aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/ecdsa-0.18.0.dist-info
diff options
context:
space:
mode:
authorDeterminant <[email protected]>2022-11-17 18:08:59 -0800
committerDeterminant <[email protected]>2022-11-17 18:08:59 -0800
commit8154806fe2fccacdc3dafaa68181a07bcf8d6c4c (patch)
treef477e6a005599bb88c18db142c267b9297c6060b /frozen_deps/ecdsa-0.18.0.dist-info
parentbe4dc086591c9bced04a507d127c83811c5700c4 (diff)
v0.1.7
Diffstat (limited to 'frozen_deps/ecdsa-0.18.0.dist-info')
-rw-r--r--frozen_deps/ecdsa-0.18.0.dist-info/INSTALLER1
-rw-r--r--frozen_deps/ecdsa-0.18.0.dist-info/LICENSE24
-rw-r--r--frozen_deps/ecdsa-0.18.0.dist-info/METADATA675
-rw-r--r--frozen_deps/ecdsa-0.18.0.dist-info/RECORD64
-rw-r--r--frozen_deps/ecdsa-0.18.0.dist-info/WHEEL6
-rw-r--r--frozen_deps/ecdsa-0.18.0.dist-info/top_level.txt1
6 files changed, 771 insertions, 0 deletions
diff --git a/frozen_deps/ecdsa-0.18.0.dist-info/INSTALLER b/frozen_deps/ecdsa-0.18.0.dist-info/INSTALLER
new file mode 100644
index 0000000..a1b589e
--- /dev/null
+++ b/frozen_deps/ecdsa-0.18.0.dist-info/INSTALLER
@@ -0,0 +1 @@
+pip
diff --git a/frozen_deps/ecdsa-0.18.0.dist-info/LICENSE b/frozen_deps/ecdsa-0.18.0.dist-info/LICENSE
new file mode 100644
index 0000000..474479a
--- /dev/null
+++ b/frozen_deps/ecdsa-0.18.0.dist-info/LICENSE
@@ -0,0 +1,24 @@
+"python-ecdsa" Copyright (c) 2010 Brian Warner
+
+Portions written in 2005 by Peter Pearson and placed in the public domain.
+
+Permission is hereby granted, free of charge, to any person
+obtaining a copy of this software and associated documentation
+files (the "Software"), to deal in the Software without
+restriction, including without limitation the rights to use,
+copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the
+Software is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+OTHER DEALINGS IN THE SOFTWARE.
diff --git a/frozen_deps/ecdsa-0.18.0.dist-info/METADATA b/frozen_deps/ecdsa-0.18.0.dist-info/METADATA
new file mode 100644
index 0000000..fa1c5fe
--- /dev/null
+++ b/frozen_deps/ecdsa-0.18.0.dist-info/METADATA
@@ -0,0 +1,675 @@
+Metadata-Version: 2.1
+Name: ecdsa
+Version: 0.18.0
+Summary: ECDSA cryptographic signature library (pure python)
+Home-page: http://github.com/tlsfuzzer/python-ecdsa
+Author: Brian Warner
+Author-email: [email protected]
+License: MIT
+Platform: UNKNOWN
+Classifier: Programming Language :: Python
+Classifier: Programming Language :: Python :: 2
+Classifier: Programming Language :: Python :: 2.6
+Classifier: Programming Language :: Python :: 2.7
+Classifier: Programming Language :: Python :: 3
+Classifier: Programming Language :: Python :: 3.3
+Classifier: Programming Language :: Python :: 3.4
+Classifier: Programming Language :: Python :: 3.5
+Classifier: Programming Language :: Python :: 3.6
+Classifier: Programming Language :: Python :: 3.7
+Classifier: Programming Language :: Python :: 3.8
+Classifier: Programming Language :: Python :: 3.9
+Classifier: Programming Language :: Python :: 3.10
+Classifier: Programming Language :: Python :: 3.11
+Requires-Python: >=2.6, !=3.0.*, !=3.1.*, !=3.2.*
+Description-Content-Type: text/markdown
+License-File: LICENSE
+Requires-Dist: six (>=1.9.0)
+Provides-Extra: gmpy
+Requires-Dist: gmpy ; extra == 'gmpy'
+Provides-Extra: gmpy2
+Requires-Dist: gmpy2 ; extra == 'gmpy2'
+
+# Pure-Python ECDSA and ECDH
+
+[![Build Status](https://github.com/tlsfuzzer/python-ecdsa/workflows/GitHub%20CI/badge.svg?branch=master)](https://github.com/tlsfuzzer/python-ecdsa/actions?query=workflow%3A%22GitHub+CI%22+branch%3Amaster)
+[![Documentation Status](https://readthedocs.org/projects/ecdsa/badge/?version=latest)](https://ecdsa.readthedocs.io/en/latest/?badge=latest)
+[![Coverage Status](https://coveralls.io/repos/github/tlsfuzzer/python-ecdsa/badge.svg?branch=master)](https://coveralls.io/github/tlsfuzzer/python-ecdsa?branch=master)
+![condition coverage](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/tomato42/9b6ca1f3410207fbeca785a178781651/raw/python-ecdsa-condition-coverage.json)
+[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/tlsfuzzer/python-ecdsa.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/tlsfuzzer/python-ecdsa/context:python)
+[![Total alerts](https://img.shields.io/lgtm/alerts/g/tlsfuzzer/python-ecdsa.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/tlsfuzzer/python-ecdsa/alerts/)
+[![Latest Version](https://img.shields.io/pypi/v/ecdsa.svg?style=flat)](https://pypi.python.org/pypi/ecdsa/)
+![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg?style=flat)
+
+
+This is an easy-to-use implementation of ECC (Elliptic Curve Cryptography)
+with support for ECDSA (Elliptic Curve Digital Signature Algorithm),
+EdDSA (Edwards-curve Digital Signature Algorithm) and ECDH
+(Elliptic Curve Diffie-Hellman), implemented purely in Python, released under
+the MIT license. With this library, you can quickly create key pairs (signing
+key and verifying key), sign messages, and verify the signatures. You can
+also agree on a shared secret key based on exchanged public keys.
