// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
//
// NOTE: this piece of code is modified by Ted Yin.
// The modification is also licensed under the same LGPL.
package miner
import (
"bytes"
"errors"
"math/big"
"sync"
"sync/atomic"
"time"
"github.com/ava-labs/coreth/consensus"
"github.com/ava-labs/coreth/consensus/misc"
"github.com/ava-labs/coreth/core"
"github.com/ava-labs/coreth/core/state"
"github.com/ava-labs/coreth/core/types"
"github.com/ava-labs/coreth/params"
mapset "github.com/deckarep/golang-set"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/trie"
)
const (
// resultQueueSize is the size of channel listening to sealing result.
resultQueueSize = 10
// txChanSize is the size of channel listening to NewTxsEvent.
// The number is referenced from the size of tx pool.
txChanSize = 4096
// chainHeadChanSize is the size of channel listening to ChainHeadEvent.
chainHeadChanSize = 10
// chainSideChanSize is the size of channel listening to ChainSideEvent.
chainSideChanSize = 10
// resubmitAdjustChanSize is the size of resubmitting interval adjustment channel.
resubmitAdjustChanSize = 10
// miningLogAtDepth is the number of confirmations before logging successful mining.
miningLogAtDepth = 7
// minRecommitInterval is the minimal time interval to recreate the mining block with
// any newly arrived transactions.
minRecommitInterval = 1 * time.Second
// maxRecommitInterval is the maximum time interval to recreate the mining block with
// any newly arrived transactions.
maxRecommitInterval = 15 * time.Second
// intervalAdjustRatio is the impact a single interval adjustment has on sealing work
// resubmitting interval.
intervalAdjustRatio = 0.1
// intervalAdjustBias is applied during the new resubmit interval calculation in favor of
// increasing upper limit or decreasing lower limit so that the limit can be reachable.
intervalAdjustBias = 200 * 1000.0 * 1000.0
// staleThreshold is the maximum depth of the acceptable stale block.
staleThreshold = 7
)
// environment is the worker's current environment and holds all of the current state information.
type environment struct {
signer types.Signer
state *state.StateDB // apply state changes here
ancestors mapset.Set // ancestor set (used for checking uncle parent validity)
family mapset.Set // family set (used for checking uncle invalidity)
uncles mapset.Set // uncle set
tcount int // tx count in cycle
gasPool *core.GasPool // available gas used to pack transactions
header *types.Header
txs []*types.Transaction
receipts []*types.Receipt
}
// task contains all information for consensus engine sealing and result submitting.
type task struct {
receipts []*types.Receipt
state *state.StateDB
block *types.Block
createdAt time.Time
}
const (
commitInterruptNone int32 = iota
commitInterruptNewHead
commitInterruptResubmit
)
// newWorkReq represents a request for new sealing work submitting with relative interrupt notifier.
type newWorkReq struct {
interrupt *int32
noempty bool
timestamp int64
}
// intervalAdjust represents a resubmitting interval adjustment.
type intervalAdjust struct {
ratio float64
inc bool
}
type MinerCallbacks struct {
OnSealFinish func(*types.Block) error
OnSealDrop func(*types.Block)
OnHeaderNew func(*types.Header)
}
// worker is the main object which takes care of submitting new work to consensus engine
// and gathering the sealing result.
type worker struct {
config *Config
chainConfig *params.ChainConfig
engine consensus.Engine
eth Backend
chain *core.BlockChain
// Feeds
pendingLogsFeed event.Feed
// Subscriptions
mux *event.TypeMux
txsCh chan core.NewTxsEvent
txsSub event.Subscription
chainHeadCh chan core.ChainHeadEvent
chainHeadSub event.Subscription
chainSideCh chan core.ChainSideEvent
chainSideSub event.Subscription
// Channels
newWorkCh chan *newWorkReq
taskCh chan *task
resultCh chan *types.Block
startCh chan struct{}
exitCh chan struct{}
resubmitIntervalCh chan time.Duration
resubmitAdjustCh chan *intervalAdjust
current *environment // An environment for current running cycle.
localUncles map[common.Hash]*types.Block // A set of side blocks generated locally as the possible uncle blocks.
remoteUncles map[common.Hash]*types.Block // A set of side blocks as the possible uncle blocks.
unconfirmed *unconfirmedBlocks // A set of locally mined blocks pending canonicalness confirmations.
mu sync.RWMutex // The lock used to protect the coinbase and extra fields
coinbase common.Address
extra []byte
pendingMu sync.RWMutex
pendingTasks map[common.Hash]*task
snapshotMu sync.RWMutex // The lock used to protect the block snapshot and state snapshot
snapshotBlock *types.Block
snapshotState *state.StateDB
// atomic status counters
running int32 // The indicator whether the consensus engine is running or not.
newTxs int32 // New arrival transaction count since last sealing work submitting.
