aboutsummaryrefslogtreecommitdiff
path: root/nerv/layer
diff options
context:
space:
mode:
Diffstat (limited to 'nerv/layer')
-rw-r--r--nerv/layer/affine.lua70
-rw-r--r--nerv/layer/affine_recurrent.lua29
2 files changed, 68 insertions, 31 deletions
diff --git a/nerv/layer/affine.lua b/nerv/layer/affine.lua
index 015ec3f..c24af16 100644
--- a/nerv/layer/affine.lua
+++ b/nerv/layer/affine.lua
@@ -19,20 +19,47 @@ end
function MatrixParam:update(gradient)
local gconf = self.gconf
- self.correction:add(self.correction, gradient, gconf.momentum, 1.0)
- -- momentum gain
- local mmt_gain = 1.0 / (1.0 - gconf.momentum);
- local n = self.gconf.batch_size * mmt_gain
- -- perform update
- self.trans:add(self.trans, self.correction, 1.0, -gconf.lrate / n)
+ if (gconf.momentum > 0) then
+ self.correction:add(self.correction, gradient, gconf.momentum, 1.0)
+ -- momentum gain
+ local mmt_gain = 1.0 / (1.0 - gconf.momentum);
+ local n = self.gconf.batch_size * mmt_gain
+ -- perform update
+ self.trans:add(self.trans, self.correction, 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, -gconf.lrate/n)
+ else
+ self.trans:add(self.trans, gradient, 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, -gconf.lrate/gconf.batch_size)
+ end
end
+function MatrixParam:updateEI(err, input)
+ local gconf = self.gconf
+ if (gconf.momentum > 0) then
+ self.correction:mul(input, err, 1.0, gconf.momentum, 'T', 'N')
+ -- momentum gain
+ local mmt_gain = 1.0 / (1.0 - gconf.momentum);
+ local n = self.gconf.batch_size * mmt_gain
+ -- perform update
+ self.trans:add(self.trans, self.correction, 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, -gconf.lrate/n)
+ else
+ self.trans:mul(input, err, -gconf.lrate/gconf.batch_size, 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, 'T', 'N')
+ end
+end
+
+--[[ --these updates are the same
function LinearTransParam:update(gradient)
MatrixParam.update(self, gradient)
- local gconf = self.gconf
+ -- local gconf = self.gconf
+ -- weight decay(put into MatrixParam:update)
+ -- self.trans:add(self.trans, self.trans, 1.0, -gconf.lrate * gconf.wcost / gconf.batch_size)
+end
+
+function BiasParam:update(gradient)
+ MatrixParam.update(self, gradient)
+ --local gconf = self.gconf
-- weight decay
- self.trans:add(self.trans, self.trans, 1.0, -gconf.lrate * gconf.wcost)
+ -- self.trans:add(self.trans, self.trans, 1.0, -gconf.lrate * gconf.wcost / gconf.batch_size)
end
+]]--
function AffineLayer:__init(id, global_conf, layer_conf)
self.id = id
@@ -65,18 +92,25 @@ function AffineLayer:batch_resize(batch_size)
end
function AffineLayer:update(bp_err, input, output)
- if self.direct_update then
- self.ltp.correction:mul(input[1], bp_err[1], 1.0, gconf.momentum, 'T', 'N')
- -- momentum gain
- local mmt_gain = 1.0 / (1.0 - gconf.momentum);
- local n = self.gconf.batch_size * mmt_gain
- -- perform update
- self.ltp.trans:add(self.ltp.trans, self.ltp.correction, 1.0, -gconf.lrate / n)
+ if (self.direct_update == true) then
+ local gconf = self.gconf
+ if (gconf.momentum > 0) then
