aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/Cryptodome/Util/number.py
diff options
context:
space:
mode:
authorDeterminant <[email protected]>2024-08-23 03:14:03 +0000
committerDeterminant <[email protected]>2024-08-22 20:34:57 -0700
commit8d1c76ec7caf247d5675e14260d20fc508977ffb (patch)
tree8fa7c8ce3b7e3f4ece150a6da5922b5eb2dc7772 /frozen_deps/Cryptodome/Util/number.py
parent258780284151d49cba1d9c0d2ce33f9a19bb058b (diff)
release v0.1.8
Diffstat (limited to 'frozen_deps/Cryptodome/Util/number.py')
-rw-r--r--frozen_deps/Cryptodome/Util/number.py81
1 files changed, 53 insertions, 28 deletions
diff --git a/frozen_deps/Cryptodome/Util/number.py b/frozen_deps/Cryptodome/Util/number.py
index 5af85a3..6d59fd9 100644
--- a/frozen_deps/Cryptodome/Util/number.py
+++ b/frozen_deps/Cryptodome/Util/number.py
@@ -51,12 +51,8 @@ def size (N):
"""Returns the size of the number N in bits."""
if N < 0:
- raise ValueError("Size in bits only avialable for non-negative numbers")
-
- bits = 0
- while N >> bits:
- bits += 1
- return bits
+ raise ValueError("Size in bits only available for non-negative numbers")
+ return N.bit_length()
def getRandomInteger(N, randfunc=None):
@@ -113,27 +109,56 @@ def getRandomNBitInteger(N, randfunc=None):
assert size(value) >= N
return value
-def GCD(x,y):
- """Greatest Common Denominator of :data:`x` and :data:`y`.
- """
- x = abs(x) ; y = abs(y)
- while x > 0:
- x, y = y % x, x
- return y
+if sys.version_info[:2] >= (3, 5):
+
+ GCD = math.gcd
+
+else:
+
+ def GCD(x,y):
+ """Greatest Common Denominator of :data:`x` and :data:`y`.
+ """
+
+ x = abs(x) ; y = abs(y)
+ while x > 0:
+ x, y = y % x, x
+ return y
+
-def inverse(u, v):
- """The inverse of :data:`u` *mod* :data:`v`."""
+if sys.version_info[:2] >= (3, 8):
- u3, v3 = u, v
- u1, v1 = 1, 0
- while v3 > 0:
- q = u3 // v3
- u1, v1 = v1, u1 - v1*q
- u3, v3 = v3, u3 - v3*q
- while u1<0:
- u1 = u1 + v
- return u1
+ def inverse(u, v):
+ """The inverse of :data:`u` *mod* :data:`v`."""
+
+ if v == 0:
+ raise ZeroDivisionError("Modulus cannot be zero")
+ if v < 0:
+ raise ValueError("Modulus cannot be negative")
+
+ return pow(u, -1, v)
+
+else:
+
+ def inverse(u, v):
+ """The inverse of :data:`u` *mod* :data:`v`."""
+
+ if v == 0:
+ raise ZeroDivisionError("Modulus cannot be zero")
+ if v < 0:
+ raise ValueError("Modulus cannot be negative")
+
+ u3, v3 = u, v
+ u1, v1 = 1, 0
+ while v3 > 0:
+ q = u3 // v3
+ u1, v1 = v1, u1 - v1*q
+ u3, v3 = v3, u3 - v3*q
+ if u3 != 1:
+ raise ValueError("No inverse value can be computed")
+ while u1<0:
+ u1 = u1 + v
+ return u1
# Given a number of bits to generate and a random generation function,
# find a prime number of the appropriate size.
@@ -259,7 +284,7 @@ def getStrongPrime(N, e=0, false_positive_prob=1e-6, randfunc=None):
# calculate range for X
# lower_bound = sqrt(2) * 2^{511 + 128*x}
# upper_bound = 2^{512 + 128*x} - 1
- x = (N - 512) >> 7;
+ x = (N - 512) >> 7
# We need to approximate the sqrt(2) in the lower_bound by an integer
# expression because floating point math overflows with these numbers
lower_bound = (14142135623730950489 * (2 ** (511 + 128*x))) // 10000000000000000000
@@ -366,12 +391,12 @@ def isPrime(N, false_positive_prob=1e-6, randfunc=None):
return N == 2
for p in sieve_base:
if N == p:
- return 1
+ return True
if N % p == 0:
- return 0
+ return False
rounds = int(math.ceil(-math.log(false_positive_prob)/math.log(4)))
- return _rabinMillerTest(N, rounds, randfunc)
+ return bool(_rabinMillerTest(N, rounds, randfunc))
# Improved conversion functions contributed by Barry Warsaw, after