// noempty is the flag used to control whether the feature of pre-seal empty
// block is enabled. The default value is false(pre-seal is enabled by default).
// But in some special scenario the consensus engine will seal blocks instantaneously,
// in this case this feature will add all empty blocks into canonical chain
// non-stop and no real transaction will be included.
noempty uint32
// External functions
isLocalBlock func(block *types.Block) bool // Function used to determine whether the specified block is mined by local miner.
// Test hooks
newTaskHook func(*task) // Method to call upon receiving a new sealing task.
skipSealHook func(*task) bool // Method to decide whether skipping the sealing.
fullTaskHook func() // Method to call before pushing the full sealing task.
resubmitHook func(time.Duration, time.Duration) // Method to call upon updating resubmitting interval.
manualMining bool
manualUncle bool
disableUncle bool
minerCallbacks *MinerCallbacks
}
func newWorker(config *Config, chainConfig *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux, isLocalBlock func(*types.Block) bool, init bool, mcb *MinerCallbacks) *worker {
worker := &worker{
config: config,
chainConfig: chainConfig,
engine: engine,
eth: eth,
mux: mux,
chain: eth.BlockChain(),
isLocalBlock: isLocalBlock,
localUncles: make(map[common.Hash]*types.Block),
remoteUncles: make(map[common.Hash]*types.Block),
unconfirmed: newUnconfirmedBlocks(eth.BlockChain(), miningLogAtDepth),
pendingTasks: make(map[common.Hash]*task),
txsCh: make(chan core.NewTxsEvent, txChanSize),
chainHeadCh: make(chan core.ChainHeadEvent, chainHeadChanSize),
chainSideCh: make(chan core.ChainSideEvent, chainSideChanSize),
newWorkCh: make(chan *newWorkReq),
taskCh: make(chan *task),
resultCh: make(chan *types.Block, resultQueueSize),
exitCh: make(chan struct{}),
startCh: make(chan struct{}, 1),
resubmitIntervalCh: make(chan time.Duration),
resubmitAdjustCh: make(chan *intervalAdjust, resubmitAdjustChanSize),
manualMining: config.ManualMining,
manualUncle: config.ManualUncle,
disableUncle: config.DisableUncle,
minerCallbacks: mcb,
}
if worker.disableUncle {
worker.manualUncle = true
}
// Subscribe NewTxsEvent for tx pool
worker.txsSub = eth.TxPool().SubscribeNewTxsEvent(worker.txsCh)
// Subscribe events for blockchain
worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh)
worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh)
// Sanitize recommit interval if the user-specified one is too short.
recommit := worker.config.Recommit
if recommit < minRecommitInterval {
log.Warn("Sanitizing miner recommit interval", "provided", recommit, "updated", minRecommitInterval)
recommit = minRecommitInterval
}
go worker.mainLoop()
go worker.newWorkLoop(recommit)
go worker.resultLoop()
go worker.taskLoop()
// Submit first work to initialize pending state.
if init {
worker.startCh <- struct{}{}
}
return worker
}
// setEtherbase sets the etherbase used to initialize the block coinbase field.
func (w *worker) setEtherbase(addr common.Address) {
w.mu.Lock()
defer w.mu.Unlock()
w.coinbase = addr
}
// setExtra sets the content used to initialize the block extra field.
func (w *worker) setExtra(extra []byte) {
w.mu.Lock()
defer w.mu.Unlock()
w.extra = extra
}
// setRecommitInterval updates the interval for miner sealing work recommitting.
func (w *worker) setRecommitInterval(interval time.Duration) {
w.resubmitIntervalCh <- interval
}
// disablePreseal disables pre-sealing mining feature
func (w *worker) disablePreseal() {
atomic.StoreUint32(&w.noempty, 1)
}
// enablePreseal enables pre-sealing mining feature
func (w *worker) enablePreseal() {
atomic.StoreUint32(&w.noempty, 0)
}
// pending returns the pending state and corresponding block.
