#ifndef MODEL_H
#define MODEL_H
#include <string>
#include <list>
#include <map>
#include <vector>
using std::list;
using std::string;
using std::map;
using std::vector;
// the range of unsigned char is enough for these types
typedef unsigned char ClassType;
typedef unsigned char NumLvl;
const int CLS_RET_ADDR = 1 << 0;
const int CLS_EVAL_OBJ = 1 << 1;
const int CLS_PAR_BRA = 1 << 2;
const int CLS_REPR_CONS = 1 << 3;
const int CLS_REPR_STR = 1 << 4;
const int CLS_SIM_OBJ = 1 << 0;
const int CLS_PAIR_OBJ = 1 << 1;
const int CLS_OPT_OBJ = 1 << 3;
const int CLS_SYM_OBJ = 1 << 2;
const int CLS_NUM_OBJ = 1 << 4;
const int CLS_BOOL_OBJ = 1 << 5;
const int CLS_CHAR_OBJ = 1 << 6;
const int CLS_STR_OBJ = 1 << 7;
const int CLS_VECT_OBJ = 1 << 8;
const int REPR_STACK_SIZE = 262144;
#define TO_PAIR(ptr) \
(static_cast<Pair*>(ptr))
/** @class FrameObj
* Objects that can be held in the evaluation stack
*/
class FrameObj {
protected:
/**
* Report the type of the FrameObj, which can avoid the use of
* dynamic_cast to improve efficiency. See the constructor for detail
*/
ClassType ftype;
public:
/**
* Construct an EvalObj
* @param ftype the type of the FrameObj (CLS_EVAL_OBJ for an EvalObj,
* CLS_RET_ADDR for a return address)
*/
FrameObj(ClassType ftype);
virtual ~FrameObj() {}
/**
* Tell whether the object is a return address, according to ftype
* @return true for yes
*/
bool is_ret_addr();
/**
* Tell whether the object is a bracket, according to ftype
* @return true for yes
*/
bool is_parse_bracket();
};
class Pair;
class ReprCons;
/** @class EvalObj
* Objects that represents a value in evaluation
*/
class EvalObj : public FrameObj {
protected:
/**
* Report the type of the EvalObj, which can avoid the use of
* dynamic_cast to improve efficiency. See the constructor for detail
*/
int otype;
public:
/**
* Construct an EvalObj
* @param otype the type of the EvalObj (CLS_PAIR_OBJ for a
* construction, CLS_SIM_OBJ for a simple object), which defaults to
* CLS_SIM_OBJ
*/
EvalObj(int otype = CLS_SIM_OBJ);
/** Check if the object is a simple object (instead of a call
* invocation)
* @return true if the object is not a construction (Pair)
* */
bool is_simple_obj();
/** Check if the object is a symobl */
bool is_sym_obj();
/** Check if the object is an operator */
bool is_opt_obj();
/** Check if the object is a Pair */
bool is_pair_obj();
/** Check if the object is a number */
bool is_num_obj();
/** Check if the object is a boolean */
bool is_bool_obj();
int get_otype();
virtual void prepare(Pair *pc);
/** Any EvalObj has its external representation */
string ext_repr();
/** Always true for all EvalObjs except BoolObj */
virtual bool is_true();
virtual ReprCons *get_repr_cons() = 0;
};
class ListReprCons;
/** @class Pair
* Pair construct, which can be used to represent a list, or further
* more, a syntax tree
* (car . cdr) in Scheme
*/
class Pair : public EvalObj {
public:
EvalObj *car; /**< car (as in Scheme) */
EvalObj *cdr; /**< cdr (as in Scheme) */
bool skip; /**< Wether to skip the current branch */
Pair* next; /**< The next branch in effect */
Pair(EvalObj *car, EvalObj *cdr); /**< Create a Pair (car . cdr) */
ReprCons *get_repr_cons();
};
/** @class EmptyList
* The empty list (special situation of a list)
*/
class EmptyList: public Pair {
public:
EmptyList();
ReprCons *get_repr_cons();
};
/** @class RetAddr
* Tracking the caller's Pair pointer
*/
class RetAddr : public FrameObj {
public:
Pair* addr; /**< The return address */
/** Constructs a return address object which refers to the node addr in
* the AST */
RetAddr(Pair *addr);
};
class ReprCons {
public:
bool done;
string repr;
ReprCons(bool done);
virtual EvalObj *next(const string &prev) = 0;
};
class ReprStr : public ReprCons {
public:
ReprStr(string repr);
EvalObj *next(const string &prev);
};
class ListReprCons : public ReprCons {
private:
EvalObj *ptr;
public:
ListReprCons(Pair *ptr);
EvalObj *next(const string &prev);
};
class VecObj;
class VectReprCons : public ReprCons {
private:
VecObj *ptr;
int idx;
public:
VectReprCons(VecObj *ptr);
EvalObj *next(const string &prev);
};
/** @class ParseBracket
* To indiate a left bracket when parsing, used in the parse_stack
*/
class ParseBracket : public FrameObj {
public:
unsigned char btype; /**< The type of the bracket */
/** Construct a ParseBracket object */
ParseBracket(unsigned char btype);
};
/** @class UnspecObj
* The "unspecified" value returned by some builtin procedures
*/
class UnspecObj: public EvalObj {
public:
UnspecObj();
ReprCons *get_repr_cons();
};
/** @class SymObj
* Symbols
*/
class SymObj: public EvalObj {
public:
string val;
SymObj(const string &);
ReprCons *get_repr_cons();
};
// Everything is cons
typedef Pair ArgList;
class Environment;
class Continuation;
/** @class OptObj
* "Operators" in general sense
*/
class OptObj: public EvalObj {
public:
OptObj();
/**
* The function is called when an operation is needed.