+The keys and signatures are very short, making them easy to handle and
+incorporate into other protocols.
+
+**NOTE: This library should not be used in production settings, see [Security](#Security) for more details.**
+
+## Features
+
+This library provides key generation, signing, verifying, and shared secret
+derivation for five
+popular NIST "Suite B" GF(p) (_prime field_) curves, with key lengths of 192,
+224, 256, 384, and 521 bits. The "short names" for these curves, as known by
+the OpenSSL tool (`openssl ecparam -list_curves`), are: `prime192v1`,
+`secp224r1`, `prime256v1`, `secp384r1`, and `secp521r1`. It includes the
+256-bit curve `secp256k1` used by Bitcoin. There is also support for the
+regular (non-twisted) variants of Brainpool curves from 160 to 512 bits. The
+"short names" of those curves are: `brainpoolP160r1`, `brainpoolP192r1`,
+`brainpoolP224r1`, `brainpoolP256r1`, `brainpoolP320r1`, `brainpoolP384r1`,
+`brainpoolP512r1`. Few of the small curves from SEC standard are also
+included (mainly to speed-up testing of the library), those are:
+`secp112r1`, `secp112r2`, `secp128r1`, and `secp160r1`.
+Key generation, siging and verifying is also supported for Ed25519 and
+Ed448 curves.
+No other curves are included, but it is not too hard to add support for more
+curves over prime fields.
+
+## Dependencies
+
+This library uses only Python and the 'six' package. It is compatible with
+Python 2.6, 2.7, and 3.3+. It also supports execution on alternative
+implementations like pypy and pypy3.
+
+If `gmpy2` or `gmpy` is installed, they will be used for faster arithmetic.
+Either of them can be installed after this library is installed,
+`python-ecdsa` will detect their presence on start-up and use them
+automatically.
+You should prefer `gmpy2` on Python3 for optimal performance.
+
+To run the OpenSSL compatibility tests, the 'openssl' tool must be in your
+`PATH`. This release has been tested successfully against OpenSSL 0.9.8o,
+1.0.0a, 1.0.2f, 1.1.1d and 3.0.1 (among others).
+
+
+## Installation
+
+This library is available on PyPI, it's recommended to install it using `pip`:
+
+```
+pip install ecdsa
+```
+
+In case higher performance is wanted and using native code is not a problem,
+it's possible to specify installation together with `gmpy2`:
+
+```
+pip install ecdsa[gmpy2]
+```
+
+or (slower, legacy option):
+```
+pip install ecdsa[gmpy]
+```
+
+## Speed
+
+The following table shows how long this library takes to generate key pairs
+(`keygen`), to sign data (`sign`), to verify those signatures (`verify`),
+to derive a shared secret (`ecdh`), and
+to verify the signatures with no key-specific precomputation (`no PC verify`).
+All those values are in seconds.
+For convenience, the inverses of those values are also provided:
+how many keys per second can be generated (`keygen/s`), how many signatures
+can be made per second (`sign/s`), how many signatures can be verified
+per second (`verify/s`), how many shared secrets can be derived per second
+(`ecdh/s`), and how many signatures with no key specific
+precomputation can be verified per second (`no PC verify/s`). The size of raw
+signature (generally the smallest
+the way a signature can be encoded) is also provided in the `siglen` column.
+Use `tox -e speed` to generate this table on your own computer.
+On an Intel Core i7 4790K @ 4.0GHz I'm getting the following performance:
+
+```
+ siglen keygen keygen/s sign sign/s verify verify/s no PC verify no PC verify/s
+ NIST192p: 48 0.00032s 3134.06 0.00033s 2985.53 0.00063s 1598.36 0.00129s 774.43
+ NIST224p: 56 0.00040s 2469.24 0.00042s 2367.88 0.00081s 1233.41 0.00170s 586.66
+ NIST256p: 64 0.00051s 1952.73 0.00054s 1867.80 0.00098s 1021.86 0.00212s 471.27
+ NIST384p: 96 0.00107s 935.92 0.00111s 904.23 0.00203s 491.77 0.00446s 224.00
+ NIST521p: 132 0.00210s 475.52 0.00215s 464.16 0.00398s 251.28 0.00874s 114.39
+ SECP256k1: 64 0.00052s 1921.54 0.00054s 1847.49 0.00105s 948.68 0.00210s 477.01
+ BRAINPOOLP160r1: 40 0.00025s 4003.88 0.00026s 3845.12 0.00053s 1893.93 0.00105s 949.92
+ BRAINPOOLP192r1: 48 0.00033s 3043.97 0.00034s 2975.98 0.00063s 1581.50 0.00135s 742.29
