#!/usr/bin/env python3
# MIT License
#
# Copyright (c) 2020 Ted Yin <[email protected]>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
#
# This little script offers decryption and verification of the existing
# Ethereum wallets, as well as generation of a new wallet. You can use any
# utf-8 string as the password, which could provide with better security
# against the brute-force attack.
# Use at your own risk.
#
# Example:
# python3 ./keytree.py
import os
import sys
if sys.version_info[1] < 7:
sys.write("Python should be >= 3.7")
sys.exit(1)
basedir = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, basedir + "/frozen_deps")
import re
import argparse
import hashlib
import hmac
import unicodedata
import json
from getpass import getpass as _getpass
import bech32
import mnemonic
from ecdsa import SigningKey, VerifyingKey, SECP256k1
from ecdsa.ecdsa import generator_secp256k1
from ecdsa.ellipticcurve import INFINITY
from base58 import b58encode, b58decode
from sha3 import keccak_256
from uuid import uuid4
from Cryptodome.Cipher import AES
from Cryptodome.Util import Counter
def getpass(prompt):
if sys.stdin.isatty():
return _getpass(prompt)
else:
return sys.stdin.readline()
def sha256(data):
h = hashlib.sha256()
h.update(data)
return h.digest()
def ripemd160(data):
h = hashlib.new('ripemd160')
h.update(data)
return h.digest()
class KeytreeError(Exception):
pass
class BIP32Error(KeytreeError):
pass
# point(p): returns the coordinate pair resulting from EC point multiplication
# (repeated application of the EC group operation) of the secp256k1 base point
# with the integer p.
def point(p):
return generator_secp256k1 * p
# ser32(i): serialize a 32-bit unsigned integer i as a 4-byte sequence, most
# significant byte first.
def ser32(i):
return i.to_bytes(4, byteorder='big')
# ser256(p): serializes the integer p as a 32-byte sequence, most significant
# byte first.
def ser256(p):
return p.to_bytes(32, byteorder='big')
# serP(P): serializes the coordinate pair P = (x,y) as a byte sequence using
# SEC1's compressed form: (0x02 or 0x03) || ser256(x), where the header byte
# depends on the parity of the omitted y coordinate.
def serP(P):
if P.y() & 1 == 0:
parity = b'\x02'
else:
parity = b'\x03'
return parity + ser256(P.x())
def is_infinity(P):
return P == INFINITY
# parse256(p): interprets a 32-byte sequence as a 256-bit number, most
# significant byte first.
def parse256(p):
assert(len(p) == 32)
return int.from_bytes(p, byteorder='big')
def iH(x):
return x + (1 << 31)
n = generator_secp256k1.order()
rformat = re.compile(r"^[0-9]+'?$")
def ckd_pub(K_par, c_par, i):
if i >= 1 << 31:
raise BIP32Error("the child is a hardended key")
I = hmac.digest(
c_par, serP(K_par) + ser32(i), 'sha512')
I_L, I_R = I[:32], I[32:]
K_i = point(parse256(I_L)) + K_par
c_i = I_R
if parse256(I_L) >= n or is_infinity(K_i):
raise BIP32Error("invalid i")
return K_i, c_i
def ckd_prv(k_par, c_par, i):
if i >= 1 << 31:
I = hmac.digest(
c_par, b'\x00' + ser256(k_par) + ser32(i), 'sha512')
else:
I = hmac.digest(
c_par, serP(point(k_par)) + ser32(i), 'sha512')
I_L, I_R = I[:32], I[32:]
k_i = (parse256(I_L) + k_par) % n
c_i = I_R
if parse256(I_L) >= n or k_i == 0:
raise BIP32Error("invalid i")
return k_i, c_i
class BIP32:
path_error = BIP32Error("unsupported BIP32 path format")
def __init__(self, seed, key="Bitcoin seed"):
I = hmac.digest(b"Bitcoin seed", seed, 'sha512')
I_L, I_R = I[:32], I[32:]
self.m = parse256(I_L)
self.M = SigningKey.from_string(I_L, curve=SECP256k1) \
.get_verifying_key().pubkey.point
self.c = I_R
def derive(self, path="m"):
tokens = path.split('/')
if tokens[0] == "m":
k = self.m
c = self.c
for r in tokens[1:]:
if not rformat.match(r):
raise self.path_error
if r[-1] == "'":
i = iH(int(r[:-1]))
else:
i = int(r)
