aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/Crypto/Protocol/AllOrNothing.py
diff options
context:
space:
mode:
Diffstat (limited to 'frozen_deps/Crypto/Protocol/AllOrNothing.py')
-rw-r--r--frozen_deps/Crypto/Protocol/AllOrNothing.py320
1 files changed, 320 insertions, 0 deletions
diff --git a/frozen_deps/Crypto/Protocol/AllOrNothing.py b/frozen_deps/Crypto/Protocol/AllOrNothing.py
new file mode 100644
index 0000000..dd20536
--- /dev/null
+++ b/frozen_deps/Crypto/Protocol/AllOrNothing.py
@@ -0,0 +1,320 @@
+#
+# AllOrNothing.py : all-or-nothing package transformations
+#
+# Part of the Python Cryptography Toolkit
+#
+# Written by Andrew M. Kuchling and others
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""This file implements all-or-nothing package transformations.
+
+An all-or-nothing package transformation is one in which some text is
+transformed into message blocks, such that all blocks must be obtained before
+the reverse transformation can be applied. Thus, if any blocks are corrupted
+or lost, the original message cannot be reproduced.
+
+An all-or-nothing package transformation is not encryption, although a block
+cipher algorithm is used. The encryption key is randomly generated and is
+extractable from the message blocks.
+
+This class implements the All-Or-Nothing package transformation algorithm
+described in:
+
+Ronald L. Rivest. "All-Or-Nothing Encryption and The Package Transform"
+http://theory.lcs.mit.edu/~rivest/fusion.pdf
+
+"""
+
+__revision__ = "$Id$"
+
+import operator
+import sys
+from Crypto.Util.number import bytes_to_long, long_to_bytes
+from Crypto.Util.py3compat import *
+from functools import reduce
+
+def isInt(x):
+ test = 0
+ try:
+ test += x
+ except TypeError:
+ return 0
+ return 1
+
+class AllOrNothing:
+ """Class implementing the All-or-Nothing package transform.
+
+ Methods for subclassing:
+
+ _inventkey(key_size):
+ Returns a randomly generated key. Subclasses can use this to
+ implement better random key generating algorithms. The default
+ algorithm is probably not very cryptographically secure.
+
+ """
+
+ def __init__(self, ciphermodule, mode=None, IV=None):
+ """AllOrNothing(ciphermodule, mode=None, IV=None)
+
+ ciphermodule is a module implementing the cipher algorithm to
+ use. It must provide the PEP272 interface.
+
+ Note that the encryption key is randomly generated
+ automatically when needed. Optional arguments mode and IV are
+ passed directly through to the ciphermodule.new() method; they
+ are the feedback mode and initialization vector to use. All
+ three arguments must be the same for the object used to create
+ the digest, and to undigest'ify the message blocks.
+ """
+
+ self.__ciphermodule = ciphermodule
+ self.__mode = mode
+ self.__IV = IV
+ self.__key_size = ciphermodule.key_size
+ if not isInt(self.__key_size) or self.__key_size==0:
+ self.__key_size = 16
+
+ __K0digit = bchr(0x69)
+
+ def digest(self, text):
+ """digest(text:string) : [string]
+
+ Perform the All-or-Nothing package transform on the given
+ string. Output is a list of message blocks describing the
+ transformed text, where each block is a string of bit length equal
+ to the ciphermodule's block_size.
+ """
+
+ # generate a random session key and K0, the key used to encrypt the
+ # hash blocks. Rivest calls this a fixed, publically-known encryption
+ # key, but says nothing about the security implications of this key or
+ # how to choose it.
+ key = self._inventkey(self.__key_size)
+ K0 = self.__K0digit * self.__key_size
+
+ # we need two cipher objects here, one that is used to encrypt the
+ # message blocks and one that is used to encrypt the hashes. The
+ # former uses the randomly generated key, while the latter uses the
+ # well-known key.
+ mcipher = self.__newcipher(key)
+ hcipher = self.__newcipher(K0)
+
+ # Pad the text so that its length is a multiple of the cipher's
+ # block_size. Pad with trailing spaces, which will be eliminated in
+ # the undigest() step.
+ block_size = self.__ciphermodule.block_size
+ padbytes = block_size - (len(text) % block_size)
+ text = text + b(' ') * padbytes
+
+ # Run through the algorithm:
+ # s: number of message blocks (size of text / block_size)
+ # input sequence: m1, m2, ... ms
+ # random key K' (`key' in the code)
+ # Compute output sequence: m'1, m'2, ... m's' for s' = s + 1
+ # Let m'i = mi ^ E(K', i) for i = 1, 2, 3, ..., s
+ # Let m's' = K' ^ h1 ^ h2 ^ ... hs
+ # where hi = E(K0, m'i ^ i) for i = 1, 2, ... s
+ #
+ # The one complication I add is that the last message block is hard
+ # coded to the number of padbytes added, so that these can be stripped
+ # during the undigest() step
+ s = divmod(len(text), block_size)[0]
+ blocks = []
+ hashes = []
+ for i in range(1, s+1):
+ start = (i-1) * block_size
+ end = start + block_size
+ mi = text[start:end]
+ assert len(mi) == block_size
+ cipherblock = mcipher.encrypt(long_to_bytes(i, block_size))
+ mticki = bytes_to_long(mi) ^ bytes_to_long(cipherblock)
+ blocks.append(mticki)
+ # calculate the hash block for this block
+ hi = hcipher.encrypt(long_to_bytes(mticki ^ i, block_size))
+ hashes.append(bytes_to_long(hi))
+
+ # Add the padbytes length as a message block
+ i = i + 1
+ cipherblock = mcipher.encrypt(long_to_bytes(i, block_size))
+ mticki = padbytes ^ bytes_to_long(cipherblock)
+ blocks.append(mticki)
+
+ # calculate this block's hash
+ hi = hcipher.encrypt(long_to_bytes(mticki ^ i, block_size))
+ hashes.append(bytes_to_long(hi))
+
+ # Now calculate the last message block of the sequence 1..s'. This
+ # will contain the random session key XOR'd with all the hash blocks,
+ # so that for undigest(), once all the hash blocks are calculated, the
+ # session key can be trivially extracted. Calculating all the hash
+ # blocks requires that all the message blocks be received, thus the
+ # All-or-Nothing algorithm succeeds.