func (w *worker) pending() (*types.Block, *state.StateDB) {
// return a snapshot to avoid contention on currentMu mutex
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
if w.snapshotState == nil {
return nil, nil
}
return w.snapshotBlock, w.snapshotState.Copy()
}
// pendingBlock returns pending block.
func (w *worker) pendingBlock() *types.Block {
// return a snapshot to avoid contention on currentMu mutex
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
return w.snapshotBlock
}
// start sets the running status as 1 and triggers new work submitting.
func (w *worker) start() {
atomic.StoreInt32(&w.running, 1)
w.startCh <- struct{}{}
}
// stop sets the running status as 0.
func (w *worker) stop() {
atomic.StoreInt32(&w.running, 0)
}
// isRunning returns an indicator whether worker is running or not.
func (w *worker) isRunning() bool {
return atomic.LoadInt32(&w.running) == 1
}
// close terminates all background threads maintained by the worker.
// Note the worker does not support being closed multiple times.
func (w *worker) close() {
atomic.StoreInt32(&w.running, 0)
close(w.exitCh)
}
// recalcRecommit recalculates the resubmitting interval upon feedback.
func recalcRecommit(minRecommit, prev time.Duration, target float64, inc bool) time.Duration {
var (
prevF = float64(prev.Nanoseconds())
next float64
)
if inc {
next = prevF*(1-intervalAdjustRatio) + intervalAdjustRatio*(target+intervalAdjustBias)
max := float64(maxRecommitInterval.Nanoseconds())
if next > max {
next = max
}
} else {
next = prevF*(1-intervalAdjustRatio) + intervalAdjustRatio*(target-intervalAdjustBias)
min := float64(minRecommit.Nanoseconds())
if next < min {
next = min
}
}
return time.Duration(int64(next))
}
func (w *worker) genBlock() {
interrupt := new(int32)
*interrupt = commitInterruptNone
w.newWorkCh <- &newWorkReq{
interrupt: interrupt,
noempty: false,
timestamp: time.Now().Unix(),
}
}
// newWorkLoop is a standalone goroutine to submit new mining work upon received events.
func (w *worker) newWorkLoop(recommit time.Duration) {
var (
interrupt *int32
minRecommit = recommit // minimal resubmit interval specified by user.
timestamp int64 // timestamp for each round of mining.
)
timer := time.NewTimer(0)
defer timer.Stop()
<-timer.C // discard the initial tick
// commit aborts in-flight transaction execution with given signal and resubmits a new one.
commit := func(noempty bool, s int32) {
if interrupt != nil {
atomic.StoreInt32(interrupt, s)
}
interrupt = new(int32)
w.newWorkCh <- &newWorkReq{interrupt: interrupt, noempty: noempty, timestamp: timestamp}
timer.Reset(recommit)
atomic.StoreInt32(&w.newTxs, 0)
}
// clearPending cleans the stale pending tasks.
clearPending := func(number uint64) {
w.pendingMu.Lock()
for h, t := range w.pendingTasks {
if t.block.NumberU64()+staleThreshold <= number {
delete(w.pendingTasks, h)
}
}
w.pendingMu.Unlock()
}
for {
select {
case <-w.startCh:
clearPending(w.chain.CurrentBlock().NumberU64())
timestamp = time.Now().Unix()
if !w.manualMining {
log.Trace("commit ch")
commit(false, commitInterruptNewHead)
}
case head := <-w.chainHeadCh:
clearPending(head.Block.NumberU64())
timestamp = time.Now().Unix()
if !w.manualMining {
log.Trace("commit update")
commit(false, commitInterruptNewHead)
}
case <-timer.C:
// If mining is running resubmit a new work cycle periodically to pull in
// higher priced transactions. Disable this overhead for pending blocks.
if w.isRunning() && (w.chainConfig.Clique == nil || w.chainConfig.Clique.Period > 0) {
// Short circuit if no new transaction arrives.
if atomic.LoadInt32(&w.newTxs) == 0 {
timer.Reset(recommit)
continue
}
log.Trace("commit resubmit")
commit(true, commitInterruptResubmit)
}
case interval := <-w.resubmitIntervalCh:
// Adjust resubmit interval explicitly by user.
if interval < minRecommitInterval {
log.Warn("Sanitizing miner recommit interval", "provided", interval, "updated", minRecommitInterval)
interval = minRecommitInterval
}
log.Info("Miner recommit interval update", "from", minRecommit, "to", interval)
minRecommit, recommit = interval, interval
if w.resubmitHook != nil {
w.resubmitHook(minRecommit, recommit)
}
case adjust := <-w.resubmitAdjustCh:
// Adjust resubmit interval by feedback.
