summaryrefslogtreecommitdiff
path: root/nerv/tnn/layersT/gru_t.lua
diff options
context:
space:
mode:
Diffstat (limited to 'nerv/tnn/layersT/gru_t.lua')
-rw-r--r--nerv/tnn/layersT/gru_t.lua114
1 files changed, 0 insertions, 114 deletions
diff --git a/nerv/tnn/layersT/gru_t.lua b/nerv/tnn/layersT/gru_t.lua
deleted file mode 100644
index 8f15cc8..0000000
--- a/nerv/tnn/layersT/gru_t.lua
+++ /dev/null
@@ -1,114 +0,0 @@
-local GRULayerT = nerv.class('nerv.GRULayerT', 'nerv.LayerT')
-
-function GRULayerT:__init(id, global_conf, layer_conf)
- --input1:x input2:h input3:c(h^~)
- self.id = id
- self.dim_in = layer_conf.dim_in
- self.dim_out = layer_conf.dim_out
- self.gconf = global_conf
-
- if self.dim_in[2] ~= self.dim_out[1] then
- nerv.error("dim_in[2](%d) mismatch with dim_out[1](%d)", self.dim_in[2], self.dim_out[1])
- end
-
- --prepare a DAGLayerT to hold the lstm structure
- local pr = layer_conf.pr
- if pr == nil then
- pr = nerv.ParamRepo()
- end
-
- local function ap(str)
- return self.id .. '.' .. str
- end
-
- local layers = {
- ["nerv.CombinerLayer"] = {
- [ap("inputXDup")] = {{}, {["dim_in"] = {self.dim_in[1]},
- ["dim_out"] = {self.dim_in[1], self.dim_in[1], self.dim_in[1]}, ["lambda"] = {1}}},
- [ap("inputHDup")] = {{}, {["dim_in"] = {self.dim_in[2]},
- ["dim_out"] = {self.dim_in[2], self.dim_in[2], self.dim_in[2], self.dim_in[2], self.dim_in[2]}, ["lambda"] = {1}}},
- [ap("updateGDup")] = {{}, {["dim_in"] = {self.dim_in[2]},
- ["dim_out"] = {self.dim_in[2], self.dim_in[2]}, ["lambda"] = {1}}},
- [ap("updateMergeL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_out[1]},
- ["lambda"] = {1, -1, 1}}},
- },
- ["nerv.AffineLayer"] = {
- [ap("mainAffineL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2]}, ["dim_out"] = {self.dim_out[1]}, ["pr"] = pr}},
- },
- ["nerv.TanhLayer"] = {
- [ap("mainTanhL")] = {{}, {["dim_in"] = {self.dim_out[1]}, ["dim_out"] = {self.dim_out[1]}}},
- },
- ["nerv.GateFLayer"] = {
- [ap("resetGateL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2]},
- ["dim_out"] = {self.dim_in[2]}, ["pr"] = pr}},
- [ap("updateGateL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2]},
- ["dim_out"] = {self.dim_in[2]}, ["pr"] = pr}},
- },
- ["nerv.ElemMulLayer"] = {
- [ap("resetGMulL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_in[2]}}},
- [ap("updateGMulCL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_in[2]}}},
- [ap("updateGMulHL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_in[2]}}},
- },
- }
-
- local layerRepo = nerv.LayerRepo(layers, pr, global_conf)
-
- local connections_t = {
- ["<input>[1]"] = ap("inputXDup[1]"),
- ["<input>[2]"] = ap("inputHDup[1]"),
-
- [ap("inputXDup[1]")] = ap("resetGateL[1]"),
- [ap("inputHDup[1]")] = ap("resetGateL[2]"),
- [ap("inputXDup[2]")] = ap("updateGateL[1]"),
- [ap("inputHDup[2]")] = ap("updateGateL[2]"),
- [ap("updateGateL[1]")] = ap("updateGDup[1]"),
-
- [ap("resetGateL[1]")] = ap("resetGMulL[1]"),
- [ap("inputHDup[3]")] = ap("resetGMulL[2]"),
-
- [ap("inputXDup[3]")] = ap("mainAffineL[1]"),
- [ap("resetGMulL[1]")] = ap("mainAffineL[2]"),
- [ap("mainAffineL[1]")] = ap("mainTanhL[1]"),
-
- [ap("updateGDup[1]")] = ap("updateGMulHL[1]"),
- [ap("inputHDup[4]")] = ap("updateGMulHL[2]"),
- [ap("updateGDup[2]")] = ap("updateGMulCL[1]"),
- [ap("mainTanhL[1]")] = ap("updateGMulCL[2]"),
-
- [ap("inputHDup[5]")] = ap("updateMergeL[1]"),
- [ap("updateGMulHL[1]")] = ap("updateMergeL[2]"),
- [ap("updateGMulCL[1]")] = ap("updateMergeL[3]"),
-
- [ap("updateMergeL[1]")] = "<output>[1]",
- }
-
- self.dagL = nerv.DAGLayerT(self.id, global_conf,
- {["dim_in"] = self.dim_in, ["dim_out"] = self.dim_out, ["sub_layers"] = layerRepo,
- ["connections"] = connections_t})
-
- self:check_dim_len(2, 1) -- x, h and h
-end
-
-function GRULayerT:init(batch_size, chunk_size)
- self.dagL:init(batch_size, chunk_size)
-end
-
-function GRULayerT:batch_resize(batch_size, chunk_size)
- self.dagL:batch_resize(batch_size, chunk_size)
-end
-
-function GRULayerT:update(bp_err, input, output, t)
- self.dagL:update(bp_err, input, output, t)
-end
-
-function GRULayerT:propagate(input, output, t)
- self.dagL:propagate(input, output, t)
-end
-
-function GRULayerT:back_propagate(bp_err, next_bp_err, input, output, t)
- self.dagL:back_propagate(bp_err, next_bp_err, input, output, t)
-end
-
-function GRULayerT:get_params()
- return self.dagL:get_params()
-end