+ mtick_stick = bytes_to_long(key) ^ reduce(operator.xor, hashes)
+ blocks.append(mtick_stick)
+
+ # we convert the blocks to strings since in Python, byte sequences are
+ # always represented as strings. This is more consistent with the
+ # model that encryption and hash algorithms always operate on strings.
+ return [long_to_bytes(i,self.__ciphermodule.block_size) for i in blocks]
+
+
+ def undigest(self, blocks):
+ """undigest(blocks : [string]) : string
+
+ Perform the reverse package transformation on a list of message
+ blocks. Note that the ciphermodule used for both transformations
+ must be the same. blocks is a list of strings of bit length
+ equal to the ciphermodule's block_size.
+ """
+
+ # better have at least 2 blocks, for the padbytes package and the hash
+ # block accumulator
+ if len(blocks) < 2:
+ raise ValueError("List must be at least length 2.")
+
+ # blocks is a list of strings. We need to deal with them as long
+ # integers
+ blocks = list(map(bytes_to_long, blocks))
+
+ # Calculate the well-known key, to which the hash blocks are
+ # encrypted, and create the hash cipher.
+ K0 = self.__K0digit * self.__key_size
+ hcipher = self.__newcipher(K0)
+ block_size = self.__ciphermodule.block_size
+
+ # Since we have all the blocks (or this method would have been called
+ # prematurely), we can calculate all the hash blocks.
+ hashes = []
+ for i in range(1, len(blocks)):
+ mticki = blocks[i-1] ^ i
+ hi = hcipher.encrypt(long_to_bytes(mticki, block_size))
+ hashes.append(bytes_to_long(hi))
+
+ # now we can calculate K' (key). remember the last block contains
+ # m's' which we don't include here
+ key = blocks[-1] ^ reduce(operator.xor, hashes)
+
+ # and now we can create the cipher object
+ mcipher = self.__newcipher(long_to_bytes(key, self.__key_size))
+
+ # And we can now decode the original message blocks
+ parts = []
+ for i in range(1, len(blocks)):
+ cipherblock = mcipher.encrypt(long_to_bytes(i, block_size))
+ mi = blocks[i-1] ^ bytes_to_long(cipherblock)
+ parts.append(mi)
+
+ # The last message block contains the number of pad bytes appended to
+ # the original text string, such that its length was an even multiple
+ # of the cipher's block_size. This number should be small enough that
+ # the conversion from long integer to integer should never overflow
+ padbytes = int(parts[-1])
+ text = b('').join(map(long_to_bytes, parts[:-1]))
+ return text[:-padbytes]
+
+ def _inventkey(self, key_size):
+ # Return key_size random bytes
+ from Crypto import Random
+ return Random.new().read(key_size)
+
+ def __newcipher(self, key):
+ if self.__mode is None and self.__IV is None:
+ return self.__ciphermodule.new(key)
+ elif self.__IV is None:
+ return self.__ciphermodule.new(key, self.__mode)
+ else:
+ return self.__ciphermodule.new(key, self.__mode, self.__IV)
+
+
+
+if __name__ == '__main__':
+ import sys
+ import getopt
+ import base64
+
+ usagemsg = '''\
+Test module usage: %(program)s [-c cipher] [-l] [-h]
+
+Where:
+ --cipher module
+ -c module
+ Cipher module to use. Default: %(ciphermodule)s
+
+ --aslong
+ -l
+ Print the encoded message blocks as long integers instead of base64
+ encoded strings
+
+ --help
+ -h
+ Print this help message
+'''
+
+ ciphermodule = 'AES'
+ aslong = 0
+
+ def usage(code, msg=None):
+ if msg:
+ print(msg)
+ print(usagemsg % {'program': sys.argv[0],
+ 'ciphermodule': ciphermodule})
+ sys.exit(code)
+
+ try:
+ opts, args = getopt.getopt(sys.argv[1:],
+ 'c:l', ['cipher=', 'aslong'])
+ except getopt.error as msg:
+ usage(1, msg)
+
+ if args:
+ usage(1, 'Too many arguments')
+
+ for opt, arg in opts:
+ if opt in ('-h', '--help'):
+ usage(0)
+ elif opt in ('-c', '--cipher'):
+ ciphermodule = arg
+ elif opt in ('-l', '--aslong'):
+ aslong = 1
+
+ # ugly hack to force __import__ to give us the end-path module
+ module = __import__('Crypto.Cipher.'+ciphermodule, None, None, ['new'])
+
+ x = AllOrNothing(module)
+ print('Original text:\n==========')
+ print(__doc__)
+ print('==========')
+ msgblocks = x.digest(b(__doc__))
+ print('message blocks:')
+ for i, blk in zip(list(range(len(msgblocks))), msgblocks):
+ # base64 adds a trailing newline
+ print(' %3d' % i, end=' ')
+ if aslong:
+ print(bytes_to_long(blk))
+ else:
+ print(base64.encodestring(blk)[:-1])
+ #
+ # get a new undigest-only object so there's no leakage
+ y = AllOrNothing(module)
+ text = y.undigest(msgblocks)
+ if text == b(__doc__):
+ print('They match!')
+ else:
+ print('They differ!')