if adjust.inc {
before := recommit
target := float64(recommit.Nanoseconds()) / adjust.ratio
recommit = recalcRecommit(minRecommit, recommit, target, true)
log.Trace("Increase miner recommit interval", "from", before, "to", recommit)
} else {
before := recommit
recommit = recalcRecommit(minRecommit, recommit, float64(minRecommit.Nanoseconds()), false)
log.Trace("Decrease miner recommit interval", "from", before, "to", recommit)
}
if w.resubmitHook != nil {
w.resubmitHook(minRecommit, recommit)
}
case <-w.exitCh:
return
}
}
}
// mainLoop is a standalone goroutine to regenerate the sealing task based on the received event.
func (w *worker) mainLoop() {
defer w.txsSub.Unsubscribe()
defer w.chainHeadSub.Unsubscribe()
defer w.chainSideSub.Unsubscribe()
for {
select {
case req := <-w.newWorkCh:
w.commitNewWork(req.interrupt, req.noempty, req.timestamp)
case ev := <-w.chainSideCh:
// Short circuit for duplicate side blocks
if _, exist := w.localUncles[ev.Block.Hash()]; exist {
continue
}
if _, exist := w.remoteUncles[ev.Block.Hash()]; exist {
continue
}
// Add side block to possible uncle block set depending on the author.
if w.isLocalBlock != nil && w.isLocalBlock(ev.Block) {
w.localUncles[ev.Block.Hash()] = ev.Block
} else {
w.remoteUncles[ev.Block.Hash()] = ev.Block
}
// If our mining block contains less than 2 uncle blocks,
// add the new uncle block if valid and regenerate a mining block.
if w.isRunning() && w.current != nil && w.current.uncles.Cardinality() < 2 && !w.manualUncle {
start := time.Now()
if err := w.commitUncle(w.current, ev.Block.Header()); err == nil {
var uncles []*types.Header
w.current.uncles.Each(func(item interface{}) bool {
hash, ok := item.(common.Hash)
if !ok {
return false
}
uncle, exist := w.localUncles[hash]
if !exist {
uncle, exist = w.remoteUncles[hash]
}
if !exist {
return false
}
uncles = append(uncles, uncle.Header())
return false
})
if !w.manualUncle {
w.commit(uncles, nil, true, start)
}
}
}
case ev := <-w.txsCh:
// Apply transactions to the pending state if we're not mining.
//
// Note all transactions received may not be continuous with transactions
// already included in the current mining block. These transactions will
// be automatically eliminated.
if !w.isRunning() && w.current != nil {
// If block is already full, abort
if gp := w.current.gasPool; gp != nil && gp.Gas() < params.TxGas {
continue
}
w.mu.RLock()
coinbase := w.coinbase
w.mu.RUnlock()
txs := make(map[common.Address]types.Transactions)
for _, tx := range ev.Txs {
acc, _ := types.Sender(w.current.signer, tx)
txs[acc] = append(txs[acc], tx)
}
txset := types.NewTransactionsByPriceAndNonce(w.current.signer, txs)
tcount := w.current.tcount
w.commitTransactions(txset, coinbase, nil)
// Only update the snapshot if any new transactons were added
// to the pending block
if tcount != w.current.tcount {
w.updateSnapshot()
}
} else {
// Special case, if the consensus engine is 0 period clique(dev mode),
// submit mining work here since all empty submission will be rejected
// by clique. Of course the advance sealing(empty submission) is disabled.
if w.chainConfig.Clique != nil && w.chainConfig.Clique.Period == 0 {
w.commitNewWork(nil, true, time.Now().Unix())
}
}
atomic.AddInt32(&w.newTxs, int32(len(ev.Txs)))
// System stopped
case <-w.exitCh:
return
case <-w.txsSub.Err():
return
case <-w.chainHeadSub.Err():
return
case <-w.chainSideSub.Err():
return
}
}
}
// taskLoop is a standalone goroutine to fetch sealing task from the generator and
// push them to consensus engine.
func (w *worker) taskLoop() {
var (
stopCh chan struct{}
prev common.Hash
)
// interrupt aborts the in-flight sealing task.