+ BRAINPOOLP224r1: 56 0.00041s 2436.44 0.00043s 2315.51 0.00078s 1278.49 0.00180s 556.16
+ BRAINPOOLP256r1: 64 0.00053s 1892.49 0.00054s 1846.24 0.00114s 875.64 0.00229s 437.25
+ BRAINPOOLP320r1: 80 0.00073s 1361.26 0.00076s 1309.25 0.00143s 699.29 0.00322s 310.49
+ BRAINPOOLP384r1: 96 0.00107s 931.29 0.00111s 901.80 0.00230s 434.19 0.00476s 210.20
+ BRAINPOOLP512r1: 128 0.00207s 483.41 0.00212s 471.42 0.00425s 235.43 0.00912s 109.61
+ SECP112r1: 28 0.00015s 6672.53 0.00016s 6440.34 0.00031s 3265.41 0.00056s 1774.20
+ SECP112r2: 28 0.00015s 6697.11 0.00015s 6479.98 0.00028s 3524.72 0.00058s 1716.16
+ SECP128r1: 32 0.00018s 5497.65 0.00019s 5272.89 0.00036s 2747.39 0.00072s 1396.16
+ SECP160r1: 42 0.00025s 3949.32 0.00026s 3894.45 0.00046s 2153.85 0.00102s 985.07
+ Ed25519: 64 0.00076s 1324.48 0.00042s 2405.01 0.00109s 918.05 0.00344s 290.50
+ Ed448: 114 0.00176s 569.53 0.00115s 870.94 0.00282s 355.04 0.01024s 97.69
+
+ ecdh ecdh/s
+ NIST192p: 0.00104s 964.89
+ NIST224p: 0.00134s 748.63
+ NIST256p: 0.00170s 587.08
+ NIST384p: 0.00352s 283.90
+ NIST521p: 0.00717s 139.51
+ SECP256k1: 0.00154s 648.40
+ BRAINPOOLP160r1: 0.00082s 1220.70
+ BRAINPOOLP192r1: 0.00105s 956.75
+ BRAINPOOLP224r1: 0.00136s 734.52
+ BRAINPOOLP256r1: 0.00178s 563.32
+ BRAINPOOLP320r1: 0.00252s 397.23
+ BRAINPOOLP384r1: 0.00376s 266.27
+ BRAINPOOLP512r1: 0.00733s 136.35
+ SECP112r1: 0.00046s 2180.40
+ SECP112r2: 0.00045s 2229.14
+ SECP128r1: 0.00054s 1868.15
+ SECP160r1: 0.00080s 1243.98
+```
+
+To test performance with `gmpy2` loaded, use `tox -e speedgmpy2`.
+On the same machine I'm getting the following performance with `gmpy2`:
+```
+ siglen keygen keygen/s sign sign/s verify verify/s no PC verify no PC verify/s
+ NIST192p: 48 0.00017s 5933.40 0.00017s 5751.70 0.00032s 3125.28 0.00067s 1502.41
+ NIST224p: 56 0.00021s 4782.87 0.00022s 4610.05 0.00040s 2487.04 0.00089s 1126.90
+ NIST256p: 64 0.00023s 4263.98 0.00024s 4125.16 0.00045s 2200.88 0.00098s 1016.82
+ NIST384p: 96 0.00041s 2449.54 0.00042s 2399.96 0.00083s 1210.57 0.00172s 581.43
+ NIST521p: 132 0.00071s 1416.07 0.00072s 1389.81 0.00144s 692.93 0.00312s 320.40
+ SECP256k1: 64 0.00024s 4245.05 0.00024s 4122.09 0.00045s 2206.40 0.00094s 1068.32
+ BRAINPOOLP160r1: 40 0.00014s 6939.17 0.00015s 6681.55 0.00029s 3452.43 0.00057s 1769.81
+ BRAINPOOLP192r1: 48 0.00017s 5920.05 0.00017s 5774.36 0.00034s 2979.00 0.00069s 1453.19
+ BRAINPOOLP224r1: 56 0.00021s 4732.12 0.00022s 4622.65 0.00041s 2422.47 0.00087s 1149.87
+ BRAINPOOLP256r1: 64 0.00024s 4233.02 0.00024s 4115.20 0.00047s 2143.27 0.00098s 1015.60
+ BRAINPOOLP320r1: 80 0.00032s 3162.38 0.00032s 3077.62 0.00063s 1598.83 0.00136s 737.34
+ BRAINPOOLP384r1: 96 0.00041s 2436.88 0.00042s 2395.62 0.00083s 1202.68 0.00178s 562.85
+ BRAINPOOLP512r1: 128 0.00063s 1587.60 0.00064s 1558.83 0.00125s 799.96 0.00281s 355.83
+ SECP112r1: 28 0.00009s 11118.66 0.00009s 10775.48 0.00018s 5456.00 0.00033s 3020.83
+ SECP112r2: 28 0.00009s 11322.97 0.00009s 10857.71 0.00017s 5748.77 0.00032s 3094.28
+ SECP128r1: 32 0.00010s 10078.39 0.00010s 9665.27 0.00019s 5200.58 0.00036s 2760.88
+ SECP160r1: 42 0.00015s 6875.51 0.00015s 6647.35 0.00029s 3422.41 0.00057s 1768.35
+ Ed25519: 64 0.00030s 3322.56 0.00018s 5568.63 0.00046s 2165.35 0.00153s 654.02
+ Ed448: 114 0.00060s 1680.53 0.00039s 2567.40 0.00096s 1036.67 0.00350s 285.62
+
+ ecdh ecdh/s
+ NIST192p: 0.00050s 1985.70
+ NIST224p: 0.00066s 1524.16
+ NIST256p: 0.00071s 1413.07
+ NIST384p: 0.00127s 788.89
+ NIST521p: 0.00230s 434.85
+ SECP256k1: 0.00071s 1409.95
+ BRAINPOOLP160r1: 0.00042s 2374.65
+ BRAINPOOLP192r1: 0.00051s 1960.01
+ BRAINPOOLP224r1: 0.00066s 1518.37
+ BRAINPOOLP256r1: 0.00071s 1399.90
+ BRAINPOOLP320r1: 0.00100s 997.21
+ BRAINPOOLP384r1: 0.00129s 777.51
+ BRAINPOOLP512r1: 0.00210s 475.99
+ SECP112r1: 0.00022s 4457.70
+ SECP112r2: 0.00024s 4252.33
+ SECP128r1: 0.00028s 3589.31
+ SECP160r1: 0.00043s 2305.02
+```
+
+(there's also `gmpy` version, execute it using `tox -e speedgmpy`)
+
+For comparison, a highly optimised implementation (including curve-specific
+assembly for some curves), like the one in OpenSSL 1.1.1d, provides the
+following performance numbers on the same machine.
