diff options
Diffstat (limited to 'nerv/tnn/layersT/gru_t.lua')
-rw-r--r-- | nerv/tnn/layersT/gru_t.lua | 114 |
1 files changed, 0 insertions, 114 deletions
diff --git a/nerv/tnn/layersT/gru_t.lua b/nerv/tnn/layersT/gru_t.lua deleted file mode 100644 index 8f15cc8..0000000 --- a/nerv/tnn/layersT/gru_t.lua +++ /dev/null @@ -1,114 +0,0 @@ -local GRULayerT = nerv.class('nerv.GRULayerT', 'nerv.LayerT') - -function GRULayerT:__init(id, global_conf, layer_conf) - --input1:x input2:h input3:c(h^~) - self.id = id - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self.gconf = global_conf - - if self.dim_in[2] ~= self.dim_out[1] then - nerv.error("dim_in[2](%d) mismatch with dim_out[1](%d)", self.dim_in[2], self.dim_out[1]) - end - - --prepare a DAGLayerT to hold the lstm structure - local pr = layer_conf.pr - if pr == nil then - pr = nerv.ParamRepo() - end - - local function ap(str) - return self.id .. '.' .. str - end - - local layers = { - ["nerv.CombinerLayer"] = { - [ap("inputXDup")] = {{}, {["dim_in"] = {self.dim_in[1]}, - ["dim_out"] = {self.dim_in[1], self.dim_in[1], self.dim_in[1]}, ["lambda"] = {1}}}, - [ap("inputHDup")] = {{}, {["dim_in"] = {self.dim_in[2]}, - ["dim_out"] = {self.dim_in[2], self.dim_in[2], self.dim_in[2], self.dim_in[2], self.dim_in[2]}, ["lambda"] = {1}}}, - [ap("updateGDup")] = {{}, {["dim_in"] = {self.dim_in[2]}, - ["dim_out"] = {self.dim_in[2], self.dim_in[2]}, ["lambda"] = {1}}}, - [ap("updateMergeL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_out[1]}, - ["lambda"] = {1, -1, 1}}}, - }, - ["nerv.AffineLayer"] = { - [ap("mainAffineL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2]}, ["dim_out"] = {self.dim_out[1]}, ["pr"] = pr}}, - }, - ["nerv.TanhLayer"] = { - [ap("mainTanhL")] = {{}, {["dim_in"] = {self.dim_out[1]}, ["dim_out"] = {self.dim_out[1]}}}, - }, - ["nerv.GateFLayer"] = { - [ap("resetGateL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2]}, - ["dim_out"] = {self.dim_in[2]}, ["pr"] = pr}}, - [ap("updateGateL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2]}, - ["dim_out"] = {self.dim_in[2]}, ["pr"] = pr}}, - }, - ["nerv.ElemMulLayer"] = { - [ap("resetGMulL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_in[2]}}}, - [ap("updateGMulCL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_in[2]}}}, - [ap("updateGMulHL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_in[2]}}}, - }, - } - - local layerRepo = nerv.LayerRepo(layers, pr, global_conf) - - local connections_t = { - ["<input>[1]"] = ap("inputXDup[1]"), - ["<input>[2]"] = ap("inputHDup[1]"), - - [ap("inputXDup[1]")] = ap("resetGateL[1]"), - [ap("inputHDup[1]")] = ap("resetGateL[2]"), - [ap("inputXDup[2]")] = ap("updateGateL[1]"), - [ap("inputHDup[2]")] = ap("updateGateL[2]"), - [ap("updateGateL[1]")] = ap("updateGDup[1]"), - - [ap("resetGateL[1]")] = ap("resetGMulL[1]"), - [ap("inputHDup[3]")] = ap("resetGMulL[2]"), - - [ap("inputXDup[3]")] = ap("mainAffineL[1]"), - [ap("resetGMulL[1]")] = ap("mainAffineL[2]"), - [ap("mainAffineL[1]")] = ap("mainTanhL[1]"), - - [ap("updateGDup[1]")] = ap("updateGMulHL[1]"), - [ap("inputHDup[4]")] = ap("updateGMulHL[2]"), - [ap("updateGDup[2]")] = ap("updateGMulCL[1]"), - [ap("mainTanhL[1]")] = ap("updateGMulCL[2]"), - - [ap("inputHDup[5]")] = ap("updateMergeL[1]"), - [ap("updateGMulHL[1]")] = ap("updateMergeL[2]"), - [ap("updateGMulCL[1]")] = ap("updateMergeL[3]"), - - [ap("updateMergeL[1]")] = "<output>[1]", - } - - self.dagL = nerv.DAGLayerT(self.id, global_conf, - {["dim_in"] = self.dim_in, ["dim_out"] = self.dim_out, ["sub_layers"] = layerRepo, - ["connections"] = connections_t}) - - self:check_dim_len(2, 1) -- x, h and h -end - -function GRULayerT:init(batch_size, chunk_size) - self.dagL:init(batch_size, chunk_size) -end - -function GRULayerT:batch_resize(batch_size, chunk_size) - self.dagL:batch_resize(batch_size, chunk_size) -end - -function GRULayerT:update(bp_err, input, output, t) - self.dagL:update(bp_err, input, output, t) -end - -function GRULayerT:propagate(input, output, t) - self.dagL:propagate(input, output, t) -end - -function GRULayerT:back_propagate(bp_err, next_bp_err, input, output, t) - self.dagL:back_propagate(bp_err, next_bp_err, input, output, t) -end - -function GRULayerT:get_params() - return self.dagL:get_params() -end |