+ self.ltp.correction:mul(input[1], bp_err[1], 1.0, gconf.momentum, 'T', 'N')
+ self.bp.correction:add(self.bp.correction, bp_err[1]:colsum(), gconf.momentum, 1)
+ -- momentum gain
+ local mmt_gain = 1.0 / (1.0 - gconf.momentum);
+ local n = self.gconf.batch_size * mmt_gain
+ -- perform update
+ self.ltp.trans:add(self.ltp.trans, self.ltp.correction, 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, -gconf.lrate / n)
+ self.bp.trans:add(self.bp.trans, self.bp.correction, 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, -gconf.lrate / n)
+ else
+ self.ltp.trans:mul(input[1], bp_err[1], -gconf.lrate / gconf.batch_size, 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, 'T', 'N')
+ self.bp.trans:add(self.bp.trans, bp_err[1]:colsum(), 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, -gconf.lrate / gconf.batch_size)
+ end
else
- self.ltp_grad:mul(input[1], bp_err[1], 1.0, 0.0, 'T', 'N')
- self.ltp:update(self.ltp_grad)
+ self.ltp:updateEI(bp_err[1], input[1])
+ self.bp:update(bp_err[1]:colsum())
end
- self.bp:update(bp_err[1]:colsum())
end
function AffineLayer:propagate(input, output)
diff --git a/nerv/layer/affine_recurrent.lua b/nerv/layer/affine_recurrent.lua
index 92d98e2..b465e95 100644
--- a/nerv/layer/affine_recurrent.lua
+++ b/nerv/layer/affine_recurrent.lua
@@ -46,20 +46,23 @@ function Recurrent:update(bp_err, input, output)
local ltp_hh = self.ltp_hh.trans
local bp = self.bp.trans
local gconf = self.gconf
- -- momentum gain
- local mmt_gain = 1.0 / (1.0 - gconf.momentum);
- local n = input[1]:nrow() * mmt_gain
- -- update corrections (accumulated errors)
- self.ltp_hh.correction:mul(input[2], bp_err[1], 1.0, gconf.momentum, 'T', 'N')
- self.bp.correction:add(bc, bp_err[1]:colsum(), gconf.momentum, 1.0)
- -- perform update
- ltp_hh:add(ltp_hh, self.ltp_hh.correction, 1.0, -gconf.lrate / n)
- bp:add(bp, self.bp.correction, 1.0, -gconf.lrate / n)
- -- weight decay
- ltp_hh:add(ltp_hh, ltp_hh, 1.0, -gconf.lrate * gconf.wcost)
+ if (gconf.momentum > 0) then
+ -- momentum gain
+ local mmt_gain = 1.0 / (1.0 - gconf.momentum);
+ local n = input[1]:nrow() * mmt_gain
+ -- update corrections (accumulated errors)
+ self.ltp_hh.correction:mul(input[2], bp_err[1], 1.0, gconf.momentum, 'T', 'N')
+ self.bp.correction:add(self.bp.correction, bp_err[1]:colsum(), gconf.momentum, 1.0)
+ -- perform update and weight decay
+ ltp_hh:add(ltp_hh, self.ltp_hh.correction, 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, -gconf.lrate/n)
+ bp:add(bp, self.bp.correction, 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, -gconf.lrate/n)
+ else
+ ltp_hh:mul(input[2], bp_err[1], -gconf.lrate/gconf.batch_size, 1.0-gconf.wcost*gconf.lrate/gconf.batch_size, 'T', 'N')
+ bp:add(bp, bp_err[1]:colsum(), 1.0-gconf.lrate*gconf.wcost/gconf.batch_size, -gconf.lrate/gconf.batch_size)
+ end
else
- self.ltp_hh_grad:mul(input[2], bp_err[1], 1.0, 0.0, 'T', 'N')
- self.ltp_hh:update(self.ltp_hh_grad)
+ --self.ltp_hh_grad:mul(input[2], bp_err[1], 1.0, 0.0, 'T', 'N')
+ self.ltp_hh:updateEI(bp_err[1], input[2])
self.bp:update(bp_err[1]:colsum())
end
end