+Run `openssl speed ecdsa` and `openssl speed ecdh` to reproduce it:
+```
+ sign verify sign/s verify/s
+ 192 bits ecdsa (nistp192) 0.0002s 0.0002s 4785.6 5380.7
+ 224 bits ecdsa (nistp224) 0.0000s 0.0001s 22475.6 9822.0
+ 256 bits ecdsa (nistp256) 0.0000s 0.0001s 45069.6 14166.6
+ 384 bits ecdsa (nistp384) 0.0008s 0.0006s 1265.6 1648.1
+ 521 bits ecdsa (nistp521) 0.0003s 0.0005s 3753.1 1819.5
+ 256 bits ecdsa (brainpoolP256r1) 0.0003s 0.0003s 2983.5 3333.2
+ 384 bits ecdsa (brainpoolP384r1) 0.0008s 0.0007s 1258.8 1528.1
+ 512 bits ecdsa (brainpoolP512r1) 0.0015s 0.0012s 675.1 860.1
+
+ sign verify sign/s verify/s
+ 253 bits EdDSA (Ed25519) 0.0000s 0.0001s 28217.9 10897.7
+ 456 bits EdDSA (Ed448) 0.0003s 0.0005s 3926.5 2147.7
+
+ op op/s
+ 192 bits ecdh (nistp192) 0.0002s 4853.4
+ 224 bits ecdh (nistp224) 0.0001s 15252.1
+ 256 bits ecdh (nistp256) 0.0001s 18436.3
+ 384 bits ecdh (nistp384) 0.0008s 1292.7
+ 521 bits ecdh (nistp521) 0.0003s 2884.7
+ 256 bits ecdh (brainpoolP256r1) 0.0003s 3066.5
+ 384 bits ecdh (brainpoolP384r1) 0.0008s 1298.0
+ 512 bits ecdh (brainpoolP512r1) 0.0014s 694.8
+```
+
+Keys and signature can be serialized in different ways (see Usage, below).
+For a NIST192p key, the three basic representations require strings of the
+following lengths (in bytes):
+
+ to_string: signkey= 24, verifykey= 48, signature=48
+ compressed: signkey=n/a, verifykey= 25, signature=n/a
+ DER: signkey=106, verifykey= 80, signature=55
+ PEM: signkey=278, verifykey=162, (no support for PEM signatures)
+
+## History
+
+In 2006, Peter Pearson announced his pure-python implementation of ECDSA in a
+[message to sci.crypt][1], available from his [download site][2]. In 2010,
+Brian Warner wrote a wrapper around this code, to make it a bit easier and
+safer to use. In 2020, Hubert Kario included an implementation of elliptic
+curve cryptography that uses Jacobian coordinates internally, improving
+performance about 20-fold. You are looking at the README for this wrapper.
+
+[1]: http://www.derkeiler.com/Newsgroups/sci.crypt/2006-01/msg00651.html
+[2]: http://webpages.charter.net/curryfans/peter/downloads.html
+
+## Testing
+
+To run the full test suite, do this:
+
+ tox -e coverage
+
+On an Intel Core i7 4790K @ 4.0GHz, the tests take about 18 seconds to execute.
+The test suite uses
+[`hypothesis`](https://github.com/HypothesisWorks/hypothesis) so there is some
+inherent variability in the test suite execution time.
+
+One part of `test_pyecdsa.py` and `test_ecdh.py` checks compatibility with
+OpenSSL, by running the "openssl" CLI tool, make sure it's in your `PATH` if
+you want to test compatibility with it (if OpenSSL is missing, too old, or
+doesn't support all the curves supported in upstream releases you will see
+skipped tests in the above `coverage` run).
+
+## Security
+
+This library was not designed with security in mind. If you are processing
+data that needs to be protected we suggest you use a quality wrapper around
+OpenSSL. [pyca/cryptography](https://cryptography.io) is one example of such
+a wrapper. The primary use-case of this library is as a portable library for
+interoperability testing and as a teaching tool.
+
+**This library does not protect against side-channel attacks.**
+
+Do not allow attackers to measure how long it takes you to generate a key pair
+or sign a message. Do not allow attackers to run code on the same physical
+machine when key pair generation or signing is taking place (this includes
+virtual machines). Do not allow attackers to measure how much power your
+computer uses while generating the key pair or signing a message. Do not allow
+attackers to measure RF interference coming from your computer while generating
+a key pair or signing a message. Note: just loading the private key will cause
+key pair generation. Other operations or attack vectors may also be
+vulnerable to attacks. **For a sophisticated attacker observing just one
+operation with a private key will be sufficient to completely
+reconstruct the private key**.
+
+Please also note that any Pure-python cryptographic library will be vulnerable
+to the same side-channel attacks. This is because Python does not provide
+side-channel secure primitives (with the exception of
+[`hmac.compare_digest()`][3]), making side-channel secure programming
+impossible.
