aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/Cryptodome/Cipher/_mode_ctr.py
diff options
context:
space:
mode:
Diffstat (limited to 'frozen_deps/Cryptodome/Cipher/_mode_ctr.py')
-rw-r--r--frozen_deps/Cryptodome/Cipher/_mode_ctr.py393
1 files changed, 393 insertions, 0 deletions
diff --git a/frozen_deps/Cryptodome/Cipher/_mode_ctr.py b/frozen_deps/Cryptodome/Cipher/_mode_ctr.py
new file mode 100644
index 0000000..99712d0
--- /dev/null
+++ b/frozen_deps/Cryptodome/Cipher/_mode_ctr.py
@@ -0,0 +1,393 @@
+# -*- coding: utf-8 -*-
+#
+# Cipher/mode_ctr.py : CTR mode
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""
+Counter (CTR) mode.
+"""
+
+__all__ = ['CtrMode']
+
+import struct
+
+from Cryptodome.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer,
+ create_string_buffer, get_raw_buffer,
+ SmartPointer, c_size_t, c_uint8_ptr,
+ is_writeable_buffer)
+
+from Cryptodome.Random import get_random_bytes
+from Cryptodome.Util.py3compat import _copy_bytes, is_native_int
+from Cryptodome.Util.number import long_to_bytes
+
+raw_ctr_lib = load_pycryptodome_raw_lib("Cryptodome.Cipher._raw_ctr", """
+ int CTR_start_operation(void *cipher,
+ uint8_t initialCounterBlock[],
+ size_t initialCounterBlock_len,
+ size_t prefix_len,
+ unsigned counter_len,
+ unsigned littleEndian,
+ void **pResult);
+ int CTR_encrypt(void *ctrState,
+ const uint8_t *in,
+ uint8_t *out,
+ size_t data_len);
+ int CTR_decrypt(void *ctrState,
+ const uint8_t *in,
+ uint8_t *out,
+ size_t data_len);
+ int CTR_stop_operation(void *ctrState);"""
+ )
+
+
+class CtrMode(object):
+ """*CounTeR (CTR)* mode.
+
+ This mode is very similar to ECB, in that
+ encryption of one block is done independently of all other blocks.
+
+ Unlike ECB, the block *position* contributes to the encryption
+ and no information leaks about symbol frequency.
+
+ Each message block is associated to a *counter* which
+ must be unique across all messages that get encrypted
+ with the same key (not just within the same message).
+ The counter is as big as the block size.
+
+ Counters can be generated in several ways. The most
+ straightword one is to choose an *initial counter block*
+ (which can be made public, similarly to the *IV* for the
+ other modes) and increment its lowest **m** bits by one
+ (modulo *2^m*) for each block. In most cases, **m** is
+ chosen to be half the block size.
+
+ See `NIST SP800-38A`_, Section 6.5 (for the mode) and
+ Appendix B (for how to manage the *initial counter block*).
+
+ .. _`NIST SP800-38A` : http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
+
+ :undocumented: __init__
+ """
+
+ def __init__(self, block_cipher, initial_counter_block,
+ prefix_len, counter_len, little_endian):
+ """Create a new block cipher, configured in CTR mode.
+
+ :Parameters:
+ block_cipher : C pointer
+ A smart pointer to the low-level block cipher instance.
+
+ initial_counter_block : bytes/bytearray/memoryview
+ The initial plaintext to use to generate the key stream.
+
+ It is as large as the cipher block, and it embeds
+ the initial value of the counter.
+
+ This value must not be reused.
+ It shall contain a nonce or a random component.
+ Reusing the *initial counter block* for encryptions
+ performed with the same key compromises confidentiality.
+
+ prefix_len : integer
+ The amount of bytes at the beginning of the counter block
+ that never change.
+
+ counter_len : integer
+ The length in bytes of the counter embedded in the counter
+ block.
+
+ little_endian : boolean
+ True if the counter in the counter block is an integer encoded
+ in little endian mode. If False, it is big endian.
+ """
+
+ if len(initial_counter_block) == prefix_len + counter_len:
+ self.nonce = _copy_bytes(None, prefix_len, initial_counter_block)
+ """Nonce; not available if there is a fixed suffix"""
+
+ self._state = VoidPointer()
+ result = raw_ctr_lib.CTR_start_operation(block_cipher.get(),
+ c_uint8_ptr(initial_counter_block),
+ c_size_t(len(initial_counter_block)),
+ c_size_t(prefix_len),
+ counter_len,
+ little_endian,
+ self._state.address_of())
+ if result:
+ raise ValueError("Error %X while instantiating the CTR mode"
+ % result)
+
+ # Ensure that object disposal of this Python object will (eventually)
+ # free the memory allocated by the raw library for the cipher mode
+ self._state = SmartPointer(self._state.get(),
+ raw_ctr_lib.CTR_stop_operation)
+
+ # Memory allocated for the underlying block cipher is now owed
+ # by the cipher mode
+ block_cipher.release()
+
+ self.block_size = len(initial_counter_block)
+ """The block size of the underlying cipher, in bytes."""