* @param args The argument list (the first one is the opt itself)
* @param envt The current environment (may be modified)
* @param cont The current continuation (may be modified)
* @param top_ptr Pointing to the top of the stack (may be modified)
* @return New value for pc register
*/
virtual Pair *call(ArgList *args, Environment * &envt,
Continuation * &cont, FrameObj ** &top_ptr) = 0;
};
/** @class ProcObj
* User-defined procedures
*/
class ProcObj: public OptObj {
public:
/** The procedure body, a list of expressions to be evaluated */
Pair *body;
/** The arguments: <list> | var1 ... | var1 var2 ... . varn */
EvalObj *params;
/** Pointer to the environment */
Environment *envt;
/** Conctructs a ProcObj */
ProcObj(Pair *body, Environment *envt, EvalObj *params);
Pair *call(ArgList *args, Environment * &envt,
Continuation * &cont, FrameObj ** &top_ptr);
ReprCons *get_repr_cons();
};
/** @class SpecialOptObj
* Special builtin syntax (`if`, `define`, `lambda`, etc.)
*/
class SpecialOptObj: public OptObj {
protected:
string name;
public:
SpecialOptObj(string name);
};
typedef EvalObj* (*BuiltinProc)(ArgList *, const string &);
/** @class BuiltinProcObj
* Wrapping class for builtin procedures (arithmetic operators, etc.)
*/
class BuiltinProcObj: public OptObj {
private:
/** The function that tackle the inputs in effect */
BuiltinProc handler;
string name;
public:
/**
* Make a BuiltinProcObj which invokes proc when called
* @param proc the actual handler
* @param name the name of this built-in procedure
*/
BuiltinProcObj(BuiltinProc proc, string name);
Pair *call(ArgList *args, Environment * &envt,
Continuation * &cont, FrameObj ** &top_ptr);
ReprCons *get_repr_cons();
};
/** @class BoolObj
* Booleans
*/
class BoolObj: public EvalObj {
public:
bool val; /**< true for \#t, false for \#f */
BoolObj(bool); /**< Converts a C bool value to a BoolObj*/
bool is_true(); /**< Override EvalObj `is_true()` */
ReprCons *get_repr_cons();
/** Try to construct an BoolObj object
* @return NULL if failed
*/
static BoolObj *from_string(string repr);
};
/** @class NumObj
* The top level abstract of numbers
*/
class NumObj: public EvalObj {
protected:
/** True if the number is of exact value */
bool exactness;
public:
/** The level of the specific number. The smaller the level
* is, the more generic that number is.
*/
NumLvl level;
/**
* Construct a general Numeric object
*/
NumObj(NumLvl level, bool _exactness);
bool is_exact();
virtual NumObj *convert(NumObj *r) = 0;
virtual NumObj *add(NumObj *r) = 0;
virtual NumObj *sub(NumObj *r) = 0;
virtual NumObj *mul(NumObj *r) = 0;
virtual NumObj *div(NumObj *r) = 0;
virtual bool lt(NumObj *r) = 0;
virtual bool gt(NumObj *r) = 0;
virtual bool eq(NumObj *r) = 0;
};
/** @class StrObj
* String support
*/
class StrObj: public EvalObj {
public:
string str;
/** Construct a string object */
StrObj(string str);
/** Try to construct an StrObj object
* @return NULL if failed
*/
static StrObj *from_string(string repr);
ReprCons *get_repr_cons();
};
/** @class CharObj
* Character type support
*/
class CharObj: public EvalObj {
public:
char ch;
/** Construct a string object */
CharObj(char ch);
/** Try to construct an CharObj object
* @return NULL if failed
*/
static CharObj *from_string(string repr);
ReprCons *get_repr_cons();
};
typedef vector<EvalObj*> EvalObjVec;
/**
* @class VecObj
* Vector support (currently a wrapper of STL vector)
*/
class VecObj: public EvalObj {
public:
EvalObjVec vec;
/** Construct a vector object */
VecObj();
int get_size();
EvalObj *get_obj(int idx);
/** Resize the vector */
void resize(int new_size);
/** Add a new element to the rear */
void push_back(EvalObj *new_elem);
ReprCons *get_repr_cons();
};
typedef map<string, EvalObj*> Str2EvalObj;
/** @class Environment
* The environment of current evaluation, i.e. the local variable binding
*/
class Environment {
private:
Environment *prev_envt; /**< Pointer to the upper-level environment */
Str2EvalObj binding; /**< Store all pairs of identifier and its
corresponding obj */
public:
/** Create an runtime environment
* @param prev_envt the outer environment
*/
Environment(Environment *prev_envt);
/** Add a binding entry which binds sym_obj to eval_obj
* @param def true to force the assignment
* @return when def is set to false, this return value is true iff. the
* assignment carried out successfully
*/
bool add_binding(SymObj *sym_obj, EvalObj *eval_obj, bool def = true);
/** Extract the corresponding EvalObj if obj is a SymObj, or just
* simply return obj as it is
* @param obj the object as request
* */
EvalObj *get_obj(EvalObj *obj);
};
/** @class Continuation
* Save the registers and necessary information when a user-defined call is
* being made (Behave like a stack frame in C). When the call has accomplished,
* the system will restore all the registers according to the continuation.
*/
class Continuation {
public:
/** Linking the previous continuation on the chain */
Continuation *prev_cont;
Environment *envt; /**< The saved envt */
Pair *pc; /**< The saved pc */
/** Pointing to the current expression that is being evaluated.
* When its value goes to empty_list, the call is accomplished.
*/
Pair *proc_body;
/** Create a continuation */
Continuation(Environment *envt, Pair *pc, Continuation *prev_cont,
Pair *proc_body);
};
#endif