aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/ecdsa/ecdsa.py
diff options
context:
space:
mode:
authorDeterminant <[email protected]>2022-11-17 18:08:59 -0800
committerDeterminant <[email protected]>2022-11-17 18:08:59 -0800
commit8154806fe2fccacdc3dafaa68181a07bcf8d6c4c (patch)
treef477e6a005599bb88c18db142c267b9297c6060b /frozen_deps/ecdsa/ecdsa.py
parentbe4dc086591c9bced04a507d127c83811c5700c4 (diff)
v0.1.7
Diffstat (limited to 'frozen_deps/ecdsa/ecdsa.py')
-rw-r--r--frozen_deps/ecdsa/ecdsa.py179
1 files changed, 142 insertions, 37 deletions
diff --git a/frozen_deps/ecdsa/ecdsa.py b/frozen_deps/ecdsa/ecdsa.py
index d785a45..3328281 100644
--- a/frozen_deps/ecdsa/ecdsa.py
+++ b/frozen_deps/ecdsa/ecdsa.py
@@ -1,56 +1,67 @@
#! /usr/bin/env python
"""
-Implementation of Elliptic-Curve Digital Signatures.
+Low level implementation of Elliptic-Curve Digital Signatures.
+
+.. note ::
+ You're most likely looking for the :py:class:`~ecdsa.keys` module.
+ This is a low-level implementation of the ECDSA that operates on
+ integers, not byte strings.
+
+NOTE: This a low level implementation of ECDSA, for normal applications
+you should be looking at the keys.py module.
Classes and methods for elliptic-curve signatures:
private keys, public keys, signatures,
-NIST prime-modulus curves with modulus lengths of
-192, 224, 256, 384, and 521 bits.
+and definitions of prime-modulus curves.
Example:
- # (In real-life applications, you would probably want to
- # protect against defects in SystemRandom.)
- from random import SystemRandom
- randrange = SystemRandom().randrange
+.. code-block:: python
- # Generate a public/private key pair using the NIST Curve P-192:
+ # (In real-life applications, you would probably want to
+ # protect against defects in SystemRandom.)
+ from random import SystemRandom
+ randrange = SystemRandom().randrange
- g = generator_192
- n = g.order()
- secret = randrange( 1, n )
- pubkey = Public_key( g, g * secret )
- privkey = Private_key( pubkey, secret )
+ # Generate a public/private key pair using the NIST Curve P-192:
- # Signing a hash value:
+ g = generator_192
+ n = g.order()
+ secret = randrange( 1, n )
+ pubkey = Public_key( g, g * secret )
+ privkey = Private_key( pubkey, secret )
- hash = randrange( 1, n )
- signature = privkey.sign( hash, randrange( 1, n ) )
+ # Signing a hash value:
- # Verifying a signature for a hash value:
+ hash = randrange( 1, n )
+ signature = privkey.sign( hash, randrange( 1, n ) )
- if pubkey.verifies( hash, signature ):
- print_("Demo verification succeeded.")
- else:
- print_("*** Demo verification failed.")
+ # Verifying a signature for a hash value:
- # Verification fails if the hash value is modified:
+ if pubkey.verifies( hash, signature ):
+ print_("Demo verification succeeded.")
+ else:
+ print_("*** Demo verification failed.")
- if pubkey.verifies( hash-1, signature ):
- print_("**** Demo verification failed to reject tampered hash.")
- else:
- print_("Demo verification correctly rejected tampered hash.")
+ # Verification fails if the hash value is modified:
-Version of 2009.05.16.
+ if pubkey.verifies( hash-1, signature ):
+ print_("**** Demo verification failed to reject tampered hash.")
+ else:
+ print_("Demo verification correctly rejected tampered hash.")
Revision history:
2005.12.31 - Initial version.
+
2008.11.25 - Substantial revisions introducing new classes.
+
2009.05.16 - Warn against using random.randrange in real applications.
+
2009.05.17 - Use random.SystemRandom by default.
