aboutsummaryrefslogtreecommitdiff
path: root/matrix.c
blob: a58377f17953e8f8c60f42d6d0dc0659f726f83b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#include "common.h"

typedef struct Matrix {
    long stride;              /* size of a row */
    long ncol, nrow, nmax;    /* dimension of the matrix */
    union {
        float *f;
        double *d;
    } data;                   /* pointer to actual storage */
    long *data_ref;
} Matrix;

const char *float_matrix_tname = "nerv.FloatMatrix";
const char *matrix_tname = "nerv.Matrix";

void float_matrix_data_free(Matrix *self) {
    if (--(*self->data_ref) == 0)
        free(self->data.f);
}

void float_matrix_data_retain(Matrix *self) {
    (*self->data_ref)++;
}

int float_matrix_new(lua_State *L) {
    Matrix *self = (Matrix *)malloc(sizeof(Matrix));
    self->nrow = luaL_checkinteger(L, 1);
    self->ncol = luaL_checkinteger(L, 2);
    self->nmax = self->nrow * self->ncol;
    self->stride = sizeof(float) * self->ncol;
    self->data.f = (float *)malloc(self->stride * self->nrow);
    self->data_ref = (long *)malloc(sizeof(long));
    *self->data_ref = 0;
    float_matrix_data_retain(self);
    luaT_pushudata(L, self, float_matrix_tname);
    return 1;
}

int float_matrix_destroy(lua_State *L) {
    Matrix *self = luaT_checkudata(L, 1, float_matrix_tname);
    float_matrix_data_free(self);
    return 0;
}

int nerv_float_matrix_get_elem(lua_State *L) {
    Matrix *self = luaT_checkudata(L, 1, float_matrix_tname);
    int idx = luaL_checkinteger(L, 2);
    if (idx < 0 || idx >= self->nmax)
        nerv_error(L, "index must be within range [0, %d)", self->nmax);
    lua_pushnumber(L, self->data.f[idx]);
    return 1;
}

int nerv_float_matrix_set_elem(lua_State *L) {
    Matrix *self = luaT_checkudata(L, 1, float_matrix_tname);
    int idx = luaL_checkinteger(L, 2);
    float v = luaL_checknumber(L, 3);
    long upper = self->nrow * self->ncol;
    if (idx < 0 || idx >= self->nmax)
        nerv_error(L, "index must be within range [0, %d)", self->nmax);
    self->data.f[idx] = v;
    return 0;
}

static Matrix *nerv_float_matrix_getrow(Matrix *self, int row) {
    Matrix *prow = (Matrix *)malloc(sizeof(Matrix));
    prow->ncol = self->ncol;
    prow->nrow = 1;
    prow->stride = self->stride;
    prow->nmax = prow->ncol;
    prow->data.f = (float *)((char *)self->data.f + row * self->stride);
    prow->data_ref = self->data_ref;
    float_matrix_data_retain(self);
    return prow;
}

static int nerv_float_matrix_newindex(lua_State *L) {
    Matrix *self = luaT_checkudata(L, 1, float_matrix_tname);
    if (lua_isnumber(L, 2))
    {
        int idx = luaL_checkinteger(L, 2);
        if (self->nrow == 1)
        {
            if (idx < 0 || idx >= self->ncol)
                nerv_error(L, "index must be within range [0, %d)", self->ncol);
            self->data.f[idx] = luaL_checknumber(L, 3);
        }
        else
            nerv_error(L, "cannot assign a scalar to row vector");
        lua_pushboolean(L, 1);
        return 2;
    }
    else
    {
        lua_pushboolean(L, 0);
        return 1;
    }
}


static int nerv_float_matrix_index(lua_State *L) {
    Matrix *self = luaT_checkudata(L, 1, float_matrix_tname);
    if (lua_isnumber(L, 2))
    {
        int idx = luaL_checkinteger(L, 2);
        if (self->nrow == 1)
        {
            if (idx < 0 || idx >= self->ncol)
                nerv_error(L, "index must be within range [0, %d)", self->ncol);
            lua_pushnumber(L, self->data.f[idx]);
        }
        else
        {
            if (idx < 0 || idx >= self->nrow)
                nerv_error(L, "index must be within range [0, %d)", self->nrow);
            luaT_pushudata(L, nerv_float_matrix_getrow(self, idx), float_matrix_tname);
        }
        lua_pushboolean(L, 1);
        return 2;
    }
    else
    {
        lua_pushboolean(L, 0);
        return 1;
    }
}

static int nerv_float_matrix_ncol(lua_State *L) {
    Matrix *self = luaT_checkudata(L, 1, float_matrix_tname);
    lua_pushinteger(L, self->ncol);
    return 1;
}

static int nerv_float_matrix_nrow(lua_State *L) {
    Matrix *self = luaT_checkudata(L, 1, float_matrix_tname);
    lua_pushinteger(L, self->nrow);
    return 1;
}


static const luaL_Reg float_matrix_methods[] = {
    {"get_elem", nerv_float_matrix_get_elem},
    {"set_elem", nerv_float_matrix_set_elem},
    {"ncol", nerv_float_matrix_ncol},
    {"nrow", nerv_float_matrix_nrow},
    {"__index__", nerv_float_matrix_index},
    {"__newindex__", nerv_float_matrix_newindex},
    {NULL, NULL}
};

void nerv_float_matrix_init(lua_State *L) {
    luaT_newmetatable(L, float_matrix_tname, matrix_tname,
                        float_matrix_new, float_matrix_destroy, NULL);
    luaL_register(L, NULL, float_matrix_methods);
    lua_pop(L, 1);
}

static const luaL_Reg matrix_methods[] = {
    {"__tostring__", nerv_error_method_not_implemented },
    {"__add__", nerv_error_method_not_implemented },
    {"__sub__", nerv_error_method_not_implemented },
    {"__mul__", nerv_error_method_not_implemented },
    {NULL, NULL}
};

void nerv_matrix_init(lua_State *L) {
    /* abstract class */
    luaT_newmetatable(L, matrix_tname, NULL, NULL, NULL, NULL);
    luaL_register(L, NULL, matrix_methods);
    lua_pop(L, 1);
    nerv_float_matrix_init(L);
}