+
+This library depends upon a strong source of random numbers. Do not use it on
+a system where `os.urandom()` does not provide cryptographically secure
+random numbers.
+
+[3]: https://docs.python.org/3/library/hmac.html#hmac.compare_digest
+
+## Usage
+
+You start by creating a `SigningKey`. You can use this to sign data, by passing
+in data as a byte string and getting back the signature (also a byte string).
+You can also ask a `SigningKey` to give you the corresponding `VerifyingKey`.
+The `VerifyingKey` can be used to verify a signature, by passing it both the
+data string and the signature byte string: it either returns True or raises
+`BadSignatureError`.
+
+```python
+from ecdsa import SigningKey
+sk = SigningKey.generate() # uses NIST192p
+vk = sk.verifying_key
+signature = sk.sign(b"message")
+assert vk.verify(signature, b"message")
+```
+
+Each `SigningKey`/`VerifyingKey` is associated with a specific curve, like
+NIST192p (the default one). Longer curves are more secure, but take longer to
+use, and result in longer keys and signatures.
+
+```python
+from ecdsa import SigningKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+vk = sk.verifying_key
+signature = sk.sign(b"message")
+assert vk.verify(signature, b"message")
+```
+
+The `SigningKey` can be serialized into several different formats: the shortest
+is to call `s=sk.to_string()`, and then re-create it with
+`SigningKey.from_string(s, curve)` . This short form does not record the
+curve, so you must be sure to pass to `from_string()` the same curve you used
+for the original key. The short form of a NIST192p-based signing key is just 24
+bytes long. If a point encoding is invalid or it does not lie on the specified
+curve, `from_string()` will raise `MalformedPointError`.
+
+```python
+from ecdsa import SigningKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+sk_string = sk.to_string()
+sk2 = SigningKey.from_string(sk_string, curve=NIST384p)
+print(sk_string.hex())
+print(sk2.to_string().hex())
+```
+
+Note: while the methods are called `to_string()` the type they return is
+actually `bytes`, the "string" part is leftover from Python 2.
+
+`sk.to_pem()` and `sk.to_der()` will serialize the signing key into the same
+formats that OpenSSL uses. The PEM file looks like the familiar ASCII-armored
+`"-----BEGIN EC PRIVATE KEY-----"` base64-encoded format, and the DER format
+is a shorter binary form of the same data.
+`SigningKey.from_pem()/.from_der()` will undo this serialization. These
+formats include the curve name, so you do not need to pass in a curve
+identifier to the deserializer. In case the file is malformed `from_der()`
+and `from_pem()` will raise `UnexpectedDER` or` MalformedPointError`.
+
+```python
+from ecdsa import SigningKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+sk_pem = sk.to_pem()
+sk2 = SigningKey.from_pem(sk_pem)
+# sk and sk2 are the same key
+```
+
+Likewise, the `VerifyingKey` can be serialized in the same way:
+`vk.to_string()/VerifyingKey.from_string()`, `to_pem()/from_pem()`, and
+`to_der()/from_der()`. The same `curve=` argument is needed for
+`VerifyingKey.from_string()`.
+
+```python
+from ecdsa import SigningKey, VerifyingKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+vk = sk.verifying_key
+vk_string = vk.to_string()
+vk2 = VerifyingKey.from_string(vk_string, curve=NIST384p)
+# vk and vk2 are the same key
+
+from ecdsa import SigningKey, VerifyingKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+vk = sk.verifying_key
+vk_pem = vk.to_pem()
+vk2 = VerifyingKey.from_pem(vk_pem)
+# vk and vk2 are the same key
+```
+
+There are a couple of different ways to compute a signature. Fundamentally,
+ECDSA takes a number that represents the data being signed, and returns a
+pair of numbers that represent the signature. The `hashfunc=` argument to
+`sk.sign()` and `vk.verify()` is used to turn an arbitrary string into a
+fixed-length digest, which is then turned into a number that ECDSA can sign,
+and both sign and verify must use the same approach. The default value is
+`hashlib.sha1`, but if you use NIST256p or a longer curve, you can use
+`hashlib.sha256` instead.
+
+There are also multiple ways to represent a signature. The default
+`sk.sign()` and `vk.verify()` methods present it as a short string, for
+simplicity and minimal overhead. To use a different scheme, use the
+`sk.sign(sigencode=)` and `vk.verify(sigdecode=)` arguments. There are helper
+functions in the `ecdsa.util` module that can be useful here.
+
+It is also possible to create a `SigningKey` from a "seed", which is
+deterministic. This can be used in protocols where you want to derive
+consistent signing keys from some other secret, for example when you want
+three separate keys and only want to store a single master secret. You should
+start with a uniformly-distributed unguessable seed with about `curve.baselen`
+bytes of entropy, and then use one of the helper functions in `ecdsa.util` to
+convert it into an integer in the correct range, and then finally pass it
+into `SigningKey.from_secret_exponent()`, like this:
+
+```python
+import os
+from ecdsa import NIST384p, SigningKey
+from ecdsa.util import randrange_from_seed__trytryagain
+
+def make_key(seed):
+ secexp = randrange_from_seed__trytryagain(seed, NIST384p.order)
+ return SigningKey.from_secret_exponent(secexp, curve=NIST384p)
+
+seed = os.urandom(NIST384p.baselen) # or other starting point
+sk1a = make_key(seed)
+sk1b = make_key(seed)
+# note: sk1a and sk1b are the same key
+assert sk1a.to_string() == sk1b.to_string()
+sk2 = make_key(b"2-"+seed) # different key
+assert sk1a.to_string() != sk2.to_string()
+```
+
+In case the application will verify a lot of signatures made with a single
+key, it's possible to precompute some of the internal values to make
+signature verification significantly faster. The break-even point occurs at
+about 100 signatures verified.