+
+ self._next = [self.encrypt, self.decrypt]
+
+ def encrypt(self, plaintext, output=None):
+ """Encrypt data with the key and the parameters set at initialization.
+
+ A cipher object is stateful: once you have encrypted a message
+ you cannot encrypt (or decrypt) another message using the same
+ object.
+
+ The data to encrypt can be broken up in two or
+ more pieces and `encrypt` can be called multiple times.
+
+ That is, the statement:
+
+ >>> c.encrypt(a) + c.encrypt(b)
+
+ is equivalent to:
+
+ >>> c.encrypt(a+b)
+
+ This function does not add any padding to the plaintext.
+
+ :Parameters:
+ plaintext : bytes/bytearray/memoryview
+ The piece of data to encrypt.
+ It can be of any length.
+ :Keywords:
+ output : bytearray/memoryview
+ The location where the ciphertext must be written to.
+ If ``None``, the ciphertext is returned.
+ :Return:
+ If ``output`` is ``None``, the ciphertext is returned as ``bytes``.
+ Otherwise, ``None``.
+ """
+
+ if self.encrypt not in self._next:
+ raise TypeError("encrypt() cannot be called after decrypt()")
+ self._next = [self.encrypt]
+
+ if output is None:
+ ciphertext = create_string_buffer(len(plaintext))
+ else:
+ ciphertext = output
+
+ if not is_writeable_buffer(output):
+ raise TypeError("output must be a bytearray or a writeable memoryview")
+
+ if len(plaintext) != len(output):
+ raise ValueError("output must have the same length as the input"
+ " (%d bytes)" % len(plaintext))
+
+ result = raw_ctr_lib.CTR_encrypt(self._state.get(),
+ c_uint8_ptr(plaintext),
+ c_uint8_ptr(ciphertext),
+ c_size_t(len(plaintext)))
+ if result:
+ if result == 0x60002:
+ raise OverflowError("The counter has wrapped around in"
+ " CTR mode")
+ raise ValueError("Error %X while encrypting in CTR mode" % result)
+
+ if output is None:
+ return get_raw_buffer(ciphertext)
+ else:
+ return None
+
+ def decrypt(self, ciphertext, output=None):
+ """Decrypt data with the key and the parameters set at initialization.
+
+ A cipher object is stateful: once you have decrypted a message
+ you cannot decrypt (or encrypt) another message with the same
+ object.
+
+ The data to decrypt can be broken up in two or
+ more pieces and `decrypt` can be called multiple times.
+
+ That is, the statement:
+
+ >>> c.decrypt(a) + c.decrypt(b)
+
+ is equivalent to:
+
+ >>> c.decrypt(a+b)
+
+ This function does not remove any padding from the plaintext.
+
+ :Parameters:
+ ciphertext : bytes/bytearray/memoryview
+ The piece of data to decrypt.
+ It can be of any length.
+ :Keywords:
+ output : bytearray/memoryview
+ The location where the plaintext must be written to.
+ If ``None``, the plaintext is returned.
+ :Return:
+ If ``output`` is ``None``, the plaintext is returned as ``bytes``.
+ Otherwise, ``None``.
+ """
+
+ if self.decrypt not in self._next:
+ raise TypeError("decrypt() cannot be called after encrypt()")
+ self._next = [self.decrypt]
+
+ if output is None:
+ plaintext = create_string_buffer(len(ciphertext))
+ else:
+ plaintext = output
+
+ if not is_writeable_buffer(output):
+ raise TypeError("output must be a bytearray or a writeable memoryview")
+
+ if len(ciphertext) != len(output):
+ raise ValueError("output must have the same length as the input"
+ " (%d bytes)" % len(plaintext))
+
+
+ result = raw_ctr_lib.CTR_decrypt(self._state.get(),
+ c_uint8_ptr(ciphertext),
+ c_uint8_ptr(plaintext),
+ c_size_t(len(ciphertext)))
+ if result:
+ if result == 0x60002:
+ raise OverflowError("The counter has wrapped around in"
+ " CTR mode")
+ raise ValueError("Error %X while decrypting in CTR mode" % result)
+
+ if output is None:
+ return get_raw_buffer(plaintext)
+ else:
+ return None
+
+
+def _create_ctr_cipher(factory, **kwargs):
+ """Instantiate a cipher object that performs CTR encryption/decryption.