interrupt := func() {
if stopCh != nil {
close(stopCh)
stopCh = nil
}
}
for {
select {
case task := <-w.taskCh:
if w.newTaskHook != nil {
w.newTaskHook(task)
}
// Reject duplicate sealing work due to resubmitting.
sealHash := w.engine.SealHash(task.block.Header())
if sealHash == prev {
log.Warn("Reject duplicate sealing work due to resubmitting.")
if w.minerCallbacks.OnSealDrop != nil {
w.minerCallbacks.OnSealDrop(task.block)
}
continue
}
// Interrupt previous sealing operation
interrupt()
stopCh, prev = make(chan struct{}), sealHash
if w.skipSealHook != nil && w.skipSealHook(task) {
if w.minerCallbacks.OnSealDrop != nil {
w.minerCallbacks.OnSealDrop(task.block)
}
continue
}
w.pendingMu.Lock()
w.pendingTasks[sealHash] = task
w.pendingMu.Unlock()
if err := w.engine.Seal(w.chain, task.block, w.resultCh, stopCh); err != nil {
log.Warn("Block sealing failed", "err", err)
}
case <-w.exitCh:
interrupt()
return
}
}
}
// resultLoop is a standalone goroutine to handle sealing result submitting
// and flush relative data to the database.
func (w *worker) resultLoop() {
for {
select {
case block := <-w.resultCh:
// Short circuit when receiving empty result.
if block == nil {
continue
}
// Short circuit when receiving duplicate result caused by resubmitting.
if w.chain.HasBlock(block.Hash(), block.NumberU64()) {
continue
}
var (
sealhash = w.engine.SealHash(block.Header())
hash = block.Hash()
)
w.pendingMu.RLock()
task, exist := w.pendingTasks[sealhash]
w.pendingMu.RUnlock()
if !exist {
log.Error("Block found but no relative pending task", "number", block.Number(), "sealhash", sealhash, "hash", hash)
continue
}
// Different block could share same sealhash, deep copy here to prevent write-write conflict.
var (
receipts = make([]*types.Receipt, len(task.receipts))
logs []*types.Log
)
for i, receipt := range task.receipts {
// add block location fields
receipt.BlockHash = hash
receipt.BlockNumber = block.Number()
receipt.TransactionIndex = uint(i)
receipts[i] = new(types.Receipt)
*receipts[i] = *receipt
// Update the block hash in all logs since it is now available and not when the
// receipt/log of individual transactions were created.
for _, log := range receipt.Logs {
log.BlockHash = hash
}
logs = append(logs, receipt.Logs...)
}
// Commit block and state to database.
//fmt.Printf("parent1: %s\n", w.chain.CurrentBlock().Hash().String())
_, err := w.chain.WriteBlockWithState(block, receipts, logs, task.state, true)
//fmt.Printf("parent2: %s\n", w.chain.CurrentBlock().Hash().String())
if err != nil {
log.Error("Failed writing block to chain", "err", err)
continue
}
log.Info("Successfully sealed new block", "number", block.Number(), "sealhash", sealhash, "hash", hash,
"elapsed", common.PrettyDuration(time.Since(task.createdAt)))
if w.minerCallbacks.OnSealFinish != nil {
w.minerCallbacks.OnSealFinish(block)
}
// Broadcast the block and announce chain insertion event
w.mux.Post(core.NewMinedBlockEvent{Block: block})
// Insert the block into the set of pending ones to resultLoop for confirmations
w.unconfirmed.Insert(block.NumberU64(), block.Hash())
case <-w.exitCh:
return
}
}
}
// makeCurrent creates a new environment for the current cycle.
func (w *worker) makeCurrent(parent *types.Block, header *types.Header) error {
state, err := w.chain.StateAt(parent.Root())
if err != nil {
return err
}
env := &environment{
signer: types.NewEIP155Signer(w.chainConfig.ChainID),
state: state,
ancestors: mapset.NewSet(),
family: mapset.NewSet(),
uncles: mapset.NewSet(),
header: header,
}
// when 08 is processed ancestors contain 07 (quick block)
for _, ancestor := range w.chain.GetBlocksFromHash(parent.Hash(), 7) {
for _, uncle := range ancestor.Uncles() {
env.family.Add(uncle.Hash())
}
env.family.Add(ancestor.Hash())
env.ancestors.Add(ancestor.Hash())
}
// Keep track of transactions which return errors so they can be removed
env.tcount = 0
w.current = env
return nil
}
// commitUncle adds the given block to uncle block set, returns error if failed to add.