+
+To perform precomputation, you can call the `precompute()` method
+on `VerifyingKey` instance:
+```python
+from ecdsa import SigningKey, NIST384p
+sk = SigningKey.generate(curve=NIST384p)
+vk = sk.verifying_key
+vk.precompute()
+signature = sk.sign(b"message")
+assert vk.verify(signature, b"message")
+```
+
+Once `precompute()` was called, all signature verifications with this key will
+be faster to execute.
+
+## OpenSSL Compatibility
+
+To produce signatures that can be verified by OpenSSL tools, or to verify
+signatures that were produced by those tools, use:
+
+```python
+# openssl ecparam -name prime256v1 -genkey -out sk.pem
+# openssl ec -in sk.pem -pubout -out vk.pem
+# echo "data for signing" > data
+# openssl dgst -sha256 -sign sk.pem -out data.sig data
+# openssl dgst -sha256 -verify vk.pem -signature data.sig data
+# openssl dgst -sha256 -prverify sk.pem -signature data.sig data
+
+import hashlib
+from ecdsa import SigningKey, VerifyingKey
+from ecdsa.util import sigencode_der, sigdecode_der
+
+with open("vk.pem") as f:
+ vk = VerifyingKey.from_pem(f.read())
+
+with open("data", "rb") as f:
+ data = f.read()
+
+with open("data.sig", "rb") as f:
+ signature = f.read()
+
+assert vk.verify(signature, data, hashlib.sha256, sigdecode=sigdecode_der)
+
+with open("sk.pem") as f:
+ sk = SigningKey.from_pem(f.read(), hashlib.sha256)
+
+new_signature = sk.sign_deterministic(data, sigencode=sigencode_der)
+
+with open("data.sig2", "wb") as f:
+ f.write(new_signature)
+
+# openssl dgst -sha256 -verify vk.pem -signature data.sig2 data
+```
+
+Note: if compatibility with OpenSSL 1.0.0 or earlier is necessary, the
+`sigencode_string` and `sigdecode_string` from `ecdsa.util` can be used for
+respectively writing and reading the signatures.
+
+The keys also can be written in format that openssl can handle:
+
+```python
+from ecdsa import SigningKey, VerifyingKey
+
+with open("sk.pem") as f:
+ sk = SigningKey.from_pem(f.read())
+with open("sk.pem", "wb") as f:
+ f.write(sk.to_pem())
+
+with open("vk.pem") as f:
+ vk = VerifyingKey.from_pem(f.read())
+with open("vk.pem", "wb") as f:
+ f.write(vk.to_pem())
+```
+
+## Entropy
+
+Creating a signing key with `SigningKey.generate()` requires some form of
+entropy (as opposed to
+`from_secret_exponent`/`from_string`/`from_der`/`from_pem`,
+which are deterministic and do not require an entropy source). The default
+source is `os.urandom()`, but you can pass any other function that behaves
+like `os.urandom` as the `entropy=` argument to do something different. This
+may be useful in unit tests, where you want to achieve repeatable results. The
+`ecdsa.util.PRNG` utility is handy here: it takes a seed and produces a strong
+pseudo-random stream from it:
+
+```python
+from ecdsa.util import PRNG
+from ecdsa import SigningKey
+rng1 = PRNG(b"seed")
+sk1 = SigningKey.generate(entropy=rng1)
+rng2 = PRNG(b"seed")
+sk2 = SigningKey.generate(entropy=rng2)
+# sk1 and sk2 are the same key
+```
+
+Likewise, ECDSA signature generation requires a random number, and each
+signature must use a different one (using the same number twice will
+immediately reveal the private signing key). The `sk.sign()` method takes an
+`entropy=` argument which behaves the same as `SigningKey.generate(entropy=)`.
+
+## Deterministic Signatures
+
+If you call `SigningKey.sign_deterministic(data)` instead of `.sign(data)`,
+the code will generate a deterministic signature instead of a random one.
+This uses the algorithm from RFC6979 to safely generate a unique `k` value,
+derived from the private key and the message being signed. Each time you sign
+the same message with the same key, you will get the same signature (using
+the same `k`).
+
+This may become the default in a future version, as it is not vulnerable to
+failures of the entropy source.
