_ulong(int(n))))
+
+ # Extra
+ def is_odd(self):
+ return _gmp.mpz_tstbit(self._mpz_p, 0) == 1
+
+ def is_even(self):
+ return _gmp.mpz_tstbit(self._mpz_p, 0) == 0
+
+ def size_in_bits(self):
+ """Return the minimum number of bits that can encode the number."""
+
+ if self < 0:
+ raise ValueError("Conversion only valid for non-negative numbers")
+ return _gmp.mpz_sizeinbase(self._mpz_p, 2)
+
+ def size_in_bytes(self):
+ """Return the minimum number of bytes that can encode the number."""
+ return (self.size_in_bits() - 1) // 8 + 1
+
+ def is_perfect_square(self):
+ return _gmp.mpz_perfect_square_p(self._mpz_p) != 0
+
+ def fail_if_divisible_by(self, small_prime):
+ """Raise an exception if the small prime is a divisor."""
+
+ if is_native_int(small_prime):
+ if 0 < small_prime < 65536:
+ if _gmp.mpz_divisible_ui_p(self._mpz_p,
+ c_ulong(small_prime)):
+ raise ValueError("The value is composite")
+ return
+ small_prime = IntegerGMP(small_prime)
+ if _gmp.mpz_divisible_p(self._mpz_p,
+ small_prime._mpz_p):
+ raise ValueError("The value is composite")
+
+ def multiply_accumulate(self, a, b):
+ """Increment the number by the product of a and b."""
+
+ if not isinstance(a, IntegerGMP):
+ a = IntegerGMP(a)
+ if is_native_int(b):
+ if 0 < b < 65536:
+ _gmp.mpz_addmul_ui(self._mpz_p,
+ a._mpz_p,
+ c_ulong(b))
+ return self
+ if -65535 < b < 0:
+ _gmp.mpz_submul_ui(self._mpz_p,
+ a._mpz_p,
+ c_ulong(-b))
+ return self
+ b = IntegerGMP(b)
+ _gmp.mpz_addmul(self._mpz_p,
+ a._mpz_p,
+ b._mpz_p)
+ return self
+
+ def set(self, source):
+ """Set the Integer to have the given value"""
+
+ if not isinstance(source, IntegerGMP):
+ source = IntegerGMP(source)
+ _gmp.mpz_set(self._mpz_p,
+ source._mpz_p)
+ return self
+
+ def inplace_inverse(self, modulus):
+ """Compute the inverse of this number in the ring of
+ modulo integers.
+
+ Raise an exception if no inverse exists.
+ """
+
+ if not isinstance(modulus, IntegerGMP):
+ modulus = IntegerGMP(modulus)
+
+ comp = _gmp.mpz_cmp(modulus._mpz_p,
+ self._zero_mpz_p)
+ if comp == 0:
+ raise ZeroDivisionError("Modulus cannot be zero")
+ if comp < 0:
+ raise ValueError("Modulus must be positive")
+
+ result = _gmp.mpz_invert(self._mpz_p,
+ self._mpz_p,
+ modulus._mpz_p)
+ if not result:
+ raise ValueError("No inverse value can be computed")
+ return self
+
+ def inverse(self, modulus):
+ result = IntegerGMP(self)
+ result.inplace_inverse(modulus)
+ return result
+
+ def gcd(self, term):
+ """Compute the greatest common denominator between this
+ number and another term."""
+
+ result = IntegerGMP(0)
+ if is_native_int(term):
+ if 0 < term < 65535:
+ _gmp.mpz_gcd_ui(result._mpz_p,
+ self._mpz_p,
+ c_ulong(term))
+ return result
+ term = IntegerGMP(term)
+ _gmp.mpz_gcd(result._mpz_p, self._mpz_p, term._mpz_p)
+ return result
+
+ def lcm(self, term):
+ """Compute the least common multiplier between this
+ number and another term."""