func (w *worker) commitUncle(env *environment, uncle *types.Header) error {
if w.disableUncle {
return nil
}
hash := uncle.Hash()
if env.uncles.Contains(hash) {
return errors.New("uncle not unique")
}
if env.header.ParentHash == uncle.ParentHash {
return errors.New("uncle is sibling")
}
if !env.ancestors.Contains(uncle.ParentHash) {
return errors.New("uncle's parent unknown")
}
if env.family.Contains(hash) {
return errors.New("uncle already included")
}
env.uncles.Add(uncle.Hash())
return nil
}
// updateSnapshot updates pending snapshot block and state.
// Note this function assumes the current variable is thread safe.
func (w *worker) updateSnapshot() {
w.snapshotMu.Lock()
defer w.snapshotMu.Unlock()
var uncles []*types.Header
w.current.uncles.Each(func(item interface{}) bool {
hash, ok := item.(common.Hash)
if !ok {
return false
}
uncle, exist := w.localUncles[hash]
if !exist {
uncle, exist = w.remoteUncles[hash]
}
if !exist {
return false
}
uncles = append(uncles, uncle.Header())
return false
})
w.snapshotBlock = types.NewBlock(
w.current.header,
w.current.txs,
uncles,
w.current.receipts,
new(trie.Trie),
nil,
)
w.snapshotState = w.current.state.Copy()
}
func (w *worker) commitTransaction(tx *types.Transaction, coinbase common.Address) ([]*types.Log, error) {
snap := w.current.state.Snapshot()
receipt, err := core.ApplyTransaction(w.chainConfig, w.chain, &coinbase, w.current.gasPool, w.current.state, w.current.header, tx, &w.current.header.GasUsed, *w.chain.GetVMConfig())
if err != nil {
w.current.state.RevertToSnapshot(snap)
return nil, err
}
w.current.txs = append(w.current.txs, tx)
w.current.receipts = append(w.current.receipts, receipt)
return receipt.Logs, nil
}
func (w *worker) commitTransactions(txs *types.TransactionsByPriceAndNonce, coinbase common.Address, interrupt *int32) bool {
// Short circuit if current is nil
if w.current == nil {
return true
}
if w.current.gasPool == nil {
w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit)
}
var coalescedLogs []*types.Log
for {
// In the following three cases, we will interrupt the execution of the transaction.
// (1) new head block event arrival, the interrupt signal is 1
// (2) worker start or restart, the interrupt signal is 1
// (3) worker recreate the mining block with any newly arrived transactions, the interrupt signal is 2.
// For the first two cases, the semi-finished work will be discarded.
// For the third case, the semi-finished work will be submitted to the consensus engine.
if interrupt != nil && atomic.LoadInt32(interrupt) != commitInterruptNone {
// Notify resubmit loop to increase resubmitting interval due to too frequent commits.
if atomic.LoadInt32(interrupt) == commitInterruptResubmit {
ratio := float64(w.current.header.GasLimit-w.current.gasPool.Gas()) / float64(w.current.header.GasLimit)
if ratio < 0.1 {
ratio = 0.1
}
w.resubmitAdjustCh <- &intervalAdjust{
ratio: ratio,
inc: true,
}
}
return atomic.LoadInt32(interrupt) == commitInterruptNewHead
}
// If we don't have enough gas for any further transactions then we're done
if w.current.gasPool.Gas() < params.TxGas {
log.Trace("Not enough gas for further transactions", "have", w.current.gasPool, "want", params.TxGas)
break
}
// Retrieve the next transaction and abort if all done
tx := txs.Peek()
if tx == nil {
break
}
// Error may be ignored here. The error has already been checked
// during transaction acceptance is the transaction pool.
//
// We use the eip155 signer regardless of the current hf.
from, _ := types.Sender(w.current.signer, tx)
// Check whether the tx is replay protected. If we're not in the EIP155 hf
// phase, start ignoring the sender until we do.