+
+## Examples
+
+Create a NIST192p key pair and immediately save both to disk:
+
+```python
+from ecdsa import SigningKey
+sk = SigningKey.generate()
+vk = sk.verifying_key
+with open("private.pem", "wb") as f:
+ f.write(sk.to_pem())
+with open("public.pem", "wb") as f:
+ f.write(vk.to_pem())
+```
+
+Load a signing key from disk, use it to sign a message (using SHA-1), and write
+the signature to disk:
+
+```python
+from ecdsa import SigningKey
+with open("private.pem") as f:
+ sk = SigningKey.from_pem(f.read())
+with open("message", "rb") as f:
+ message = f.read()
+sig = sk.sign(message)
+with open("signature", "wb") as f:
+ f.write(sig)
+```
+
+Load the verifying key, message, and signature from disk, and verify the
+signature (assume SHA-1 hash):
+
+```python
+from ecdsa import VerifyingKey, BadSignatureError
+vk = VerifyingKey.from_pem(open("public.pem").read())
+with open("message", "rb") as f:
+ message = f.read()
+with open("signature", "rb") as f:
+ sig = f.read()
+try:
+ vk.verify(sig, message)
+ print "good signature"
+except BadSignatureError:
+ print "BAD SIGNATURE"
+```
+
+Create a NIST521p key pair:
+
+```python
+from ecdsa import SigningKey, NIST521p
+sk = SigningKey.generate(curve=NIST521p)
+vk = sk.verifying_key
+```
+
+Create three independent signing keys from a master seed:
+
+```python
+from ecdsa import NIST192p, SigningKey
+from ecdsa.util import randrange_from_seed__trytryagain
+
+def make_key_from_seed(seed, curve=NIST192p):
+ secexp = randrange_from_seed__trytryagain(seed, curve.order)
+ return SigningKey.from_secret_exponent(secexp, curve)
+
+sk1 = make_key_from_seed("1:%s" % seed)
+sk2 = make_key_from_seed("2:%s" % seed)
+sk3 = make_key_from_seed("3:%s" % seed)
+```
+
+Load a verifying key from disk and print it using hex encoding in
+uncompressed and compressed format (defined in X9.62 and SEC1 standards):
+
+```python
+from ecdsa import VerifyingKey
+
+with open("public.pem") as f:
+ vk = VerifyingKey.from_pem(f.read())
+
+print("uncompressed: {0}".format(vk.to_string("uncompressed").hex()))
+print("compressed: {0}".format(vk.to_string("compressed").hex()))
+```
+
+Load a verifying key from a hex string from compressed format, output
+uncompressed:
+
+```python
+from ecdsa import VerifyingKey, NIST256p
+
+comp_str = '022799c0d0ee09772fdd337d4f28dc155581951d07082fb19a38aa396b67e77759'
+vk = VerifyingKey.from_string(bytearray.fromhex(comp_str), curve=NIST256p)
+print(vk.to_string("uncompressed").hex())
+```
+
+ECDH key exchange with remote party:
+
+```python
+from ecdsa import ECDH, NIST256p
+
+ecdh = ECDH(curve=NIST256p)
+ecdh.generate_private_key()
+local_public_key = ecdh.get_public_key()
+#send `local_public_key` to remote party and receive `remote_public_key` from remote party
+with open("remote_public_key.pem") as e:
+ remote_public_key = e.read()
+ecdh.load_received_public_key_pem(remote_public_key)
+secret = ecdh.generate_sharedsecret_bytes()
+```
+
+
diff --git a/frozen_deps/ecdsa-0.18.0.dist-info/RECORD b/frozen_deps/ecdsa-0.18.0.dist-info/RECORD
new file mode 100644
index 0000000..f4130d1
--- /dev/null
+++ b/frozen_deps/ecdsa-0.18.0.dist-info/RECORD
@@ -0,0 +1,64 @@
+ecdsa-0.18.0.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
+ecdsa-0.18.0.dist-info/LICENSE,sha256=PsqYRXc9LluMydjBGdNF8ApIBuS9Zg1KPWzfnA6di7I,1147
+ecdsa-0.18.0.dist-info/METADATA,sha256=vesFVMWT6uSeOuNwGGxtBm8nm6GROqNNRO28jr8wWqM,29750
+ecdsa-0.18.0.dist-info/RECORD,,
+ecdsa-0.18.0.dist-info/WHEEL,sha256=Z-nyYpwrcSqxfdux5Mbn_DQ525iP7J2DG3JgGvOYyTQ,110
+ecdsa-0.18.0.dist-info/top_level.txt,sha256=7ovPHfAPyTou19f8gOSbHm6B9dGjTibWolcCB7Zjovs,6
+ecdsa/__init__.py,sha256=m8jWFcZ9E-iiDqVaTy7ABtvEyTJlF58tZ45UAKj3UWo,1637
+ecdsa/__pycache__/__init__.cpython-310.pyc,,
+ecdsa/__pycache__/_compat.cpython-310.pyc,,
+ecdsa/__pycache__/_rwlock.cpython-310.pyc,,
+ecdsa/__pycache__/_sha3.cpython-310.pyc,,
