diff options
Diffstat (limited to 'nn/layer_dag.lua')
-rw-r--r-- | nn/layer_dag.lua | 249 |
1 files changed, 0 insertions, 249 deletions
diff --git a/nn/layer_dag.lua b/nn/layer_dag.lua deleted file mode 100644 index 8e30216..0000000 --- a/nn/layer_dag.lua +++ /dev/null @@ -1,249 +0,0 @@ -local DAGLayer = nerv.class("nerv.DAGLayer", "nerv.Layer") - -local function parse_id(str) - local id, port, _ - _, _, id, port = string.find(str, "([a-zA-Z0-9_]+)%[([0-9]+)%]") - if id == nil or port == nil then - _, _, id, port = string.find(str, "(.+)%[([0-9]+)%]") - if not (id == "<input>" or id == "<output>") then - nerv.error("wrong format of connection id") - end - end - port = tonumber(port) - return id, port -end - -local function discover(id, layers, layer_repo) - local ref = layers[id] - if id == "<input>" or id == "<output>" then - return nil - end - if ref == nil then - local layer = layer_repo:get_layer(id) - local dim_in, dim_out = layer:get_dim() - ref = { - layer = layer, - inputs = {}, - outputs = {}, - err_inputs = {}, - err_outputs = {}, - next_layers = {}, - input_len = #dim_in, - output_len = #dim_out, - in_deg = 0, - visited = false - } - layers[id] = ref - end - return ref -end - -function DAGLayer:__init(id, global_conf, layer_conf) - local layers = {} - local inputs = {} - local outputs = {} - local dim_in = layer_conf.dim_in - local dim_out = layer_conf.dim_out - local parsed_conn = {} - for from, to in pairs(layer_conf.connections) do - local id_from, port_from = parse_id(from) - local id_to, port_to = parse_id(to) - local ref_from = discover(id_from, layers, layer_conf.sub_layers) - local ref_to = discover(id_to, layers, layer_conf.sub_layers) - local input_dim, output_dim, _ - if ref_from and ref_from.outputs[port_from] ~= nil then - nerv.error("%s has already been attached", from) - end - if ref_to and ref_to.inputs[port_to] ~= nil then - nerv.error("%s has already been attached", to) - end - if id_from == "<input>" then - input_dim, _ = ref_to.layer:get_dim() - if dim_in[port_from] ~= input_dim[port_to] then - nerv.error("mismatching data dimension between %s and %s", from, to) - end - inputs[port_from] = {ref_to, port_to} - ref_to.inputs[port_to] = inputs -- just a place holder - elseif id_to == "<output>" then - _, output_dim = ref_from.layer:get_dim() - if output_dim[port_from] ~= dim_out[port_to] then - nerv.error("mismatching data dimension between %s and %s", from, to) - end - outputs[port_to] = {ref_from, port_from} - ref_from.outputs[port_from] = outputs -- just a place holder - else - _, output_dim = ref_from.layer:get_dim() - input_dim, _ = ref_to.layer:get_dim() - if output_dim[port_from] ~= input_dim[port_to] then - nerv.error("mismatching data dimension between %s and %s", from, to) - end - - table.insert(parsed_conn, - {{ref_from, port_from}, {ref_to, port_to}}) - table.insert(ref_from.next_layers, ref_to) -- add edge - ref_to.in_deg = ref_to.in_deg + 1 -- increase the in-degree of the target layer - end - end - - -- topology sort - local queue = {} - local l = 1 - local r = 1 - for id, ref in pairs(layers) do - if ref.in_deg == 0 then - table.insert(queue, ref) - nerv.info("adding source layer: %s", id) - r = r + 1 - end - end - if l == r then - nerv.error("loop detected") - end - while l < r do - local cur = queue[l] - cur.visited = true - l = l + 1 - for _, nl in pairs(cur.next_layers) do - nl.in_deg = nl.in_deg - 1 - if nl.in_deg == 0 then - table.insert(queue, nl) - r = r + 1 - end - end - end - for i = 1, #queue do - nerv.info("enqueued layer: %s", queue[i].layer.id) - end - - for id, ref in pairs(layers) do - -- check wether the graph is connected - if ref.visited == false then - nerv.warning("layer %s is ignored", id) - end - end - - self.layers = layers - self.inputs = inputs - self.outputs = outputs - self.dim_in = dim_in - self.dim_out = dim_out - self.parsed_conn = parsed_conn - self.queue = queue - self.gconf = global_conf -end - -function DAGLayer:init(batch_size) - for i, conn in ipairs(self.parsed_conn) do - local _, output_dim - local ref_from, port_from, ref_to, port_to - ref_from, port_from = unpack(conn[1]) - ref_to, port_to = unpack(conn[2]) - _, output_dim = ref_from.layer:get_dim() - local mid = self.gconf.cumat_type(batch_size, - output_dim[port_from]) - local err_mid = mid:create() - - ref_from.outputs[port_from] = mid - ref_to.inputs[port_to] = mid - - ref_from.err_inputs[port_from] = err_mid - ref_to.err_outputs[port_to] = err_mid - end - for id, ref in pairs(self.layers) do - for i = 1, ref.input_len do - if ref.inputs[i] == nil then - nerv.error("dangling input port %d of layer %s", i, id) - end - end - for i = 1, ref.output_len do - if ref.outputs[i] == nil then - nerv.error("dangling output port %d of layer %s", i, id) - end - end - -- initialize sub layers - ref.layer:init(batch_size) - end - for i = 1, #self.dim_in do - if self.inputs[i] == nil then - nerv.error("dangling port %d of layer <input>", i) - end - end - for i = 1, #self.dim_out do - if self.outputs[i] == nil then - nerv.error("dangling port %d of layer <output>", i) - end - end -end - -function DAGLayer:set_inputs(input) - for i = 1, #self.dim_in do - local layer = self.inputs[i][1] - local port = self.inputs[i][2] - layer.inputs[port] = input[i] - end -end - -function DAGLayer:set_outputs(output) - for i = 1, #self.dim_out do - local layer = self.outputs[i][1] - local port = self.outputs[i][2] - layer.outputs[port] = output[i] - end -end - -function DAGLayer:set_err_inputs(bp_err) - for i = 1, #self.dim_out do - local layer = self.outputs[i][1] - local port = self.outputs[i][2] - layer.err_inputs[port] = bp_err[i] - end -end - -function DAGLayer:set_err_outputs(next_bp_err) - for i = 1, #self.dim_in do - local layer = self.inputs[i][1] - local port = self.inputs[i][2] - layer.err_outputs[port] = next_bp_err[i] - end -end - -function DAGLayer:update(bp_err, input, output) - self:set_err_inputs(bp_err) - self:set_inputs(input) - self:set_outputs(output) - -- print("update") - for id, ref in pairs(self.queue) do - -- print(ref.layer.id) - ref.layer:update(ref.err_inputs, ref.inputs, ref.outputs) - end -end - -function DAGLayer:propagate(input, output) - self:set_inputs(input) - self:set_outputs(output) - for i = 1, #self.queue do - local ref = self.queue[i] - -- print(ref.layer.id) - ref.layer:propagate(ref.inputs, ref.outputs) - end -end - -function DAGLayer:back_propagate(bp_err, next_bp_err, input, output) - self:set_err_outputs(next_bp_err) - self:set_err_inputs(bp_err) - self:set_inputs(input) - self:set_outputs(output) - for i = #self.queue, 1, -1 do - local ref = self.queue[i] - -- print(ref.layer.id) - ref.layer:back_propagate(ref.err_inputs, ref.err_outputs, ref.inputs, ref.outputs) - end -end - -function DAGLayer:get_params() - local param_repos = {} - for id, ref in pairs(self.queue) do - table.insert(param_repos, ref.layer:get_params()) - end - return nerv.ParamRepo.merge(param_repos) -end |