+
+ result = IntegerGMP(0)
+ if not isinstance(term, IntegerGMP):
+ term = IntegerGMP(term)
+ _gmp.mpz_lcm(result._mpz_p, self._mpz_p, term._mpz_p)
+ return result
+
+ @staticmethod
+ def jacobi_symbol(a, n):
+ """Compute the Jacobi symbol"""
+
+ if not isinstance(a, IntegerGMP):
+ a = IntegerGMP(a)
+ if not isinstance(n, IntegerGMP):
+ n = IntegerGMP(n)
+ if n <= 0 or n.is_even():
+ raise ValueError("n must be positive even for the Jacobi symbol")
+ return _gmp.mpz_jacobi(a._mpz_p, n._mpz_p)
+
+ # Clean-up
+ def __del__(self):
+
+ try:
+ if self._mpz_p is not None:
+ if self._initialized:
+ _gmp.mpz_clear(self._mpz_p)
+
+ self._mpz_p = None
+ except AttributeError:
+ pass
diff --git a/frozen_deps/Cryptodome/Math/_IntegerGMP.pyi b/frozen_deps/Cryptodome/Math/_IntegerGMP.pyi
new file mode 100644
index 0000000..2181b47
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/_IntegerGMP.pyi
@@ -0,0 +1,3 @@
+from ._IntegerBase import IntegerBase
+class IntegerGMP(IntegerBase):
+ pass
diff --git a/frozen_deps/Cryptodome/Math/_IntegerNative.py b/frozen_deps/Cryptodome/Math/_IntegerNative.py
new file mode 100644
index 0000000..896107f
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/_IntegerNative.py
@@ -0,0 +1,380 @@
+# ===================================================================
+#
+# Copyright (c) 2014, Legrandin <[email protected]>
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+# ===================================================================
+
+from ._IntegerBase import IntegerBase
+
+from Cryptodome.Util.number import long_to_bytes, bytes_to_long
+
+
+class IntegerNative(IntegerBase):
+ """A class to model a natural integer (including zero)"""
+
+ def __init__(self, value):
+ if isinstance(value, float):
+ raise ValueError("A floating point type is not a natural number")
+ try:
+ self._value = value._value
+ except AttributeError:
+ self._value = value
+
+ # Conversions
+ def __int__(self):
+ return self._value
+
+ def __str__(self):
+ return str(int(self))
+
+ def __repr__(self):
+ return "Integer(%s)" % str(self)
+
+ # Only Python 2.x
+ def __hex__(self):
+ return hex(self._value)
+
+ # Only Python 3.x
+ def __index__(self):
+ return int(self._value)
+
+ def to_bytes(self, block_size=0):
+ if self._value < 0:
+ raise ValueError("Conversion only valid for non-negative numbers")
+ result = long_to_bytes(self._value, block_size)
+ if len(result) > block_size > 0:
+ raise ValueError("Value too large to encode")
+ return result
+
+ @classmethod
+ def from_bytes(cls, byte_string):
+ return cls(bytes_to_long(byte_string))
+
+ # Relations
+ def __eq__(self, term):
+ if term is None:
+ return False
+ return self._value == int(term)
+
+ def __ne__(self, term):
+ return not self.__eq__(term)
+
+ def __lt__(self, term):
+ return self._value < int(term)
+
+ def __le__(self, term):
+ return self.__lt__(term) or self.__eq__(term)
+
+ def __gt__(self, term):
+ return not self.__le__(term)
+
+ def __ge__(self, term):
+ return not self.__lt__(term)
+
+ def __nonzero__(self):
+ return self._value != 0
+ __bool__ = __nonzero__
+
+ def is_negative(self):
+ return self._value < 0
+
+ # Arithmetic operations
+ def __add__(self, term):
+ try:
+ return self.__class__(self._value + int(term))
+ except (ValueError, AttributeError, TypeError):
+ return NotImplemented
+
+ def __sub__(self, term):
