Salticidae: a Minimal C++ asynchronous network library.
=======================================================
.. image:: https://img.shields.io/badge/License-MIT-yellow.svg
:target: https://opensource.org/licenses/MIT
Features
--------
- Simplicity. The library is self-contained, small in code base, and only
relies on libevent and libcrypo (OpenSSL, for SHA256 purpose).
- Clarity. With moderate use of C++ template and new features, the vast
majority of the code is self-documenting.
- Layered design. You can use network abstraction from the lowest socket
connection level to the highest P2P network level.
- Performance. The implementation strives to incur very little overhead in processing
network I/O, and avoid unnecessary memory copies thanks to the move semantics.
- Utilities. The library also provides with some useful gadgets, such as
command-line parser, libevent abstraction, etc.
Functionalities
---------------
- `ConnPool`: A byte level connection pool implementation, the `ConnPool::Conn`
(or `ConnPool::conn_t`) objects represent a connection to which one can
send/receive a binary stream of data asynchronously.
- `MsgNetwork<OpcodeType>`: A message level network pool implementation, the
`MsgNetwork::Conn` (or `MsgNetwork::cont_t`) objects represent a channel to
which one can send/receive a predefined message. Message handler functions
are registered by `reg_handler()` and invoked upon receiving a new message.
`OpcodeType` is the type used for identifying message types. A vald message
type must have `opcode` value as its static member and `serialized` as a
member typed `DataStream` which contains the serialized data of the message.
- `PeerNetwork<OpcodeType>`: A simple P2P network pool implementation. It will
ensure exactly one underlying bi-directional connection is established per
added peer, and retry the connection when it is broken. Ping-pong messages
are utilized to test the connectivity at the application layer.
- `ClientNetwork<OpcodeType>`: A simple client-server network pool
implementation. A server who initialy calls `listen()` will accept the
incoming client messages, while a client simply calls `connect()` to connect
to a known server.
Dependencies
------------
- CMake >= 3.9
- C++14
- libevent
- libcrypto
Example (MsgNetwork layer)
--------------------------
.. code-block:: cpp
#include <cstdio>
#include <string>
#include <functional>
#include "salticidae/msg.h"
#include "salticidae/event.h"
#include "salticidae/network.h"
#include "salticidae/stream.h"
using salticidae::NetAddr;
using salticidae::DataStream;
using salticidae::MsgNetwork;
using salticidae::htole;
using salticidae::letoh;
using std::placeholders::_1;
using std::placeholders::_2;
using opcode_t = uint8_t;
/** Hello Message. */
struct MsgHello {
static const opcode_t opcode = 0x0;
DataStream serialized;
std::string name;
std::string text;
/** Defines how to serialize the msg. */
MsgHello(const std::string &name,
const std::string &text) {
serialized << htole((uint32_t)name.length());
serialized << name << text;
}
/** Defines how to parse the msg. */
MsgHello(DataStream &&s) {
uint32_t len;
s >> len;
len = letoh(len);
name = std::string((const char *)s.get_data_inplace(len), len);
len = s.size();
text = std::string((const char *)s.get_data_inplace(len), len);
}
};
/** Acknowledgement Message. */
struct MsgAck {
static const opcode_t opcode = 0x1;
DataStream serialized;
MsgAck() {}
MsgAck(DataStream &&s) {}
};
const opcode_t MsgHello::opcode;
const opcode_t MsgAck::opcode;
using MsgNetworkByteOp = MsgNetwork<opcode_t>;
struct MyNet: public MsgNetworkByteOp {
const std::string name;
const NetAddr peer;
MyNet(const salticidae::EventContext &ec,
const std::string name,
const NetAddr &peer):
MsgNetwork<opcode_t>(ec, 10, 1.0, 4096),
name(name),
peer(peer) {
/* message handler could be a bound method */
reg_handler(salticidae::handler_bind(
&MyNet::on_receive_hello, this, _1, _2));
}
struct Conn: public MsgNetworkByteOp::Conn {
MyNet *get_net() { return static_cast<MyNet *>(get_pool()); }
salticidae::RcObj<Conn> self() {
return salticidae::static_pointer_cast<Conn>(
MsgNetworkByteOp::Conn::self());
}
void on_setup() override {
auto net = get_net();
if (get_mode() == ACTIVE)
{
printf("[%s] Connected, sending hello.\n",
net->name.c_str());
/* send the first message through this connection */
net->send_msg(MsgHello(net->name, "Hello there!"), self());
}
else
printf("[%s] Passively connected, waiting for greetings.\n",
net->name.c_str());
}
void on_teardown() override {
auto net = get_net();
printf("[%s] Disconnected, retrying.\n", net->name.c_str());
/* try to reconnect to the same address */
net->connect(get_addr());
}
};
using conn_t = salticidae::RcObj<Conn>;
salticidae::ConnPool::Conn *create_conn() override {
return new Conn();
}
void on_receive_hello(MsgHello &&msg, conn_t conn) {
printf("[%s] %s says %s\n",
name.c_str(),
msg.name.c_str(), msg.text.c_str());
/* send acknowledgement */
send_msg(MsgAck(), conn);
}
};
void on_receive_ack(MsgAck &&msg, MyNet::conn_t conn) {
auto net = conn->get_net();
printf("[%s] the peer knows\n", net->name.c_str());
}
salticidae::EventContext ec;
NetAddr alice_addr("127.0.0.1:1234");
NetAddr bob_addr("127.0.0.1:1235");
int main() {
/* test two nodes */
MyNet alice(ec, "Alice", bob_addr);
MyNet bob(ec, "Bob", alice_addr);
/* message handler could be a normal function */
alice.reg_handler(on_receive_ack);
bob.reg_handler(on_receive_ack);
alice.listen(alice_addr);
bob.listen(bob_addr);
/* first attempt */
alice.connect(bob_addr);
bob.connect(alice_addr);
ec.dispatch();
return 0;
}