+ecdsa/__pycache__/_version.cpython-310.pyc,,
+ecdsa/__pycache__/curves.cpython-310.pyc,,
+ecdsa/__pycache__/der.cpython-310.pyc,,
+ecdsa/__pycache__/ecdh.cpython-310.pyc,,
+ecdsa/__pycache__/ecdsa.cpython-310.pyc,,
+ecdsa/__pycache__/eddsa.cpython-310.pyc,,
+ecdsa/__pycache__/ellipticcurve.cpython-310.pyc,,
+ecdsa/__pycache__/errors.cpython-310.pyc,,
+ecdsa/__pycache__/keys.cpython-310.pyc,,
+ecdsa/__pycache__/numbertheory.cpython-310.pyc,,
+ecdsa/__pycache__/rfc6979.cpython-310.pyc,,
+ecdsa/__pycache__/test_curves.cpython-310.pyc,,
+ecdsa/__pycache__/test_der.cpython-310.pyc,,
+ecdsa/__pycache__/test_ecdh.cpython-310.pyc,,
+ecdsa/__pycache__/test_ecdsa.cpython-310.pyc,,
+ecdsa/__pycache__/test_eddsa.cpython-310.pyc,,
+ecdsa/__pycache__/test_ellipticcurve.cpython-310.pyc,,
+ecdsa/__pycache__/test_jacobi.cpython-310.pyc,,
+ecdsa/__pycache__/test_keys.cpython-310.pyc,,
+ecdsa/__pycache__/test_malformed_sigs.cpython-310.pyc,,
+ecdsa/__pycache__/test_numbertheory.cpython-310.pyc,,
+ecdsa/__pycache__/test_pyecdsa.cpython-310.pyc,,
+ecdsa/__pycache__/test_rw_lock.cpython-310.pyc,,
+ecdsa/__pycache__/test_sha3.cpython-310.pyc,,
+ecdsa/__pycache__/util.cpython-310.pyc,,
+ecdsa/_compat.py,sha256=EhUF8-sFu1dKKGDibkmItbYm_nKoklSIBgkIburUoAg,4619
+ecdsa/_rwlock.py,sha256=CAwHp2V65ksI8B1UqY7EccK9LaUToiv6pDLVzm44eag,2849
+ecdsa/_sha3.py,sha256=DJs7QLmdkQMU35llyD8HQeAXNvf5sMcujO6oFdScIqI,4747
+ecdsa/_version.py,sha256=YZ3BGOHr1Ltse4LfX7F80J6qmKFA-NS-G2eYUuw2WnU,498
+ecdsa/curves.py,sha256=Na5rpnuADNvWkCTlUGbs9xwVogY6Vl2_3uNzpVGgxtE,14390
+ecdsa/der.py,sha256=OmfH8fojeqfJnasAt7I1P8j_qfwcwl-W4gDx1-cO8M0,14109
+ecdsa/ecdh.py,sha256=Tiirawt5xegVDrY9eS-ATvvfmTIznUyv5fy2k7VnzTk,11011
+ecdsa/ecdsa.py,sha256=LPRHHXNvGyZ67lyM6cWqUuhQceCwoktfPij20UTsdJo,24955
+ecdsa/eddsa.py,sha256=IzsGzoGAefcoYjF7DVjFkX5ZJqiK2LTOmAMe6wyf4UU,7170
+ecdsa/ellipticcurve.py,sha256=HwlFqrihf7Q2GQTLYQ0PeCwsgMhk_GlkZz3I2Xj4-eI,53625
+ecdsa/errors.py,sha256=b4mhnmIpRnEdHzbectHAA5F7O9MtSaI-fYoc13_vBxQ,130
+ecdsa/keys.py,sha256=plsomRHYrN3Z3iigUqKM5An8_6TDk1nJNpFv_cPGAvM,65124
+ecdsa/numbertheory.py,sha256=XWugBG59BxrpvjZm7Ytsnmkv770vK8IkClObThpbvAM,17479
+ecdsa/rfc6979.py,sha256=zwzo33lsZJA9r2dSf7HCliI_yIbw5cJ0Ek9tLdRRO40,2850
+ecdsa/test_curves.py,sha256=l5N-m4Yo5IAy4a8aJMsBamaSlLAfSoYjYqCj1HDEVpU,13081
+ecdsa/test_der.py,sha256=q2mr4HS_JyUxojWTSLJu-MQZiTwaCE7W_VG3rwwPEas,14956
+ecdsa/test_ecdh.py,sha256=hUJXTo_Cr9ji9-EpPvpQf7-TgB97WUj2tWcwU-LqCXc,15238
+ecdsa/test_ecdsa.py,sha256=1clBfDtA0zdF-13BoKXsJffL5K-iFutlMgov0kmGro0,23923
+ecdsa/test_eddsa.py,sha256=Vlv5J0C4zNJu5zzr756qpm0AJmARpzBKCWrhHaF_bR4,32615
+ecdsa/test_ellipticcurve.py,sha256=K6W_EQunOfE-RVSux6d1O7LXzSuAsVk9F1elwyY-rYA,6085
+ecdsa/test_jacobi.py,sha256=JDQeM_JKwPfwWBd4IgqtOp1rboeQNUIPPA334b-nmLQ,18388
+ecdsa/test_keys.py,sha256=n_IYLxG4JwD84dYLDmRjV2A-NqsSrrR1P0XBJOCZsEI,32833
+ecdsa/test_malformed_sigs.py,sha256=hiV2vwzFrIdNIC-inYUJIKboyAAw2TKAIVXtFadyojg,10857
+ecdsa/test_numbertheory.py,sha256=g6hi7NZFKuMSAxJSAYW5sWM7ivSCiw8g5-PeoDyowgY,11619
+ecdsa/test_pyecdsa.py,sha256=WeRujEKpkZzHvEeXNnnhM1QdMH0Lxou7Bl4u8RXY-jM,82757
+ecdsa/test_rw_lock.py,sha256=byv0_FTM90cbuHPCI6__LeQJkHL_zYEeVYIBO8e2LLc,7021
+ecdsa/test_sha3.py,sha256=oKULy5KOTaXjpLXSyuHrB1wjPiQDxB6INp7Tf1EU8Ko,3022
+ecdsa/util.py,sha256=cOEN3_c8p79Dc8a-LcUQP2ctIsYky35jhSWc9hLP1qc,14618
diff --git a/frozen_deps/ecdsa-0.18.0.dist-info/WHEEL b/frozen_deps/ecdsa-0.18.0.dist-info/WHEEL
new file mode 100644
index 0000000..01b8fc7
--- /dev/null
+++ b/frozen_deps/ecdsa-0.18.0.dist-info/WHEEL
@@ -0,0 +1,6 @@
+Wheel-Version: 1.0
+Generator: bdist_wheel (0.36.2)
+Root-Is-Purelib: true
+Tag: py2-none-any
+Tag: py3-none-any
+
diff --git a/frozen_deps/ecdsa-0.18.0.dist-info/top_level.txt b/frozen_deps/ecdsa-0.18.0.dist-info/top_level.txt
new file mode 100644
index 0000000..aa5efdb
--- /dev/null
+++ b/frozen_deps/ecdsa-0.18.0.dist-info/top_level.txt
@@ -0,0 +1 @@
+ecdsa