-Written in 2005 by Peter Pearson and placed in the public domain.
+Originally written in 2005 by Peter Pearson and placed in the public domain,
+modified as part of the python-ecdsa package.
"""
from six import int2byte, b
@@ -69,16 +80,26 @@ class InvalidPointError(RuntimeError):
class Signature(object):
- """ECDSA signature."""
+ """
+ ECDSA signature.
+
+ :ivar int r: the ``r`` element of the ECDSA signature
+ :ivar int s: the ``s`` element of the ECDSA signature
+ """
def __init__(self, r, s):
self.r = r
self.s = s
def recover_public_keys(self, hash, generator):
- """Returns two public keys for which the signature is valid
- hash is signed hash
- generator is the used generator of the signature
+ """
+ Returns two public keys for which the signature is valid
+
+ :param int hash: signed hash
+ :param AbstractPoint generator: is the generator used in creation
+ of the signature
+ :rtype: tuple(Public_key, Public_key)
+ :return: a pair of public keys that can validate the signature
"""
curve = generator.curve()
n = generator.order()
@@ -118,7 +139,7 @@ class Public_key(object):
:param bool verify: if True check if point is valid point on curve
:raises InvalidPointError: if the point parameters are invalid or
- point does not lie on the curve
+ point does not lay on the curve
"""
self.curve = generator.curve()
@@ -131,7 +152,7 @@ class Public_key(object):
"The public point has x or y out of range."
)
if verify and not self.curve.contains_point(point.x(), point.y()):
- raise InvalidPointError("Point does not lie on the curve")
+ raise InvalidPointError("Point does not lay on the curve")
if not n:
raise InvalidPointError("Generator point must have order.")
# for curve parameters with base point with cofactor 1, all points
@@ -145,11 +166,20 @@ class Public_key(object):
raise InvalidPointError("Generator point order is bad.")
def __eq__(self, other):
+ """Return True if the keys are identical, False otherwise.
+
+ Note: for comparison, only placement on the same curve and point
+ equality is considered, use of the same generator point is not
+ considered.
+ """
if isinstance(other, Public_key):
- """Return True if the points are identical, False otherwise."""
return self.curve == other.curve and self.point == other.point
return NotImplemented
+ def __ne__(self, other):
+ """Return False if the keys are identical, True otherwise."""
+ return not self == other
+
def verifies(self, hash, signature):
"""Verify that signature is a valid signature of hash.
Return True if the signature is valid.
@@ -188,14 +218,18 @@ class Private_key(object):
self.secret_multiplier = secret_multiplier
def __eq__(self, other):
+ """Return True if the points are identical, False otherwise."""
if isinstance(other, Private_key):
- """Return True if the points are identical, False otherwise."""
return (
self.public_key == other.public_key
and self.secret_multiplier == other.secret_multiplier
)
return NotImplemented
+ def __ne__(self, other):
+ """Return False if the points are identical, True otherwise."""
+ return not self == other
+
def sign(self, hash, random_k):
"""Return a signature for the provided hash, using the provided
random nonce. It is absolutely vital that random_k be an unpredictable
@@ -262,7 +296,7 @@ def string_to_int(s):
def digest_integer(m):
"""Convert an integer into a string of bytes, compute
- its SHA-1 hash, and convert the result to an integer."""
+ its SHA-1 hash, and convert the result to an integer."""