if tx.Protected() && !w.chainConfig.IsEIP155(w.current.header.Number) {
log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", w.chainConfig.EIP155Block)
txs.Pop()
continue
}
// Start executing the transaction
w.current.state.Prepare(tx.Hash(), common.Hash{}, w.current.tcount)
logs, err := w.commitTransaction(tx, coinbase)
switch err {
case core.ErrGasLimitReached:
// Pop the current out-of-gas transaction without shifting in the next from the account
log.Trace("Gas limit exceeded for current block", "sender", from)
txs.Pop()
case core.ErrNonceTooLow:
// New head notification data race between the transaction pool and miner, shift
log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce())
txs.Shift()
case core.ErrNonceTooHigh:
// Reorg notification data race between the transaction pool and miner, skip account =
log.Trace("Skipping account with hight nonce", "sender", from, "nonce", tx.Nonce())
txs.Pop()
case nil:
// Everything ok, collect the logs and shift in the next transaction from the same account
coalescedLogs = append(coalescedLogs, logs...)
w.current.tcount++
txs.Shift()
default:
// Strange error, discard the transaction and get the next in line (note, the
// nonce-too-high clause will prevent us from executing in vain).
log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err)
txs.Shift()
}
}
if !w.isRunning() && len(coalescedLogs) > 0 {
// We don't push the pendingLogsEvent while we are mining. The reason is that
// when we are mining, the worker will regenerate a mining block every 3 seconds.
// In order to avoid pushing the repeated pendingLog, we disable the pending log pushing.
// make a copy, the state caches the logs and these logs get "upgraded" from pending to mined
// logs by filling in the block hash when the block was mined by the local miner. This can
// cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed.
cpy := make([]*types.Log, len(coalescedLogs))
for i, l := range coalescedLogs {
cpy[i] = new(types.Log)
*cpy[i] = *l
}
w.pendingLogsFeed.Send(cpy)
}
// Notify resubmit loop to decrease resubmitting interval if current interval is larger
// than the user-specified one.
if interrupt != nil {
w.resubmitAdjustCh <- &intervalAdjust{inc: false}
}
return false
}
// commitNewWork generates several new sealing tasks based on the parent block.
func (w *worker) commitNewWork(interrupt *int32, noempty bool, timestamp int64) {
w.mu.RLock()
defer w.mu.RUnlock()
tstart := time.Now()
parent := w.chain.CurrentBlock()
if parent.Time() >= uint64(timestamp) {
//timestamp = int64(parent.Time() + 1)
timestamp = int64(parent.Time())
}
// This block has been removed to prevent BuildBlock
// from blocking until this chain advances to timestamp
// This prevents a block issued up to 30s in the future
// from causing an unnecessary sleep
// if now := time.Now().Unix(); timestamp > now+1 {
// wait := time.Duration(timestamp-now) * time.Second
// log.Info("Mining too far in the future", "wait", common.PrettyDuration(wait))
// time.Sleep(wait)
// }
num := parent.Number()
header := &types.Header{
ParentHash: parent.Hash(),
Number: num.Add(num, common.Big1),
GasLimit: core.CalcGasLimit(parent, w.config.GasFloor, w.config.GasCeil),
Extra: w.extra,
Time: uint64(timestamp),
}
// Only set the coinbase if our consensus engine is running (avoid spurious block rewards)
if w.isRunning() {
if w.coinbase == (common.Address{}) {
log.Error("Refusing to mine without etherbase")
return
}
header.Coinbase = w.coinbase
}
if err := w.engine.Prepare(w.chain, header); err != nil {
log.Error("Failed to prepare header for mining", "err", err)
return
}
// If we are care about TheDAO hard-fork check whether to override the extra-data or not
if daoBlock := w.chainConfig.DAOForkBlock; daoBlock != nil {
// Check whether the block is among the fork extra-override range
limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange)
if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 {
// Depending whether we support or oppose the fork, override differently
if w.chainConfig.DAOForkSupport {
header.Extra = common.CopyBytes(params.DAOForkBlockExtra)
} else if bytes.Equal(header.Extra, params.DAOForkBlockExtra) {
header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data
}
}
}
if w.minerCallbacks.OnHeaderNew != nil {
w.minerCallbacks.OnHeaderNew(header)
}
// Could potentially happen if starting to mine in an odd state.
