1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
#ifdef NERV_GENERIC_MMATRIX
#include "../matrix.h"
#include "../../lib/matrix/generic/matrix.h"
#include "../../lib/matrix/generic/elem_type.h"
#define MATRIX_DATA_WRITE(L, data, idx, val) (data[idx] = val)
#define MATRIX_DATA_READ(L, data, idx) (data[idx])
#define MATRIX_INIT(L) host_matrix_(init)(L)
#define MATRIX_BASE_TNAME nerv_matrix_host_tname
#define NERV_GENERIC_MATRIX
#include "../../lib/common.h"
#include "../../lib/cblas.h"
#include "../../lib/matrix/generic/mmatrix.h"
#include "../../io/chunk_file.h"
#include <string.h>
#define BLAS_OP_N CblasNoTrans
static int nerv_matrix_(lua_get_blas_op)(char ch) {
return (ch == 'T' || ch == 't') ? CblasTrans : CblasNoTrans;
}
static int nerv_matrix_(lua_get_elem)(lua_State *L) {
Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname));
int idx = luaL_checkinteger(L, 2);
if (idx < 0 || idx >= self->nmax)
nerv_error(L, "index must be within range [0, %d)", self->nmax);
lua_pushnumber(L, MATRIX_ELEM_PTR(self)[idx]);
return 1;
}
static int nerv_matrix_(lua_set_elem)(lua_State *L) {
Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname));
int idx = luaL_checkinteger(L, 2);
MATRIX_ELEM v = luaL_checknumber(L, 3);
if (idx < 0 || idx >= self->nmax)
nerv_error(L, "index must be within range [0, %d)", self->nmax);
MATRIX_ELEM_PTR(self)[idx] = v;
return 0;
}
static const luaL_Reg nerv_matrix_(extra_methods)[];
static void host_matrix_(init)(lua_State *L) {
luaN_append_methods(L, nerv_matrix_(extra_methods));
#ifdef MMATRIX_INIT
MMATRIX_INIT(L);
#endif
}
#include "matrix.c"
static int nerv_matrix_(lua_load)(lua_State *L) {
Status status;
MATRIX_CONTEXT *context;
MATRIX_GET_CONTEXT(L, 2);
ChunkData *cdp = luaT_checkudata(L, 1, nerv_chunk_data_tname);
Matrix *self = nerv_matrix_(load)(cdp, context, &status);
NERV_LUA_CHECK_STATUS(L, status);
luaT_pushudata(L, self, nerv_matrix_(tname));
return 1;
}
static int nerv_matrix_(lua_save)(lua_State *L) {
Status status;
MATRIX_CONTEXT *context;
MATRIX_GET_CONTEXT(L, 3);
ChunkFile *cfp = luaT_checkudata(L, 2,
nerv_chunk_file_handle_tname);
Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname));
nerv_matrix_(save)(self, cfp, context, &status);
NERV_LUA_CHECK_STATUS(L, status);
return 0;
}
static int nerv_matrix_(lua_copy_fromh)(lua_State *L) {
Status status;
MATRIX_CONTEXT *context;
MATRIX_GET_CONTEXT(L, 6);
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
const Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname));
int nargs = lua_gettop(L);
int b_begin = nargs > 2 ? luaL_checkinteger(L, 3) : 0;
int b_end = nargs > 3 ? luaL_checkinteger(L, 4) : b->nrow;
int a_begin = nargs > 4 ? luaL_checkinteger(L, 5) : 0;
nerv_matrix_(copy_fromh)(a, b, a_begin, b_begin, b_end, context, &status);
NERV_LUA_CHECK_STATUS(L, status);
return 0;
}
static int nerv_matrix_(lua_copy_rows_fromh_by_idx)(lua_State *L)
{
Status status;
MATRIX_CONTEXT *context;
MATRIX_GET_CONTEXT(L, 5);
Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
const Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname));
const Matrix *idx = luaT_checkudata(L, 3, nerv_matrix_(tname));
int b_begin = lua_gettop(L) > 3 ? luaL_checkinteger(L, 4) : 0;
nerv_matrix_(copy_rows_fromh_by_idx)(a, b, idx, b_begin, context, &status);
NERV_LUA_CHECK_STATUS(L, status);
return 0;
}
static const luaL_Reg nerv_matrix_(extra_methods)[] = {
{"colsum", nerv_matrix_(lua_colsum)},
{"colsame", nerv_matrix_(lua_colsame)},
{"rowsum", nerv_matrix_(lua_rowsum)},
{"rowmax", nerv_matrix_(lua_rowmax)},
{"rowmax_idx", nerv_matrix_(lua_rowmax_idx)},
{"trans", nerv_matrix_(lua_trans)},
{"decompress", nerv_matrix_(lua_decompress)},
/* in-place calc */
{"copy_fromh", nerv_matrix_(lua_copy_fromh)},
/* alias for copy_from */
{"copy_from", nerv_matrix_(lua_copy_fromh)},
{"add", nerv_matrix_(lua_add)},
{"mul", nerv_matrix_(lua_mul)},
{"add_row", nerv_matrix_(lua_add_row)},
{"clip", nerv_matrix_(lua_clip)},
{"fill", nerv_matrix_(lua_fill)},
{"diagonalize", nerv_matrix_(lua_diagonalize)},
{"set_values_by_mask", nerv_matrix_(lua_set_values_by_mask)},
{"sigmoid", nerv_matrix_(lua_sigmoid)},
{"sigmoid_grad", nerv_matrix_(lua_sigmoid_grad)},
{"tanh", nerv_matrix_(lua_tanh)},
{"tanh_grad", nerv_matrix_(lua_tanh_grad)},
{"relu", nerv_matrix_(lua_relu)},
{"relu_grad", nerv_matrix_(lua_relu_grad)},
{"softmax", nerv_matrix_(lua_softmax)},
{"mul_elem", nerv_matrix_(lua_mul_elem)},
{"log_elem", nerv_matrix_(lua_log_elem)},
{"copy_rows_fromh_by_idx", nerv_matrix_(lua_copy_rows_fromh_by_idx)},
{"copy_rows_from_by_idx", nerv_matrix_(lua_copy_rows_fromh_by_idx)},
{"expand_frm", nerv_matrix_(lua_expand_frm)},
{"rearrange_frm", nerv_matrix_(lua_rearrange_frm)},
{"scale_rows_by_row", nerv_matrix_(lua_scale_rows_by_row)},
{"scale_rows_by_col", nerv_matrix_(lua_scale_rows_by_col)},
{"load", nerv_matrix_(lua_load)},
{"save", nerv_matrix_(lua_save)},
{NULL, NULL}
};
#endif
|