1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
function build_trainer(ifname)
local param_repo = nerv.ParamRepo()
param_repo:import(ifname, nil, gconf)
local layer_repo = make_layer_repo(param_repo)
local network = get_network(layer_repo)
local global_transf = get_global_transf(layer_repo)
local input_order = get_input_order()
local mat_type
if gconf.use_cpu then
mat_type = gconf.mmat_type
else
mat_type = gconf.cumat_type
end
local iterative_trainer = function (prefix, scp_file, bp)
gconf.randomize = bp
-- build buffer
local buffer = make_buffer(make_readers(scp_file, layer_repo))
-- initialize the network
network:init(gconf.batch_size)
gconf.cnt = 0
err_input = {mat_type(gconf.batch_size, 1)}
err_input[1]:fill(1)
for data in buffer.get_data, buffer do
-- prine stat periodically
gconf.cnt = gconf.cnt + 1
if gconf.cnt == 1000 then
print_stat(layer_repo)
mat_type.print_profile()
mat_type.clear_profile()
gconf.cnt = 0
-- break
end
local input = {}
-- if gconf.cnt == 1000 then break end
for i, e in ipairs(input_order) do
local id = e.id
if data[id] == nil then
nerv.error("input data %s not found", id)
end
local transformed
if e.global_transf then
transformed = nerv.speech_utils.global_transf(data[id],
global_transf,
gconf.frm_ext or 0, 0,
gconf)
else
transformed = data[id]
end
table.insert(input, transformed)
end
local output = {mat_type(gconf.batch_size, 1)}
err_output = {}
for i = 1, #input do
table.insert(err_output, input[i]:create())
end
network:propagate(input, output)
if bp then
network:back_propagate(err_input, err_output, input, output)
network:update(err_input, input, output)
end
-- collect garbage in-time to save GPU memory
collectgarbage("collect")
end
print_stat(layer_repo)
mat_type.print_profile()
mat_type.clear_profile()
if (not bp) and prefix ~= nil then
nerv.info("writing back...")
local fname = string.format("%s_cv%.3f.nerv",
prefix, get_accuracy(layer_repo))
network:get_params():export(fname, nil)
end
return get_accuracy(layer_repo)
end
return iterative_trainer
end
dofile(arg[1])
start_halving_inc = 0.5
halving_factor = 0.6
end_halving_inc = 0.1
min_iter = 1
max_iter = 20
min_halving = 5
gconf.batch_size = 256
gconf.buffer_size = 81920
local pf0 = gconf.initialized_param
local trainer = build_trainer(pf0)
--local trainer = build_trainer("c3.nerv")
local accu_best = trainer(nil, gconf.cv_scp, false)
local do_halving = false
nerv.info("initial cross validation: %.3f", accu_best)
for i = 1, max_iter do
nerv.info("[NN] begin iteration %d with lrate = %.6f", i, gconf.lrate)
local accu_tr = trainer(nil, gconf.tr_scp, true)
nerv.info("[TR] training set %d: %.3f", i, accu_tr)
local accu_new = trainer(
string.format("%s_%s_iter_%d_lr%f_tr%.3f",
string.gsub(
(string.gsub(pf0[1], "(.*/)(.*)", "%2")),
"(.*)%..*", "%1"),
os.date("%Y%m%d%H%M%S"),
i, gconf.lrate,
accu_tr),
gconf.cv_scp, false)
nerv.info("[CV] cross validation %d: %.3f", i, accu_new)
-- TODO: revert the weights
local accu_diff = accu_new - accu_best
if do_halving and accu_diff < end_halving_inc and i > min_iter then
break
end
if accu_diff < start_halving_inc and i >= min_halving then
do_halving = true
end
if do_halving then
gconf.lrate = gconf.lrate * halving_factor
end
if accu_new > accu_best then
accu_best = accu_new
end
-- nerv.Matrix.print_profile()
end
|