1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
#The Nerv Matrix Package#
Part of the [Nerv](../README.md) toolkit.
##Description##
###Underlying structure###
In the begining is could be useful to know something about the underlying structure of a __Nerv__ matrix.
Every matrix object is a encapsulation of a C struct that describes the attributes of this matrix.
```
typedef struct Matrix {
size_t stride; /* size of a row */
long ncol, nrow, nmax; /* dimension of the matrix */
union {
float *f;
double *d;
long *i;
} data; /* pointer to actual storage */
long *data_ref;
} Matrix;
```
It is worth mentioning that that `data_ref` is a counter which counts the number of references to its memory space, mind that it will also be increased when a row of the matrix is referenced(`col = m[2]`). A __Nerv__ matrix will deallocate its space when this counter is decreased to zero.
Also note that all assigning operation in __Nerv__ is reference copy, you can use `copy_tod` or `copy_toh` method to copy value.
###Class hierarchy###
The class hierarchy of the matrix classes can be clearly observed in `matrix/init.c`.
First there is a abstract base class __Nerv.Matrix__, which is inherited by __Nerv.CuMatrix__ and __Nerv.MMatrix__(also abstract).
Finally, there is __Nerv.CuMatrixFloat__, __Nerv.CuMatrixDouble__, inheriting __Nerv.CuMatrix__, and __Nerv.MMatrixFloat__, __Nerv.MMatrixDouble__, inheriting __Nerv.MMatrix__.
##Methods##
Mind that usually a matrix object can only do calculation with matrix of its own type(a __Nerv.CuMatrixFloat__ matrix can only do add operation with a __Nerv.CuMatrixFloat__).
In the methods description below, __Matrix__ could be __Nerv.CuMatrixFloat__, __Nerv.CuMatrixDouble__, __Nerv.MMatrixFloat__ or __Nerv.MMatrixDouble__.
* __Matrix = Matrix(int nrow, int ncol)__
Returns a __Matrix__ object of `nrow` rows and `ncol` columns.
|