+
+ :Parameters:
+ factory : module
+ The underlying block cipher, a module from ``Cryptodome.Cipher``.
+
+ :Keywords:
+ nonce : bytes/bytearray/memoryview
+ The fixed part at the beginning of the counter block - the rest is
+ the counter number that gets increased when processing the next block.
+ The nonce must be such that no two messages are encrypted under the
+ same key and the same nonce.
+
+ The nonce must be shorter than the block size (it can have
+ zero length; the counter is then as long as the block).
+
+ If this parameter is not present, a random nonce will be created with
+ length equal to half the block size. No random nonce shorter than
+ 64 bits will be created though - you must really think through all
+ security consequences of using such a short block size.
+
+ initial_value : posive integer or bytes/bytearray/memoryview
+ The initial value for the counter. If not present, the cipher will
+ start counting from 0. The value is incremented by one for each block.
+ The counter number is encoded in big endian mode.
+
+ counter : object
+ Instance of ``Cryptodome.Util.Counter``, which allows full customization
+ of the counter block. This parameter is incompatible to both ``nonce``
+ and ``initial_value``.
+
+ Any other keyword will be passed to the underlying block cipher.
+ See the relevant documentation for details (at least ``key`` will need
+ to be present).
+ """
+
+ cipher_state = factory._create_base_cipher(kwargs)
+
+ counter = kwargs.pop("counter", None)
+ nonce = kwargs.pop("nonce", None)
+ initial_value = kwargs.pop("initial_value", None)
+ if kwargs:
+ raise TypeError("Invalid parameters for CTR mode: %s" % str(kwargs))
+
+ if counter is not None and (nonce, initial_value) != (None, None):
+ raise TypeError("'counter' and 'nonce'/'initial_value'"
+ " are mutually exclusive")
+
+ if counter is None:
+ # Cryptodome.Util.Counter is not used
+ if nonce is None:
+ if factory.block_size < 16:
+ raise TypeError("Impossible to create a safe nonce for short"
+ " block sizes")
+ nonce = get_random_bytes(factory.block_size // 2)
+ else:
+ if len(nonce) >= factory.block_size:
+ raise ValueError("Nonce is too long")
+
+ # What is not nonce is counter
+ counter_len = factory.block_size - len(nonce)
+
+ if initial_value is None:
+ initial_value = 0
+
+ if is_native_int(initial_value):
+ if (1 << (counter_len * 8)) - 1 < initial_value:
+ raise ValueError("Initial counter value is too large")
+ initial_counter_block = nonce + long_to_bytes(initial_value, counter_len)
+ else:
+ if len(initial_value) != counter_len:
+ raise ValueError("Incorrect length for counter byte string (%d bytes, expected %d)" % (len(initial_value), counter_len))
+ initial_counter_block = nonce + initial_value
+
+ return CtrMode(cipher_state,
+ initial_counter_block,
+ len(nonce), # prefix
+ counter_len,
+ False) # little_endian
+
+ # Cryptodome.Util.Counter is used
+
+ # 'counter' used to be a callable object, but now it is
+ # just a dictionary for backward compatibility.
+ _counter = dict(counter)
+ try:
+ counter_len = _counter.pop("counter_len")
+ prefix = _counter.pop("prefix")
+ suffix = _counter.pop("suffix")
+ initial_value = _counter.pop("initial_value")
+ little_endian = _counter.pop("little_endian")
+ except KeyError:
+ raise TypeError("Incorrect counter object"
+ " (use Cryptodome.Util.Counter.new)")
+
+ # Compute initial counter block
+ words = []
+ while initial_value > 0:
+ words.append(struct.pack('B', initial_value & 255))
+ initial_value >>= 8
+ words += [ b'\x00' ] * max(0, counter_len - len(words))
+ if not little_endian:
+ words.reverse()
+ initial_counter_block = prefix + b"".join(words) + suffix
+
+ if len(initial_counter_block) != factory.block_size:
+ raise ValueError("Size of the counter block (%d bytes) must match"
+ " block size (%d)" % (len(initial_counter_block),
+ factory.block_size))
+
+ return CtrMode(cipher_state, initial_counter_block,
+ len(prefix), counter_len, little_endian)