err := w.makeCurrent(parent, header)
if err != nil {
log.Error("Failed to create mining context", "err", err)
return
}
// Create the current work task and check any fork transitions needed
env := w.current
if w.chainConfig.DAOForkSupport && w.chainConfig.DAOForkBlock != nil && w.chainConfig.DAOForkBlock.Cmp(header.Number) == 0 {
misc.ApplyDAOHardFork(env.state)
}
// Accumulate the uncles for the current block
uncles := make([]*types.Header, 0, 2)
commitUncles := func(blocks map[common.Hash]*types.Block) {
// Clean up stale uncle blocks first
for hash, uncle := range blocks {
if uncle.NumberU64()+staleThreshold <= header.Number.Uint64() {
delete(blocks, hash)
}
}
if w.disableUncle {
return
}
for hash, uncle := range blocks {
if len(uncles) == 2 {
break
}
if err := w.commitUncle(env, uncle.Header()); err != nil {
log.Trace("Possible uncle rejected", "hash", hash, "reason", err)
} else {
log.Debug("Committing new uncle to block", "hash", hash)
uncles = append(uncles, uncle.Header())
}
}
}
// Prefer to locally generated uncle
commitUncles(w.localUncles)
commitUncles(w.remoteUncles)
// Create an empty block based on temporary copied state for
// sealing in advance without waiting block execution finished.
if !noempty && atomic.LoadUint32(&w.noempty) == 0 && !w.manualMining {
w.commit(uncles, nil, false, tstart)
}
// Fill the block with all available pending transactions.
pending, err := w.eth.TxPool().Pending()
if err != nil {
log.Error("Failed to fetch pending transactions", "err", err)
return
}
// Short circuit if there is no available pending transactions.
// But if we disable empty precommit already, ignore it. Since
// empty block is necessary to keep the liveness of the network.
if len(pending) == 0 && atomic.LoadUint32(&w.noempty) == 0 && !w.manualMining {
w.updateSnapshot()
return
}
// Split the pending transactions into locals and remotes
localTxs, remoteTxs := make(map[common.Address]types.Transactions), pending
for _, account := range w.eth.TxPool().Locals() {
if txs := remoteTxs[account]; len(txs) > 0 {
delete(remoteTxs, account)
localTxs[account] = txs
}
}
if len(localTxs) > 0 {
txs := types.NewTransactionsByPriceAndNonce(w.current.signer, localTxs)
if w.commitTransactions(txs, w.coinbase, interrupt) {
return
}
}
if len(remoteTxs) > 0 {
txs := types.NewTransactionsByPriceAndNonce(w.current.signer, remoteTxs)
if w.commitTransactions(txs, w.coinbase, interrupt) {
return
}
}
w.commit(uncles, w.fullTaskHook, true, tstart)
}
// commit runs any post-transaction state modifications, assembles the final block
// and commits new work if consensus engine is running.
func (w *worker) commit(uncles []*types.Header, interval func(), update bool, start time.Time) error {
// Deep copy receipts here to avoid interaction between different tasks.
receipts := copyReceipts(w.current.receipts)
s := w.current.state.Copy()
block, err := w.engine.FinalizeAndAssemble(w.chain, w.current.header, s, w.current.txs, uncles, receipts)
if err != nil {
return err
}
if w.isRunning() {
if interval != nil {
interval()
}
select {
case w.taskCh <- &task{receipts: receipts, state: s, block: block, createdAt: time.Now()}:
w.unconfirmed.Shift(block.NumberU64() - 1)
log.Info("Commit new mining work", "number", block.Number(), "sealhash", w.engine.SealHash(block.Header()),
"uncles", len(uncles), "txs", w.current.tcount,
"gas", block.GasUsed(), "fees", totalFees(block, receipts),
"elapsed", common.PrettyDuration(time.Since(start)))
case <-w.exitCh:
log.Info("Worker has exited")
}
}
if update {
w.updateSnapshot()
}
return nil
}
// copyReceipts makes a deep copy of the given receipts.
func copyReceipts(receipts []*types.Receipt) []*types.Receipt {
result := make([]*types.Receipt, len(receipts))
for i, l := range receipts {
cpy := *l
result[i] = &cpy
}
return result
}
// postSideBlock fires a side chain event, only use it for testing.
func (w *worker) postSideBlock(event core.ChainSideEvent) {
select {
case w.chainSideCh <- event:
case <-w.exitCh:
}
}
// totalFees computes total consumed fees in ETH. Block transactions and receipts have to have the same order.
func totalFees(block *types.Block, receipts []*types.Receipt) *big.Float {
feesWei := new(big.Int)
for i, tx := range block.Transactions() {
feesWei.Add(feesWei, new(big.Int).Mul(new(big.Int).SetUint64(receipts[i].GasUsed), tx.GasPrice()))
}
return new(big.Float).Quo(new(big.Float).SetInt(feesWei), new(big.Float).SetInt(big.NewInt(params.Ether)))
}