1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
#ifndef MODEL_H
#define MODEL_H
#include <string>
#include <list>
#include <map>
using std::list;
using std::string;
using std::map;
typedef unsigned char ClassType; // that range is enough
static const int CLS_RET_ADDR = 1 << 0;
static const int CLS_EVAL_OBJ = 1 << 1;
static const int CLS_SIM_OBJ = 1 << 0;
static const int CLS_CONS_OBJ = 1 << 1;
static const int CLS_SYM_OBJ = 1 << 2;
static const int CLS_OPT_OBJ = 1 << 3;
/** @class FrameObj
* Objects that can be held in the evaluation stack
*/
class FrameObj {
protected:
/**
* Report the type of the FrameObj, which can avoid the use of
* dynamic_cast to improve efficiency. See the constructor for detail
*/
ClassType ftype;
public:
/**
* Construct an EvalObj
* @param ftype the type of the FrameObj (CLS_EVAL_OBJ for an EvalObj,
* CLS_RET_ADDR for a return address)
*/
FrameObj(ClassType ftype);
virtual ~FrameObj() {}
/**
* Tell whether the object is a return address, according to ftype
* @return true for yes
*/
bool is_ret_addr();
#ifdef DEBUG
virtual string _debug_repr() = 0;
#endif
};
class Cons;
/** @class EvalObj
* Objects that represents a value in evaluation
*/
class EvalObj : public FrameObj {
protected:
/**
* Report the type of the EvalObj, which can avoid the use of
* dynamic_cast to improve efficiency. See the constructor for detail
*/
ClassType otype;
public:
/**
* Construct an EvalObj
* @param otype the type of the EvalObj (CLS_CONS_OBJ for a
* construction, CLS_SIM_OBJ for a simple object), which defaults to
* CLS_SIM_OBJ
*/
EvalObj(ClassType otype = CLS_SIM_OBJ);
/** Check if the object is a simple object (instead of a call
* invocation)
* @return true if the object is not a construction (Cons)
* */
bool is_simple_obj();
/** Check if the object is a symobl */
bool is_sym_obj();
/** Check if the object is an operator */
bool is_opt_obj();
virtual void prepare(Cons *pc);
/** Any EvalObj has its external representation */
virtual string ext_repr() = 0;
/** Always true for all EvalObjs except BoolObj */
virtual bool is_true();
#ifdef DEBUG
virtual void _debug_print();
#endif
};
/** @class Cons
* Pair construct, which can be used to represent a list, or further
* more, a syntax tree
* (car . cdr) in Scheme
*/
class Cons : public EvalObj {
public:
EvalObj *car; /**< car (as in Scheme) */
Cons *cdr; /**< cdr (as in Scheme) */
bool skip; /**< Wether to skip the current branch */
Cons* next; /**< The next branch in effect */
Cons(EvalObj *car, Cons *cdr); /**< Create a Cons (car . cdr) */
#ifdef DEBUG
void _debug_print();
string _debug_repr();
#endif
string ext_repr();
};
/** @class EmptyList
* The empty list (special situation of a list)
*/
class EmptyList: public Cons {
public:
EmptyList();
#ifdef DEBUG
string _debug_repr();
#endif
string ext_repr();
};
/** @class RetAddr
* Tracking the caller's Cons pointer
*/
class RetAddr : public FrameObj {
public:
Cons* addr; /**< The return address */
/** Constructs a return address object which refers to the node addr in
* the AST */
RetAddr(Cons *addr);
#ifdef DEBUG
string _debug_repr();
#endif
};
/** @class UnspecObj
* The "unspecified" value returned by some builtin procedures
*/
class UnspecObj: public EvalObj {
public:
UnspecObj();
#ifdef DEBUG
string _debug_repr();
#endif
string ext_repr();
};
/** @class SymObj
* Symbols
*/
class SymObj: public EvalObj {
public:
string val;
SymObj(const string &);
#ifdef DEBUG
string _debug_repr();
#endif
string ext_repr();
};
// Everything is cons
typedef Cons ASTList;
typedef Cons SymbolList;
typedef Cons ArgList;
class Environment;
class Continuation;
/** @class OptObj
* "Operators" in general sense
*/
class OptObj: public EvalObj {
public:
OptObj();
/**
* The function is called when an operation is needed.
