1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
require 'lfs'
require 'pl'
local function build_trainer(ifname)
local host_param_repo = nerv.ParamRepo()
local mat_type
local src_loc_type
local train_loc_type
host_param_repo:import(ifname, gconf)
if gconf.use_cpu then
mat_type = gconf.mmat_type
src_loc_type = nerv.ParamRepo.LOC_TYPES.ON_HOST
train_loc_type = nerv.ParamRepo.LOC_TYPES.ON_HOST
else
mat_type = gconf.cumat_type
src_loc_type = nerv.ParamRepo.LOC_TYPES.ON_HOST
train_loc_type = nerv.ParamRepo.LOC_TYPES.ON_DEVICE
end
local param_repo = host_param_repo:copy(train_loc_type, gconf)
local layer_repo = make_layer_repo(param_repo)
local network = get_network(layer_repo)
local global_transf = get_global_transf(layer_repo)
local input_order = get_input_order()
network = nerv.Network("nt", gconf, {network = network})
network:init(gconf.batch_size, gconf.chunk_size)
global_transf = nerv.Network("gt", gconf, {network = global_transf})
global_transf:init(gconf.batch_size, gconf.chunk_size)
local iterative_trainer = function (prefix, scp_file, bp, rebind_param_repo)
-- rebind the params if necessary
if rebind_param_repo then
host_param_repo = rebind_param_repo
param_repo = host_param_repo:copy(train_loc_type, gconf)
layer_repo:rebind(param_repo)
rebind_param_repo = nil
end
gconf.randomize = bp
-- build buffer
local buffer = make_buffer(make_readers(scp_file, layer_repo))
-- initialize the network
gconf.cnt = 0
local output = {{}}
for i = 1, gconf.chunk_size do
table.insert(output[1], mat_type(gconf.batch_size, 1))
end
network:epoch_init()
global_transf:epoch_init()
for d in buffer.get_data, buffer do
-- prine stat periodically
gconf.cnt = gconf.cnt + 1
if gconf.cnt == 1000 then
print_stat(layer_repo)
mat_type.print_profile()
mat_type.clear_profile()
gconf.cnt = 0
-- break
end
local input = {}
local err_output = {}
-- if gconf.cnt == 1000 then break end
for i, e in ipairs(input_order) do
local id = e.id
if d.data[id] == nil then
nerv.error("input data %s not found", id)
end
local transformed = {}
local err_output_i = {}
if e.global_transf then
for _, mini_batch in ipairs(d.data[id]) do
table.insert(transformed,
nerv.speech_utils.global_transf(mini_batch,
global_transf,
gconf.frm_ext or 0, 0,
gconf))
end
else
transformed = d.data[id]
end
for _, mini_batch in ipairs(transformed) do
table.insert(err_output_i, mini_batch:create())
end
table.insert(err_output, err_output_i)
table.insert(input, transformed)
end
network:mini_batch_init({seq_length = d.seq_length,
new_seq = d.new_seq,
do_train = bp,
input = input,
output = output,
err_input = {gconf.mask},
err_output = err_output})
network:propagate()
if bp then
network:back_propagate()
network:update()
end
-- collect garbage in-time to save GPU memory
collectgarbage("collect")
end
print_stat(layer_repo)
mat_type.print_profile()
mat_type.clear_profile()
local fname
if (not bp) then
-- host_param_repo = param_repo:copy(src_loc_type)
host_param_repo = nerv.ParamRepo.merge({network:get_params(),
global_transf:get_params()},
train_loc_type)
:copy(src_loc_type, gconf)
if prefix ~= nil then
nerv.info("writing back...")