#
# I don't expect this function to be used much. I wrote
# it in order to be able to duplicate the examples
@@ -294,6 +328,77 @@ def point_is_valid(generator, x, y):
return True
+# secp112r1 curve
+_p = int(remove_whitespace("DB7C 2ABF62E3 5E668076 BEAD208B"), 16)
+# s = 00F50B02 8E4D696E 67687561 51752904 72783FB1
+_a = int(remove_whitespace("DB7C 2ABF62E3 5E668076 BEAD2088"), 16)
+_b = int(remove_whitespace("659E F8BA0439 16EEDE89 11702B22"), 16)
+_Gx = int(remove_whitespace("09487239 995A5EE7 6B55F9C2 F098"), 16)
+_Gy = int(remove_whitespace("A89C E5AF8724 C0A23E0E 0FF77500"), 16)
+_r = int(remove_whitespace("DB7C 2ABF62E3 5E7628DF AC6561C5"), 16)
+_h = 1
+curve_112r1 = ellipticcurve.CurveFp(_p, _a, _b, _h)
+generator_112r1 = ellipticcurve.PointJacobi(
+ curve_112r1, _Gx, _Gy, 1, _r, generator=True
+)
+
+
+# secp112r2 curve
+_p = int(remove_whitespace("DB7C 2ABF62E3 5E668076 BEAD208B"), 16)
+# s = 022757A1 114D69E 67687561 51755316 C05E0BD4
+_a = int(remove_whitespace("6127 C24C05F3 8A0AAAF6 5C0EF02C"), 16)
+_b = int(remove_whitespace("51DE F1815DB5 ED74FCC3 4C85D709"), 16)
+_Gx = int(remove_whitespace("4BA30AB5 E892B4E1 649DD092 8643"), 16)
+_Gy = int(remove_whitespace("ADCD 46F5882E 3747DEF3 6E956E97"), 16)
+_r = int(remove_whitespace("36DF 0AAFD8B8 D7597CA1 0520D04B"), 16)
+_h = 4
+curve_112r2 = ellipticcurve.CurveFp(_p, _a, _b, _h)
+generator_112r2 = ellipticcurve.PointJacobi(
+ curve_112r2, _Gx, _Gy, 1, _r, generator=True
+)
+
+
+# secp128r1 curve
+_p = int(remove_whitespace("FFFFFFFD FFFFFFFF FFFFFFFF FFFFFFFF"), 16)
+# S = 000E0D4D 69E6768 75615175 0CC03A44 73D03679
+# a and b are mod p, so a is equal to p-3, or simply -3
+# _a = -3
+_b = int(remove_whitespace("E87579C1 1079F43D D824993C 2CEE5ED3"), 16)
+_Gx = int(remove_whitespace("161FF752 8B899B2D 0C28607C A52C5B86"), 16)
+_Gy = int(remove_whitespace("CF5AC839 5BAFEB13 C02DA292 DDED7A83"), 16)
+_r = int(remove_whitespace("FFFFFFFE 00000000 75A30D1B 9038A115"), 16)
+_h = 1
+curve_128r1 = ellipticcurve.CurveFp(_p, -3, _b, _h)
+generator_128r1 = ellipticcurve.PointJacobi(
+ curve_128r1, _Gx, _Gy, 1, _r, generator=True
+)
+
+
+# secp160r1
+_p = int(remove_whitespace("FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 7FFFFFFF"), 16)
+# S = 1053CDE4 2C14D696 E6768756 1517533B F3F83345
+# a and b are mod p, so a is equal to p-3, or simply -3
+# _a = -3
+_b = int(remove_whitespace("1C97BEFC 54BD7A8B 65ACF89F 81D4D4AD C565FA45"), 16)
+_Gx = int(
+ remove_whitespace("4A96B568 8EF57328 46646989 68C38BB9 13CBFC82"),
+ 16,
+)
+_Gy = int(
+ remove_whitespace("23A62855 3168947D 59DCC912 04235137 7AC5FB32"),
+ 16,
+)
+_r = int(
+ remove_whitespace("01 00000000 00000000 0001F4C8 F927AED3 CA752257"),
+ 16,
+)
+_h = 1
+curve_160r1 = ellipticcurve.CurveFp(_p, -3, _b, _h)
+generator_160r1 = ellipticcurve.PointJacobi(
+ curve_160r1, _Gx, _Gy, 1, _r, generator=True
+)
+
+
# NIST Curve P-192:
_p = 6277101735386680763835789423207666416083908700390324961279
_r = 6277101735386680763835789423176059013767194773182842284081