1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
local DAGLayer = nerv.class("nerv.DAGLayer", "nerv.Layer")
local function parse_id(str)
local id, port, _
_, _, id, port = string.find(str, "([a-zA-Z0-9_]+)%[([0-9]+)%]")
if id == nil or port == nil then
_, _, id, port = string.find(str, "(.+)%[([0-9]+)%]")
if not (id == "<input>" or id == "<output>") then
nerv.error("wrong format of connection id")
end
end
port = tonumber(port)
return id, port
end
local function discover(id, layers, layer_repo)
local ref = layers[id]
if id == "<input>" or id == "<output>" then
return nil
end
if ref == nil then
local layer = layer_repo:get_layer(id)
local dim_in, dim_out = layer:get_dim()
ref = {
layer = layer,
inputs = {},
outputs = {},
err_inputs = {},
err_outputs = {},
next_layers = {},
input_len = #dim_in,
output_len = #dim_out,
in_deg = 0,
visited = false
}
layers[id] = ref
end
return ref
end
function nerv.DAGLayer:__init(id, global_conf, layer_conf)
local layers = {}
local inputs = {}
local outputs = {}
local dim_in = layer_conf.dim_in
local dim_out = layer_conf.dim_out
local parsed_conn = {}
for from, to in pairs(layer_conf.connections) do
local id_from, port_from = parse_id(from)
local id_to, port_to = parse_id(to)
local ref_from = discover(id_from, layers, layer_conf.sub_layers)
local ref_to = discover(id_to, layers, layer_conf.sub_layers)
local input_dim, output_dim, _
if ref_from and ref_from.outputs[port_from] ~= nil then
nerv.error("%s has already been attached", from)
end
if ref_to and ref_to.inputs[port_to] ~= nil then
nerv.error("%s has already been attached", to)
end
if id_from == "<input>" then
input_dim, _ = ref_to.layer:get_dim()
if dim_in[port_from] ~= input_dim[port_to] then
nerv.error("mismatching data dimension between %s and %s", from, to)
end
inputs[port_from] = {ref_to, port_to}
ref_to.inputs[port_to] = inputs -- just a place holder
elseif id_to == "<output>" then
_, output_dim = ref_from.layer:get_dim()
if output_dim[port_from] ~= dim_out[port_to] then
nerv.error("mismatching data dimension between %s and %s", from, to)
end
outputs[port_to] = {ref_from, port_from}
ref_from.outputs[port_from] = outputs -- just a place holder
else
_, output_dim = ref_from.layer:get_dim()
input_dim, _ = ref_to.layer:get_dim()
if output_dim[port_from] ~= input_dim[port_to] then
nerv.error("mismatching data dimension between %s and %s", from, to)
end
table.insert(parsed_conn,
{{ref_from, port_from}, {ref_to, port_to}})
table.insert(ref_from.next_layers, ref_to) -- add edge
ref_to.in_deg = ref_to.in_deg + 1 -- increase the in-degree of the target layer
end
end
local queue = {}
local l = 1
local r = 1
for id, ref in pairs(layers) do
if ref.in_deg == 0 then
table.insert(queue, ref)
nerv.utils.printf("adding source layer: %s\n", id)
r = r + 1
end
end
if l == r then
nerv.error("loop detected")
end
while l < r do
local cur = queue[l]
cur.visited = true
l = l + 1
for _, nl in pairs(cur.next_layers) do
nl.in_deg = nl.in_deg - 1
if nl.in_deg == 0 then
table.insert(queue, nl)
r = r + 1
end
end
end
for i = 1, #queue do
nerv.utils.printf("queued layer: %s\n", queue[i].layer.id)
end
for id, ref in pairs(layers) do
-- check wether the graph is connected
if ref.visited == false then
nerv.utils.printf("warning: layer %s is ignored\n", id)
end
end
self.layers = layers
self.inputs = inputs
self.outputs = outputs
self.dim_in = dim_in
self.dim_out = dim_out
self.parsed_conn = parsed_conn
self.queue = queue
self.gconf = global_conf
end
function nerv.DAGLayer:init(batch_size) -- topology sort
for i, conn in ipairs(self.parsed_conn) do
local _, output_dim
local ref_from, port_from, ref_to, port_to
ref_from, port_from = unpack(conn[1])
ref_to, port_to = unpack(conn[2])
_, output_dim = ref_from.layer:get_dim()
local mid = self.gconf.cumat_type(batch_size,
output_dim[port_from])
local err_mid = mid:create()
ref_from.outputs[port_from] = mid
ref_to.inputs[port_to] = mid
ref_from.err_inputs[port_from] = err_mid
ref_to.err_outputs[port_to] = err_mid
end
for id, ref in pairs(self.layers) do
for i = 1, ref.input_len do
if ref.inputs[i] == nil then
nerv.error("dangling input port %d of layer %s", i, id)
end
end
for i = 1, ref.output_len do
if ref.outputs[i] == nil then
nerv.error("dangling output port %d of layer %s", i, id)
end
end
-- initialize sub layers
ref.layer:init()
end
for i = 1, #self.dim_in do
if self.inputs[i] == nil then
nerv.error("dangling port %d of layer <input>", i)
end
end
for i = 1, #self.dim_out do
if self.outputs[i] == nil then
nerv.error("dangling port %d of layer <output>", i)
end
end
end
function nerv.DAGLayer:set_inputs(input)
for i = 1, #self.dim_in do
local layer = self.inputs[i][1]
local port = self.inputs[i][2]
layer.inputs[port] = input[i]
end
end
function nerv.DAGLayer:set_outputs(output)
for i = 1, #self.dim_out do
local layer = self.outputs[i][1]
local port = self.outputs[i][2]
layer.outputs[port] = output[i]
end
end
function nerv.DAGLayer:set_err_inputs(bp_err)
for i = 1, #self.dim_out do
local layer = self.outputs[i][1]
local port = self.outputs[i][2]
layer.err_inputs[port] = bp_err[i]
end
end
function nerv.DAGLayer:set_err_outputs(next_bp_err)
for i = 1, #self.dim_in do
local layer = self.inputs[i][1]
local port = self.inputs[i][2]
layer.err_outputs[port] = next_bp_err[i]
end
end
function nerv.DAGLayer:update(bp_err, input, output)
self:set_err_inputs(bp_err)
self:set_inputs(input)
self:set_outputs(output)
-- print("update")
for id, ref in pairs(self.queue) do
-- print(ref.layer.id)
ref.layer:update(ref.err_inputs, ref.inputs, ref.outputs)
end
end
function nerv.DAGLayer:propagate(input, output)
self:set_inputs(input)
self:set_outputs(output)
for i = 1, #self.queue do
local ref = self.queue[i]
-- print(ref.layer.id)
ref.layer:propagate(ref.inputs, ref.outputs)
end
end
function nerv.DAGLayer:back_propagate(next_bp_err, bp_err, input, output)
self:set_err_outputs(next_bp_err)
self:set_err_inputs(bp_err)
self:set_inputs(input)
self:set_outputs(output)
for i = #self.queue, 1, -1 do
local ref = self.queue[i]
-- print(ref.layer.id)
ref.layer:back_propagate(ref.err_outputs, ref.err_inputs, ref.inputs, ref.outputs)
end
end
|