summaryrefslogtreecommitdiff
path: root/matrix/cumatrix.c
blob: aa10571d76cfbe3afa530a3dc870335e647087c5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#define MATRIX_DATA_FREE(ptr) cuda_float_array_free(ptr)
#define MATRIX_DATA_ALLOC(dptr, stride, width, height) cuda_float_array_alloc(dptr, stride, width, height)
#define MATRIX_DATA_WRITE(data, idx, val) cuda_float_array_write(data, idx, val)
#define MATRIX_DATA_READ(data, idx) cuda_float_array_read(data, idx)
#define MATRIX_INIT(L) cuda_float_init(L)
#define NERV_GENERIC_MATRIX
#define nerv_float_matrix_(NAME) nerv_float_matrix_cuda_ ## NAME
#include "../common.h"
#include "generic/matrix.h"
#include "cukernel.h"
#include "cuda.h"
#include "cuda_runtime.h"
#include "driver_types.h"
#include "cublas_v2.h"

const char *nerv_float_matrix_(tname) = "nerv.FloatCuMatrix";
static cublasHandle_t cublas_handle;

Matrix *nerv_float_matrix_(new_)(long nrow, long ncol);
static int nerv_float_matrix_(add)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_float_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 2, nerv_float_matrix_(tname));
    Matrix *c;
    long nrow, ncol;
    if (!(a->nrow == b->nrow && a->ncol == b->ncol))
        nerv_error(L, "Matrices should be of the same dimension");
    nrow = a->nrow;
    ncol = a->ncol;
    c = nerv_float_matrix_(new_)(nrow, ncol);
    float alpha = 1.0f, beta = 1.0f;
    cublasSgeam(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N,
                ncol, nrow,
                &alpha,
                a->data.f, a->stride / sizeof(float),
                &beta,
                b->data.f, b->stride / sizeof(float),
                c->data.f, c->stride / sizeof(float));
    luaT_pushudata(L, c, nerv_float_matrix_(tname));
    return 1;
}

static int nerv_float_matrix_(mul)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_float_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 2, nerv_float_matrix_(tname));
    Matrix *c;
    if (a->ncol != b->nrow)
        nerv_error(L, "Wrong dimension of multipliers");
    c = nerv_float_matrix_(new_)(a->nrow, b->ncol);
    float alpha = 1.0f, beta = 0.0f;
    cublasSgemm(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N,
                b->ncol, a->nrow, b->nrow,
                &alpha,
                b->data.f, b->stride / sizeof(float),
                a->data.f, a->stride / sizeof(float),
                &beta,
                c->data.f, c->stride / sizeof(float));
    luaT_pushudata(L, c, nerv_float_matrix_(tname));
    return 1;
}

static int nerv_float_matrix_(sigmoid)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_float_matrix_(tname));
    Matrix *b = nerv_float_matrix_(new_)(a->nrow, a->ncol);
    cuda_sigmoid(a, b);
    luaT_pushudata(L, b, nerv_float_matrix_(tname));
    return 1;
}

static int nerv_float_matrix_(softmax)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_float_matrix_(tname));
    Matrix *max = nerv_float_matrix_(new_)(a->nrow, 1);
    Matrix *dno = nerv_float_matrix_(new_)(a->nrow, 1);
    Matrix *b = nerv_float_matrix_(new_)(a->nrow, a->ncol);
    cuda_colmax(a, max);
    cuda_softmax_denominator(a, max, dno);
    cuda_softmax_final(a, max, dno, b);
    luaT_pushudata(L, b, nerv_float_matrix_(tname));
    return 1;
}

static int nerv_float_matrix_(colsum)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_float_matrix_(tname));
    Matrix *b = nerv_float_matrix_(new_)(a->nrow, 1);
    cuda_colsum(a, b);
    luaT_pushudata(L, b, nerv_float_matrix_(tname));
    return 1;
}

static int nerv_float_matrix_(colmax)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_float_matrix_(tname));
    Matrix *b = nerv_float_matrix_(new_)(a->nrow, 1);
    cuda_colmax(a, b);
    luaT_pushudata(L, b, nerv_float_matrix_(tname));
    return 1;
}

static const luaL_Reg nerv_float_matrix_(extra_methods)[] = {
    {"__add__", nerv_float_matrix_(add)},
    {"__mul__", nerv_float_matrix_(mul)},
    {"sigmoid", nerv_float_matrix_(sigmoid)},
    {"softmax", nerv_float_matrix_(softmax)},
    {"colsum", nerv_float_matrix_(colsum)},
    {"colmax", nerv_float_matrix_(colmax)},
    {NULL, NULL}
};

static void cuda_float_init(lua_State *L) {
    luaN_append_methods(L, nerv_float_matrix_(extra_methods));
    cublasCreate(&cublas_handle);
}

static void cuda_float_array_free(float *ptr) {
    cudaFree(ptr);
}

static void cuda_float_array_alloc(float **dptr, size_t *stride,
                                long width, long height) {
    cudaMallocPitch((void **)dptr, stride, width, height);
}

static float cuda_float_array_read(float *data, int idx) {
    float res;
    cudaMemcpy(&res, data + idx, sizeof(float), cudaMemcpyDeviceToHost);
    return res;
}

static void cuda_float_array_write(float *data, int idx, float val) {
    cudaMemcpy(data + idx, &val, sizeof(float), cudaMemcpyHostToDevice);
}

int nerv_float_matrix_(get_elem)(lua_State *L) {
    return nerv_error_method_not_implemented(L);
}

int nerv_float_matrix_(set_elem)(lua_State *L) {
    return nerv_error_method_not_implemented(L);
}

#include "generic/matrix.c"