+ try:
+ return self.__class__(self._value - int(term))
+ except (ValueError, AttributeError, TypeError):
+ return NotImplemented
+
+ def __mul__(self, factor):
+ try:
+ return self.__class__(self._value * int(factor))
+ except (ValueError, AttributeError, TypeError):
+ return NotImplemented
+
+ def __floordiv__(self, divisor):
+ return self.__class__(self._value // int(divisor))
+
+ def __mod__(self, divisor):
+ divisor_value = int(divisor)
+ if divisor_value < 0:
+ raise ValueError("Modulus must be positive")
+ return self.__class__(self._value % divisor_value)
+
+ def inplace_pow(self, exponent, modulus=None):
+ exp_value = int(exponent)
+ if exp_value < 0:
+ raise ValueError("Exponent must not be negative")
+
+ if modulus is not None:
+ mod_value = int(modulus)
+ if mod_value < 0:
+ raise ValueError("Modulus must be positive")
+ if mod_value == 0:
+ raise ZeroDivisionError("Modulus cannot be zero")
+ else:
+ mod_value = None
+ self._value = pow(self._value, exp_value, mod_value)
+ return self
+
+ def __pow__(self, exponent, modulus=None):
+ result = self.__class__(self)
+ return result.inplace_pow(exponent, modulus)
+
+ def __abs__(self):
+ return abs(self._value)
+
+ def sqrt(self, modulus=None):
+
+ value = self._value
+ if modulus is None:
+ if value < 0:
+ raise ValueError("Square root of negative value")
+ # http://stackoverflow.com/questions/15390807/integer-square-root-in-python
+
+ x = value
+ y = (x + 1) // 2
+ while y < x:
+ x = y
+ y = (x + value // x) // 2
+ result = x
+ else:
+ if modulus <= 0:
+ raise ValueError("Modulus must be positive")
+ result = self._tonelli_shanks(self % modulus, modulus)
+
+ return self.__class__(result)
+
+ def __iadd__(self, term):
+ self._value += int(term)
+ return self
+
+ def __isub__(self, term):
+ self._value -= int(term)
+ return self
+
+ def __imul__(self, term):
+ self._value *= int(term)
+ return self
+
+ def __imod__(self, term):
+ modulus = int(term)
+ if modulus == 0:
+ raise ZeroDivisionError("Division by zero")
+ if modulus < 0:
+ raise ValueError("Modulus must be positive")
+ self._value %= modulus
+ return self
+
+ # Boolean/bit operations
+ def __and__(self, term):
+ return self.__class__(self._value & int(term))
+
+ def __or__(self, term):
+ return self.__class__(self._value | int(term))
+
+ def __rshift__(self, pos):
+ try:
+ return self.__class__(self._value >> int(pos))
+ except OverflowError:
+ if self._value >= 0:
+ return 0
+ else:
+ return -1
+
+ def __irshift__(self, pos):
+ try:
+ self._value >>= int(pos)
+ except OverflowError:
+ if self._value >= 0:
+ return 0
+ else:
+ return -1
+ return self
+
+ def __lshift__(self, pos):
+ try:
+ return self.__class__(self._value << int(pos))
+ except OverflowError:
+ raise ValueError("Incorrect shift count")
+
+ def __ilshift__(self, pos):
+ try:
+ self._value <<= int(pos)
+ except OverflowError:
+ raise ValueError("Incorrect shift count")
+ return self
+
+ def get_bit(self, n):
+ if self._value < 0:
+ raise ValueError("no bit representation for negative values")
+ try:
+ try:
+ result = (self._value >> n._value) & 1
+ if n._value < 0:
+ raise ValueError("negative bit count")
+ except AttributeError:
+ result = (self._value >> n) & 1
+ if n < 0:
+ raise ValueError("negative bit count")
+ except OverflowError:
+ result = 0
+ return result
+
+ # Extra
+ def is_odd(self):