fname = string.format("%s_cv%.3f.nerv",
prefix, get_accuracy(layer_repo))
host_param_repo:export(fname, nil)
end
end
return get_accuracy(layer_repo), host_param_repo, fname
end
return iterative_trainer
end
local function check_and_add_defaults(spec, opts)
local function get_opt_val(k)
local k = string.gsub(k, '_', '-')
return opts[k].val, opts[k].specified
end
local opt_v = get_opt_val("resume_from")
if opt_v then
nerv.info("resuming from previous training state")
gconf = dofile(opt_v)
else
for k, v in pairs(spec) do
local opt_v, specified = get_opt_val(k)
if (not specified) and gconf[k] ~= nil then
nerv.info("using setting in network config file: %s = %s", k, gconf[k])
elseif opt_v ~= nil then
nerv.info("using setting in options: %s = %s", k, opt_v)
gconf[k] = opt_v
end
end
end
end
local function make_options(spec)
local options = {}
for k, v in pairs(spec) do
table.insert(options,
{string.gsub(k, '_', '-'), nil, type(v), default = v})
end
return options
end
local function print_help(options)
nerv.printf("Usage: <asr_trainer.lua> [options] network_config.lua\n")
nerv.print_usage(options)
end
local function print_gconf()
local key_maxlen = 0
for k, v in pairs(gconf) do
key_maxlen = math.max(key_maxlen, #k or 0)
end
local function pattern_gen()
return string.format("%%-%ds = %%s\n", key_maxlen)
end
nerv.info("ready to train with the following gconf settings:")
nerv.printf(pattern_gen(), "Key", "Value")
for k, v in pairs(gconf) do
nerv.printf(pattern_gen(), k or "", v or "")
end
end
local function dump_gconf(fname)
local f = io.open(fname, "w")
f:write("return ")
f:write(table.tostring(gconf))
f:close()
end
local trainer_defaults = {
lrate = 0.8,
batch_size = 256,
chunk_size = 1,
buffer_size = 81920,
wcost = 1e-6,
momentum = 0.9,
start_halving_inc = 0.5,
halving_factor = 0.6,
end_halving_inc = 0.1,
cur_iter = 1,
min_iter = 1,
max_iter = 20,
min_halving = 5,
do_halving = false,
keep_halving = false,
cumat_tname = "nerv.CuMatrixFloat",
mmat_tname = "nerv.MMatrixFloat",
debug = false,
}
local options = make_options(trainer_defaults)
local extra_opt_spec = {
{"tr-scp", nil, "string"},
{"cv-scp", nil, "string"},
{"resume-from", nil, "string"},
{"help", "h", "boolean", default = false, desc = "show this help information"},
{"dir", nil, "string", desc = "specify the working directory"},
}
table.extend(options, extra_opt_spec)
arg, opts = nerv.parse_args(arg, options)
if #arg < 1 or opts["help"].val then
print_help(options)
return
end
dofile(arg[1])
--[[
Rule: command-line option overrides network config overrides trainer default.
Note: config key like aaa_bbbb_cc could be overriden by specifying
--aaa-bbbb-cc to command-line arguments.
]]--
check_and_add_defaults(trainer_defaults, opts)
gconf.mmat_type = nerv.get_type(gconf.mmat_tname)
gconf.cumat_type = nerv.get_type(gconf.cumat_tname)
gconf.use_cpu = econf.use_cpu or false
local pf0 = gconf.initialized_param
local date_pattern = "%Y%m%d%H%M%S"
local logfile_name = "log"
local working_dir = opts["dir"].val or string.format("nerv_%s", os.date(date_pattern))
local rebind_param_repo = nil
print_gconf()
if not lfs.mkdir(working_dir) then
nerv.error("[asr_trainer] working directory already exists")
end
-- copy the network config
dir.copyfile(arg[1], working_dir)
-- set logfile path
nerv.set_logfile(path.join(working_dir, logfile_name))
--path.chdir(working_dir)
-- start the training
local trainer = build_trainer(pf0)
local pr_prev
-- initial cross-validation
local param_prefix = string.format("%s_%s",
string.gsub(
(string.gsub(pf0[1], "(.*/)(.*)", "%2")),
"(.*)%..*", "%1"),
os.date(date_pattern))
gconf.accu_best, pr_prev = trainer(path.join(working_dir, param_prefix), gconf.cv_scp, false)
nerv.info("initial cross validation: %.3f", gconf.accu_best)
-- main loop
for i = gconf.cur_iter, gconf.max_iter do
local stop = false
gconf.cur_iter = i
dump_gconf(path.join(working_dir, string.format("iter_%d.meta", i)))
repeat -- trick to implement `continue` statement
nerv.info("[NN] begin iteration %d with lrate = %.6f", i, gconf.lrate)
local accu_tr = trainer(nil, gconf.tr_scp, true, rebind_param_repo)
nerv.info("[TR] training set %d: %.3f", i, accu_tr)
param_prefix = string.format("%s_%s_iter_%d_lr%f_tr%.3f",
string.gsub(
(string.gsub(pf0[1], "(.*/)(.*)", "%2")),
"(.*)%..*", "%1"),
os.date(date_pattern),
i, gconf.lrate,
accu_tr)
local accu_new, pr_new, param_fname =
trainer(path.join(working_dir, param_prefix), gconf.cv_scp, false)
nerv.info("[CV] cross validation %d: %.3f", i, accu_new)
local accu_prev = gconf.accu_best
if accu_new < gconf.accu_best then
nerv.info("rejecting the trained params, rollback to the previous one")
file.move(param_fname, param_fname .. ".rejected")
rebind_param_repo = pr_prev
gconf.do_halving = true
break -- `continue` equivalent
else
nerv.info("accepting the trained params")
gconf.accu_best = accu_new
pr_prev = pr_new
gconf.initialized_param = {path.join(path.currentdir(), param_fname)}
end
if gconf.do_halving and
gconf.accu_best - accu_prev < gconf.end_halving_inc and
i > gconf.min_iter then
stop = true
break
end
if gconf.accu_best - accu_prev < gconf.start_halving_inc and
i >= gconf.min_halving then
gconf.do_halving = true
elseif not gconf.keep_halving then
gconf.do_halving = false
end
until true
if gconf.do_halving then
gconf.lrate = gconf.lrate * gconf.halving_factor
end
if stop then break end
-- nerv.Matrix.print_profile()
end
|