aboutsummaryrefslogtreecommitdiff
path: root/nerv/examples/asr_trainer.lua
blob: 6bdf57c073694e2dc710b3c29556b80941f2a06c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
require 'lfs'
require 'pl'
local function build_trainer(ifname)
    local host_param_repo = nerv.ParamRepo()
    local mat_type
    local src_loc_type
    local train_loc_type
    host_param_repo:import(ifname, nil, gconf)
    if gconf.use_cpu then
        mat_type = gconf.mmat_type
        src_loc_type = nerv.ParamRepo.LOC_TYPES.ON_HOST
        train_loc_type = nerv.ParamRepo.LOC_TYPES.ON_HOST
    else
        mat_type = gconf.cumat_type
        src_loc_type = nerv.ParamRepo.LOC_TYPES.ON_HOST
        train_loc_type = nerv.ParamRepo.LOC_TYPES.ON_DEVICE
    end
    local param_repo = host_param_repo:copy(train_loc_type)
    local layer_repo = make_layer_repo(param_repo)
    local network = get_network(layer_repo)
    local global_transf = get_global_transf(layer_repo)
    local input_order = get_input_order()

    network = nerv.Network("nt", gconf, {network = network})
    network:init(gconf.batch_size, 1)
    global_transf = nerv.Network("gt", gconf, {network = global_transf})
    global_transf:init(gconf.batch_size, 1)

    local iterative_trainer = function (prefix, scp_file, bp, rebind_param_repo)
        -- rebind the params if necessary
        if rebind_param_repo then
            host_param_repo = rebind_param_repo
            param_repo = host_param_repo:copy(train_loc_type)
            layer_repo:rebind(param_repo)
            rebind_param_repo = nil
        end
        gconf.randomize = bp
        -- build buffer
        local buffer = make_buffer(make_readers(scp_file, layer_repo))
        -- initialize the network
        gconf.cnt = 0
        err_input = {mat_type(gconf.batch_size, 1)}
        err_input[1]:fill(1)
        network:epoch_init()
        global_transf:epoch_init()
        for data in buffer.get_data, buffer do
            -- prine stat periodically
            gconf.cnt = gconf.cnt + 1
            if gconf.cnt == 1000 then
                print_stat(layer_repo)
                mat_type.print_profile()
                mat_type.clear_profile()
                gconf.cnt = 0
                -- break
            end
            local input = {}
--            if gconf.cnt == 1000 then break end
            for i, e in ipairs(input_order) do
                local id = e.id
                if data[id] == nil then
                    nerv.error("input data %s not found", id)
                end
                local transformed
                if e.global_transf then
                    transformed = nerv.speech_utils.global_transf(data[id],
                                        global_transf,
                                        gconf.frm_ext or 0, 0,
                                        gconf)
                else
                    transformed = data[id]
                end
                table.insert(input, transformed)
            end
            local output = {mat_type(gconf.batch_size, 1)}
            err_output = {}
            for i = 1, #input do
                table.insert(err_output, input[i]:create())
            end
            network:mini_batch_init({seq_length = table.vector(gconf.batch_size, 1),
                                    new_seq = {},
                                    do_train = bp,
                                    input = {input},
                                    output = {output},
                                    err_input = {err_input},
                                    err_output = {err_output}})
            network:propagate()
            if bp then
                network:back_propagate()
                network:update()
            end
            -- collect garbage in-time to save GPU memory
            collectgarbage("collect")
        end
        print_stat(layer_repo)
        mat_type.print_profile()
        mat_type.clear_profile()
        local fname
        if (not bp) then
            host_param_repo = param_repo:copy(src_loc_type)
            if prefix ~= nil then
                nerv.info("writing back...")
                fname = string.format("%s_cv%.3f.nerv",
                                    prefix, get_accuracy(layer_repo))
                host_param_repo:export(fname, nil)
            end
        end
        return get_accuracy(layer_repo), host_param_repo, fname
    end
    return iterative_trainer
end

local function check_and_add_defaults(spec, opts)
    local function get_opt_val(k)
        return opts[string.gsub(k, '_', '-')].val
    end
    local opt_v = get_opt_val("resume_from")
    if opt_v then
        gconf = dofile(opt_v)
    else
        for k, v in pairs(spec) do
            local opt_v = get_opt_val(k)
            if opt_v ~= nil then
                gconf[k] = opt_v
            elseif gconf[k] ~= nil then
            elseif v ~= nil then
                gconf[k] = v
            end
        end
    end
end

local function make_options(spec)
    local options = {}
    for k, v in pairs(spec) do
        table.insert(options,
                    {string.gsub(k, '_', '-'), nil, type(v), default = v})
    end
    return options
end

local function print_help(options)
    nerv.printf("Usage: <asr_trainer.lua> [options] network_config.lua\n")
    nerv.print_usage(options)
end

