aboutsummaryrefslogtreecommitdiff
path: root/nerv/examples/lmptb/lmptb/layer/select_linear.lua
blob: 4798536c7176894b60572bc2abc03007e0dafba7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
local SL = nerv.class('nerv.SelectLinearLayer', 'nerv.Layer')

--id: string
--global_conf: table
--layer_conf: table
--Get Parameters
function SL:__init(id, global_conf, layer_conf)
    self.id = id
    self.dim_in = layer_conf.dim_in
    self.dim_out = layer_conf.dim_out
    self.gconf = global_conf

    self.ltp = layer_conf.ltp
    self.vocab = layer_conf.vocab

    self:check_dim_len(1, 1)
end

--Check parameter 
function SL:init(batch_size)
    if (self.dim_in[1] ~= 1) then --one word id 
        nerv.error("mismatching dimensions of ltp and input")
    end
    if (self.dim_out[1] ~= self.ltp.trans:ncol()) then
        nerv.error("mismatching dimensions of bp and output")
    end
    
    self.batch_size = bath_size
    self.ltp:train_init()
end

function SL:update(bp_err, input, output)
    for i = 1, input[1]:nrow(), 1 do
        if (input[1][i - 1][0] ~= 0) then
            local word_vec = self.ltp.trans[input[1][i - 1][0] - 1]
            word_vec:add(word_vec, bp_err[1][i - 1], 1, - self.gconf.lrate / self.gconf.batch_size)
        end
    end
end

function SL:propagate(input, output)
    for i = 0, input[1]:nrow() - 1, 1 do
        if (input[1][i][0] > 0) then
            output[1][i]:copy_fromd(self.ltp.trans[input[1][i][0] - 1])
        else
            output[1][i]:fill(0)
        end
    end
end

function SL:back_propagate(bp_err, next_bp_err, input, output)
    --input is compressed, do nothing
end

function SL:get_params()
    local paramRepo = nerv.ParamRepo({self.ltp})
    return paramRepo
end