k, c = ckd_prv(k, c, i)
return SigningKey.from_string(k.to_bytes(32, byteorder='big'), curve=SECP256k1)
elif tokens[0] == "M":
K = self.M
c = self.c
for r in tokens[1:]:
if not rformat.match(r):
raise self.path_error
if r[-1] == "'":
i = iH(int(r[:-1]))
else:
i = int(r)
K, c = ckd_pub(K, c, i)
return VerifyingKey.from_public_point(K, curve=SECP256k1)
else:
raise self.path_error
def get_eth_addr(pk):
pub_key = pk.to_string()
m = keccak_256()
m.update(pub_key)
return m.hexdigest()[24:]
def get_privkey_btc(sk):
priv_key = b'\x80' + sk.to_string()
checksum = sha256(sha256(priv_key))[:4]
return b58encode(priv_key + checksum).decode("utf-8")
def get_btc_addr(pk):
h = b'\x00' + ripemd160(sha256(b'\x04' + pk.to_string()))
checksum = sha256(sha256(h))[:4]
h += checksum
return b58encode(h).decode("utf-8")
def load_from_keystore(filename):
try:
with open(filename, "r") as f:
try:
parsed = json.load(f)
ciphertext = b58decode(parsed['keys'][0]['key'])[:-4]
iv = b58decode(parsed['keys'][0]['iv'])[:-4]
salt = b58decode(parsed['salt'])[:-4]
tag = b58decode(parsed['pass_hash'])[:-4]
passwd = getpass('Enter the password to unlock keystore: ').encode('utf-8')
key = hashlib.pbkdf2_hmac(
'sha256',
sha256(passwd + salt), salt, 200000)
a = AES.new(key,
mode=AES.MODE_GCM,
nonce=iv).update(salt)
if tag != sha256(passwd + sha256(passwd + salt)):
raise KeytreeError("incorrect keystore password")
return a.decrypt_and_verify(ciphertext[:-16], ciphertext[-16:]).decode('utf-8')
except KeytreeError as e:
raise e
except:
raise KeytreeError("invalid or corrupted keystore file")
except FileNotFoundError:
raise KeytreeError("failed to open file")
def cb58encode(raw):
checksum = sha256(raw)[-4:]
return b58encode(raw + checksum).decode('utf-8')
def save_to_keystore(filename, words):
try:
with open(filename, "w") as f:
passwd = getpass('Enter the password for saving (utf-8): ').encode('utf-8')
passwd2 = getpass('Enter the password again (utf-8): ').encode('utf-8')
if passwd != passwd2:
raise KeytreeError("mismatching passwords")
iv = os.urandom(12)
salt = os.urandom(16)
pass_hash = sha256(passwd + sha256(passwd + salt))
key = hashlib.pbkdf2_hmac(
'sha256',
sha256(passwd + salt), salt, 200000)
a = AES.new(key,
mode=AES.MODE_GCM,
nonce=iv).update(salt)
(c, t) = a.encrypt_and_digest(words.encode('utf-8'))
ciphertext = c + t
json.dump({
'version': "5.0",
'keys': [
{'key': cb58encode(ciphertext), 'iv': cb58encode(iv)}],
'salt': cb58encode(salt),
'pass_hash': cb58encode(pass_hash)
}, f)
except FileNotFoundError:
raise KeytreeError("failed while saving")
# MEW keystore format (version 3.0)
def save_to_mew(priv_keys, n=1 << 18, p=1, r=8, dklen=32):
try:
passwd = getpass('Enter the password for saving (utf-8): ').encode('utf-8')
passwd2 = getpass('Enter the password again (utf-8): ').encode('utf-8')
if passwd != passwd2:
raise KeytreeError("mismatching passwords")
for priv_key in priv_keys:
addr = get_eth_addr(priv_key.get_verifying_key())
priv_key = priv_key.to_string()
with open("mew-{}.json".format(addr), "w") as f:
iv = os.urandom(16)
salt = os.urandom(16)
m = 128 * r * (n + p + 2)
dk = hashlib.scrypt(passwd, salt=salt,
n=n, r=r, p=p, dklen=dklen, maxmem=m)
obj = AES.new(dk[:dklen >> 1],
mode=AES.MODE_CTR,
counter=Counter.new(
128,
initial_value=int.from_bytes(iv, 'big')))
enc_pk = obj.encrypt(priv_key)
# generate MAC
h = keccak_256()
h.update(dk[len(dk) >> 1:])
h.update(enc_pk)
mac = h.digest()
crypto = {
'ciphertext': enc_pk.hex(),
'cipherparams': {'iv': iv.hex()},
'cipher': 'aes-128-ctr',
'kdf': 'scrypt',
'kdfparams': {'dklen': dklen,
'salt': salt.hex(),
'n': n,
'r': r,
'p': p},
'mac': mac.hex()}
json.dump({
'version': 3,
'id': str(uuid4()),
'address': addr,
'Crypto': crypto}, f)
except FileNotFoundError:
raise KeytreeError("failed while saving")