+ return (self._value & 1) == 1
+
+ def is_even(self):
+ return (self._value & 1) == 0
+
+ def size_in_bits(self):
+
+ if self._value < 0:
+ raise ValueError("Conversion only valid for non-negative numbers")
+
+ if self._value == 0:
+ return 1
+
+ bit_size = 0
+ tmp = self._value
+ while tmp:
+ tmp >>= 1
+ bit_size += 1
+
+ return bit_size
+
+ def size_in_bytes(self):
+ return (self.size_in_bits() - 1) // 8 + 1
+
+ def is_perfect_square(self):
+ if self._value < 0:
+ return False
+ if self._value in (0, 1):
+ return True
+
+ x = self._value // 2
+ square_x = x ** 2
+
+ while square_x > self._value:
+ x = (square_x + self._value) // (2 * x)
+ square_x = x ** 2
+
+ return self._value == x ** 2
+
+ def fail_if_divisible_by(self, small_prime):
+ if (self._value % int(small_prime)) == 0:
+ raise ValueError("Value is composite")
+
+ def multiply_accumulate(self, a, b):
+ self._value += int(a) * int(b)
+ return self
+
+ def set(self, source):
+ self._value = int(source)
+
+ def inplace_inverse(self, modulus):
+ modulus = int(modulus)
+ if modulus == 0:
+ raise ZeroDivisionError("Modulus cannot be zero")
+ if modulus < 0:
+ raise ValueError("Modulus cannot be negative")
+ r_p, r_n = self._value, modulus
+ s_p, s_n = 1, 0
+ while r_n > 0:
+ q = r_p // r_n
+ r_p, r_n = r_n, r_p - q * r_n
+ s_p, s_n = s_n, s_p - q * s_n
+ if r_p != 1:
+ raise ValueError("No inverse value can be computed" + str(r_p))
+ while s_p < 0:
+ s_p += modulus
+ self._value = s_p
+ return self
+
+ def inverse(self, modulus):
+ result = self.__class__(self)
+ result.inplace_inverse(modulus)
+ return result
+
+ def gcd(self, term):
+ r_p, r_n = abs(self._value), abs(int(term))
+ while r_n > 0:
+ q = r_p // r_n
+ r_p, r_n = r_n, r_p - q * r_n
+ return self.__class__(r_p)
+
+ def lcm(self, term):
+ term = int(term)
+ if self._value == 0 or term == 0:
+ return self.__class__(0)
+ return self.__class__(abs((self._value * term) // self.gcd(term)._value))
+
+ @staticmethod
+ def jacobi_symbol(a, n):
+ a = int(a)
+ n = int(n)
+
+ if n <= 0:
+ raise ValueError("n must be a positive integer")
+
+ if (n & 1) == 0:
+ raise ValueError("n must be even for the Jacobi symbol")
+
+ # Step 1
+ a = a % n
+ # Step 2
+ if a == 1 or n == 1:
+ return 1
+ # Step 3
+ if a == 0:
+ return 0
+ # Step 4
+ e = 0
+ a1 = a
+ while (a1 & 1) == 0:
+ a1 >>= 1
+ e += 1
+ # Step 5
+ if (e & 1) == 0:
+ s = 1
+ elif n % 8 in (1, 7):
+ s = 1
+ else:
+ s = -1
+ # Step 6
+ if n % 4 == 3 and a1 % 4 == 3:
+ s = -s
+ # Step 7
+ n1 = n % a1
+ # Step 8
+ return s * IntegerNative.jacobi_symbol(n1, a1)
diff --git a/frozen_deps/Cryptodome/Math/_IntegerNative.pyi b/frozen_deps/Cryptodome/Math/_IntegerNative.pyi
new file mode 100644
index 0000000..3f65a39
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/_IntegerNative.pyi
@@ -0,0 +1,3 @@
+from ._IntegerBase import IntegerBase
+class IntegerNative(IntegerBase):
+ pass
diff --git a/frozen_deps/Cryptodome/Math/__init__.py b/frozen_deps/Cryptodome/Math/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/__init__.py
diff --git a/frozen_deps/Cryptodome/Math/_modexp.cpython-38-x86_64-linux-gnu.so b/frozen_deps/Cryptodome/Math/_modexp.cpython-38-x86_64-linux-gnu.so
new file mode 100755
index 0000000..9b8cd0a
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/_modexp.cpython-38-x86_64-linux-gnu.so
Binary files differ