* @param args The argument list (the first one is the opt itself)
* @param envt The current environment (may be modified)
* @param cont The current continuation (may be modified)
* @param top_ptr Pointing to the top of the stack (may be modified)
* @return New value for pc register
*/
virtual Cons *call(ArgList *args, Environment * &envt,
Continuation * &cont, FrameObj ** &top_ptr) = 0;
};
/** @class ProcObj
* User-defined procedures
*/
class ProcObj: public OptObj {
public:
/** The procedure body, a list of expressions to be evaluated */
ASTList *body;
/** The arguments, a list of Symbols */
SymbolList *para_list;
/** Pointer to the environment */
Environment *envt;
/** Conctructs a ProcObj */
ProcObj(ASTList *body, Environment *envt, SymbolList *para_list);
Cons *call(ArgList *args, Environment * &envt,
Continuation * &cont, FrameObj ** &top_ptr);
#ifdef DEBUG
string _debug_repr();
#endif
string ext_repr();
};
/** @class SpecialOptObj
* Special builtin syntax (`if`, `define`, `lambda`, etc.)
*/
class SpecialOptObj: public OptObj {
public:
SpecialOptObj();
};
typedef EvalObj* (*BuiltinProc)(ArgList *);
/** @class BuiltinProcObj
* Wrapping class for builtin procedures (arithmetic operators, etc.)
*/
class BuiltinProcObj: public OptObj {
private:
/** The function that tackle the inputs in effect */
BuiltinProc handler;
string name;
public:
/**
* Make a BuiltinProcObj which invokes proc when called
* @param proc the actual handler
* @param name the name of this built-in procedure
*/
BuiltinProcObj(BuiltinProc proc, string name);
Cons *call(ArgList *args, Environment * &envt,
Continuation * &cont, FrameObj ** &top_ptr);
#ifdef DEBUG
string _debug_repr();
#endif
string ext_repr();
};
/** @class NumberObj
* The top level abstract of numbers
*/
class NumberObj: public EvalObj {
public:
NumberObj();
};
typedef map<string, EvalObj*> Str2EvalObj;
/** @class Environment
* The environment of current evaluation, i.e. the local variable binding
*/
class Environment {
private:
Environment *prev_envt; /**< Pointer to the upper-level environment */
Str2EvalObj binding; /**< Store all pairs of identifier and its
corresponding obj */
public:
/** Create an runtime environment
* @param prev_envt the outer environment
*/
Environment(Environment *prev_envt);
/** Add a binding entry which binds sym_obj to eval_obj
* @param def true to force the assignment
* @return when def is set to false, this return value is true iff. the
* assignment carried out successfully
*/
bool add_binding(SymObj *sym_obj, EvalObj *eval_obj, bool def = true);
/** Extract the corresponding EvalObj if obj is a SymObj, or just
* simply return obj as it is
* @param obj the object as request
* */
EvalObj *get_obj(EvalObj *obj);
};
/** @class Continuation
* Save the registers and necessary information when a user-defined call is
* being made (Behave like a stack frame in C). When the call has accomplished,
* the system will restore all the registers according to the continuation.
*/
class Continuation {
public:
/** Linking the previous continuation on the chain */
Continuation *prev_cont;
Environment *envt; /**< The saved envt */
Cons *pc; /**< The saved pc */
/** Pointing to the current expression that is being evaluated.
* When its value goes to empty_list, the call is accomplished.
*/
ASTList *proc_body;
/** Create a continuation */
Continuation(Environment *envt, Cons *pc, Continuation *prev_cont,
ASTList *proc_body);
};
#endif
|