metamask_path = r"44'/60'/0'/0"
avax_path = r"44'/9000'/0'/0"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Derive BIP32 key pairs from BIP39 mnemonic')
parser.add_argument('--load', type=str, default=None, help='load mnemonic from a file (AVAX Wallet compatible)')
parser.add_argument('--save', type=str, default=None, help='save mnemonic to a file (AVAX Wallet compatible)')
parser.add_argument('--export-mew', action='store_true', default=False, help='export keys to MEW keystore files (mnemonic is NOT saved, only keys are saved)')
parser.add_argument('--show-private', action='store_true', default=False, help='also show private keys and the mnemonic')
parser.add_argument('--custom', action='store_true', default=False, help='use an arbitrary word combination as mnemonic')
parser.add_argument('--seed', action='store_true', default=False, help='load mnemonic from seed')
parser.add_argument('--path', default=avax_path, help="path prefix for key deriving (e.g. \"{}\" for Metamask)".format(metamask_path))
parser.add_argument('--metamask', action='store_true', default=False, help="use metamask path for key deriving (synonym to `--path \"{}\"`)".format(metamask_path))
parser.add_argument('--gen-mnemonic', action='store_true', default=False, help='generate a mnemonic (instead of taking an input)')
parser.add_argument('--lang', type=str, default="english", help='language for mnemonic words')
parser.add_argument('--start-idx', type=int, default=0, help='the start index for keys')
parser.add_argument('--end-idx', type=int, default=1, help='the end index for keys (exclusive)')
parser.add_argument('--hrp', type=str, default="avax", help='HRP (Human Readable Prefix, defined by Bech32)')
args, unknown = parser.parse_known_args()
try:
for arg in unknown:
if len(arg) > 0:
raise KeytreeError("invalid argument: `{}`".format(arg))
try:
if args.gen_mnemonic:
mgen = mnemonic.Mnemonic(args.lang)
words = mgen.generate(256)
else:
if args.load:
words = load_from_keystore(args.load)
elif not args.seed:
words = getpass('Enter the mnemonic: ').strip()
if not args.custom:
mchecker = mnemonic.Mnemonic(args.lang)
if not mchecker.check(words):
raise KeytreeError("invalid mnemonic")
except FileNotFoundError:
raise KeytreeError("invalid language")
if args.end_idx < args.start_idx:
args.end_idx = args.start_idx + 1
if args.seed:
seedstr = getpass('Enter the seed: ').strip()
try:
seed = bytes.fromhex(seedstr)
if len(seed) != 64:
raise ValueError
except ValueError:
raise KeytreeError("invalid seed")
else:
seed = hashlib.pbkdf2_hmac('sha512', unicodedata.normalize('NFKD', words).encode("utf-8"), b"mnemonic", 2048)
if args.show_private or args.gen_mnemonic:
if not args.seed:
print("KEEP THIS PRIVATE (mnemonic): {}".format(words))
print("KEEP THIS PRIVATE (seed): {}".format(seed.hex()))
gen = BIP32(seed)
if args.start_idx < 0 or args.end_idx < 0:
raise KeytreeError("invalid start/end index")
keys = []
for i in range(args.start_idx, args.end_idx):
path = "m/{}/{}".format(metamask_path if args.metamask else args.path, i)
priv = gen.derive(path)
keys.append(priv)
pub = priv.get_verifying_key()
cpub = pub.to_string(encoding="compressed")
if args.show_private:
print("{}.priv(raw/ETH) 0x{}".format(i, priv.to_string().hex()))
print("{}.priv(BTC) {}".format(i, get_privkey_btc(priv)))
print("{}.addr(AVAX) (X/P)-{}".format(i, bech32.bech32_encode(args.hrp, bech32.convertbits(ripemd160(sha256(cpub)), 8, 5))))
print("{}.addr(BTC) {}".format(i, get_btc_addr(pub)))
print("{}.addr(ETH) {}".format(i, get_eth_addr(pub)))
if args.export_mew:
save_to_mew(keys)
if args.save:
save_to_keystore(args.save, words)
print("Saved to keystore file: {}".format(args.save))
except KeytreeError as e:
sys.stderr.write("error: {}\n".format(str(e)))
sys.exit(1)
except KeyboardInterrupt:
sys.exit(1)