local function print_gconf()
    local key_maxlen = 0
    for k, v in pairs(gconf) do
        key_maxlen = math.max(key_maxlen, #k or 0)
    end
    local function pattern_gen()
        return string.format("%%-%ds = %%s\n", key_maxlen)
    end
    nerv.info("ready to train with the following gconf settings:")
    nerv.printf(pattern_gen(), "Key", "Value")
    for k, v in pairs(gconf) do
        nerv.printf(pattern_gen(), k or "", v or "")
    end
end

local function dump_gconf(fname)
    local f = io.open(fname, "w")
    f:write("return ")
    f:write(table.tostring(gconf))
    f:close()
end

local trainer_defaults = {
    lrate = 0.8,
    batch_size = 256,
    buffer_size = 81920,
    wcost = 1e-6,
    momentum = 0.9,
    start_halving_inc = 0.5,
    halving_factor = 0.6,
    end_halving_inc = 0.1,
    cur_iter = 1,
    min_iter = 1,
    max_iter = 20,
    min_halving = 5,
    do_halving = false,
    cumat_tname = "nerv.CuMatrixFloat",
    mmat_tname = "nerv.MMatrixFloat",
    debug = false,
}

local options = make_options(trainer_defaults)
local extra_opt_spec = {
    {"tr-scp", nil, "string"},
    {"cv-scp", nil, "string"},
    {"resume-from", nil, "string"},
    {"help", "h", "boolean", default = false, desc = "show this help information"},
    {"dir", nil, "string", desc = "specify the working directory"},
}

table.extend(options, extra_opt_spec)

arg, opts = nerv.parse_args(arg, options)

if #arg < 1 or opts["help"].val then
    print_help(options)
    return
end

dofile(arg[1])

--[[

Rule: command-line option overrides network config overrides trainer default.
Note: config key like aaa_bbbb_cc could be overriden by specifying
--aaa-bbbb-cc to command-line arguments.

]]--

check_and_add_defaults(trainer_defaults, opts)
gconf.mmat_type = nerv.get_type(gconf.mmat_tname)
gconf.cumat_type = nerv.get_type(gconf.cumat_tname)
gconf.use_cpu = econf.use_cpu or false

local pf0 = gconf.initialized_param
local date_pattern = "%Y%m%d%H%M%S"
local logfile_name = "log"
local working_dir = opts["dir"].val or string.format("nerv_%s", os.date(date_pattern))
local rebind_param_repo = nil

print_gconf()
if not lfs.mkdir(working_dir) then
    nerv.error("[asr_trainer] working directory already exists")
end
-- copy the network config
dir.copyfile(arg[1], working_dir)
-- set logfile path
nerv.set_logfile(path.join(working_dir, logfile_name))
path.chdir(working_dir)

-- start the training
local trainer = build_trainer(pf0)
local pr_prev
gconf.accu_best, pr_prev = trainer(nil, gconf.cv_scp, false)
nerv.info("initial cross validation: %.3f", gconf.accu_best)
for i = gconf.cur_iter, gconf.max_iter do
    local stop = false
    gconf.cur_iter = i
    dump_gconf(string.format("iter_%d.meta", i))
    repeat -- trick to implement `continue` statement
        nerv.info("[NN] begin iteration %d with lrate = %.6f", i, gconf.lrate)
        local accu_tr = trainer(nil, gconf.tr_scp, true, rebind_param_repo)
        nerv.info("[TR] training set %d: %.3f", i, accu_tr)
        local param_prefix = string.format("%s_%s_iter_%d_lr%f_tr%.3f",
                                string.gsub(
                                    (string.gsub(pf0[1], "(.*/)(.*)", "%2")),
                                    "(.*)%..*", "%1"),
                                os.date(date_pattern),
                                i, gconf.lrate,
                                accu_tr)
        local accu_new, pr_new, param_fname = trainer(param_prefix, gconf.cv_scp, false)
        nerv.info("[CV] cross validation %d: %.3f", i, accu_new)
        local accu_prev = gconf.accu_best
        if accu_new < gconf.accu_best then
            nerv.info("rejecting the trained params, rollback to the previous one")
            file.move(param_fname, param_fname .. ".rejected")
            rebind_param_repo = pr_prev
            break -- `continue` equivalent
        else
            nerv.info("accepting the trained params")
            gconf.accu_best = accu_new
            pr_prev = pr_new
            gconf.initialized_param = {path.join(path.currentdir(), param_fname)}
        end
        if gconf.do_halving and
            gconf.accu_best - accu_prev < gconf.end_halving_inc and
            i > gconf.min_iter then
            stop = true
            break
        end
        if gconf.accu_best - accu_prev < gconf.start_halving_inc and
            i >= gconf.min_halving then
            gconf.do_halving = true
        end
        if gconf.do_halving then
            gconf.lrate = gconf.lrate * gconf.halving_factor
        end
    until true
    if stop then break end
--    nerv.Matrix.print_profile()
end