aboutsummaryrefslogtreecommitdiff
path: root/nerv/layer
diff options
context:
space:
mode:
Diffstat (limited to 'nerv/layer')
-rw-r--r--nerv/layer/affine.lua39
-rw-r--r--nerv/layer/graph.lua63
-rw-r--r--nerv/layer/init.lua156
3 files changed, 237 insertions, 21 deletions
diff --git a/nerv/layer/affine.lua b/nerv/layer/affine.lua
index a1c92b1..2dd2dc0 100644
--- a/nerv/layer/affine.lua
+++ b/nerv/layer/affine.lua
@@ -1,24 +1,38 @@
---- Parameter and layer classes related to linear transform.
+--- Contains parameter and layer classes related to linear (or affine)
+-- transform.
+
+--- The class for linear transform parameter.
+-- @type nerv.LinearTransParam
-local MatrixParam = nerv.class('nerv.MatrixParam', 'nerv.Param')
local LinearTransParam = nerv.class('nerv.LinearTransParam', 'nerv.MatrixParam')
+
+--- The class for bias parameter (currently implemented as a one-row matrix).
+-- @type nerv.BiasParam
+
local BiasParam = nerv.class('nerv.BiasParam', 'nerv.MatrixParam')
-local AffineLayer = nerv.class('nerv.AffineLayer', 'nerv.Layer')
---- A parameter that consists of a single matrix
+--- The class for all matrix-based parameters. The class has a single matrix
+-- which can be accessed by `self.trans`.
-- @type nerv.MatrixParam
+local MatrixParam = nerv.class('nerv.MatrixParam', 'nerv.Param')
+
+--- Check the storage location of the contained matrix. This function is
+-- required by `nerv.ParamRepo`.
+-- @param checker the callback function for checking
function MatrixParam:check(checker)
-- check trans matrix type
checker(self.trans)
end
---- Read from a file handle.
+--- Read from a file handle. See `nerv.Param.read`.
-- @param handle the file handle
function MatrixParam:read(handle)
self.trans = self.gconf.mmat_type.load(handle)
end
+--- Write to a file handle. See `nerv.Param.write`.
+-- @param handle the file handle
function MatrixParam:write(handle)
self.trans:save(handle)
end
@@ -69,10 +83,23 @@ function MatrixParam:update_by_err_input()
self:_update(l2, l2)
end
---- A fully-connected linear transform layer.
+--- The affine layer that does the calculation Wx + b, also known as fully
+-- connected linear transform layer.
-- @type nerv.AffineLayer
+local AffineLayer = nerv.class('nerv.AffineLayer', 'nerv.Layer')
+
--- The constructor.
+-- @param id the identifier
+-- @param global_conf see `self.gconf` of `nerv.Layer.__init`
+-- @param layer_conf a table providing with settings dedicated for the layer,
+-- for `layer_conf` fields that are shared by all layers, see
+-- `nerv.Layer.__init`. The affine layer requires parameters to be bound, the
+-- following parameter names will be looked up while binding:
+--
+-- * `ltp`: the linear transformation parameter, also known as the weight matrix, W in Wx + b
+-- * `bp`: the bias parameter, also known as the bias matrix, b in Wx + b
+
function AffineLayer:__init(id, global_conf, layer_conf)
nerv.Layer.__init(self, id, global_conf, layer_conf)
self:check_dim_len(-1, 1) -- exactly one output, allow multiple inputs
diff --git a/nerv/layer/graph.lua b/nerv/layer/graph.lua
index 5790f95..5b5d4c7 100644
--- a/nerv/layer/graph.lua
+++ b/nerv/layer/graph.lua
@@ -1,5 +1,68 @@
+--- Implements a special kind of layers having an internal structure, a
+-- directed graph of connected sub-level layers.
+
+--- The class describing the concept of a graph layer having an internal
+-- structure, a directed graph of connected sub-level layers. Some of these
+-- sub-level layers can again be graph layers, thus, it enables nested and
+-- recursive layer declaration. The graph layer can be regarded as a container of
+-- its sub-level layers. A layer other than a graph layer is also referenced as
+-- "*primitive layer*".
+-- @type nerv.GraphLayer
+
local GraphLayer = nerv.class('nerv.GraphLayer', 'nerv.Layer')
+--- The constructor.
+-- @param id the identifier
+-- @param global_conf see `self.gconf` of `nerv.Layer.__init`
+-- @param layer_conf a table providing with settings dedicated for the layer,
+-- the following fields should be specified:
+--
+-- * `lrepo`: the layer repo that should be used to find the sub-level layers
+-- * `connections`: an array of 3-tuples describing the connections of
+-- sub-level layers, the structure is as follow:
+--
+-- {
+-- {<from_port1>, <to_port1>, <time_shift1>}, -- tuple 1
+-- {<from_port2>, <to_port2>, <time_shift2>}, -- tuple 2
+-- {<from_port3>, <to_port3>, <time_shift3>}, -- tuple 3
+-- ...
+-- }
+-- Each tuple stands for a directed edge between two ports. The first two
+-- elements in the tuple are called *port specification* which is a string
+-- with the following format:
+--
+-- <layer_id>[<port_idx>]
+-- where the `<layer_id>` is a string that identifies the layer in
+-- `lconf.lrepo`, and `<port_id>` is the input or output port index when used
+-- in the first or second port specification respectively.
+--
+-- The third element in the tuple is an integer specifying the time delay of
+-- this connection. In most cases, it will be simply zero. But for an
+-- recurrent network, a positive value `i` means the output from `<from_port>`
+-- will be used as the input to `<to_port>` in `i`th computation of the future.
+-- Negative values are also allowed to propagate the output to the past.
+--
+-- Note that there are two possible strings of `<layer_id>` that have special
+-- meanings: the string `"<input>"` and `"<output>"` are placeholders of the
+-- the input and output ports of the outer graph layer. The input for the graph
+-- layer as a whole can be used by establishing connections from
+-- `"<input>[i]"`, and vice versa for the output.
+--
+-- As an example, tuples:
+--
+-- {
+-- {"<input>[1]", "affine0[1]", 0},
+-- {"affine0[1]", "sigmoid0[1]", 0},
+-- {"sigmoid0[1]", "affine1[1]", 0},
+-- {"affine1[1]", "<output>[1]", 0}
+-- }
+-- Specify a graph layer that contains two stacked and fully connected linear
+-- transformation sub-level layers.
+--
+-- * `reversed`: optional, reverse the time shifting of all connections if true
+--
+-- For other `layer_conf` fields that are shared by all layers, see `nerv.Layer.__init`.
+
function GraphLayer:__init(id, global_conf, layer_conf)
nerv.Layer.__init(self, id, global_conf, layer_conf)
self.lrepo = layer_conf.layer_repo
diff --git a/nerv/layer/init.lua b/nerv/layer/init.lua
index c893df3..7521b7a 100644
--- a/nerv/layer/init.lua
+++ b/nerv/layer/init.lua
@@ -1,38 +1,96 @@
--- The following methods must be implemented to let a layer work properly
+--- Implements the concept of groups of parameters (`nerv.Param`) and
+-- computation nodes (`nerv.Layer`).
+
+--- The class describing a group of parameters (an internal state) that can be
+-- bound to layers. This class also implements the *chunk* interface (see
+-- `nerv.ChunkFile`) , which means instances of `nerv.Param` can be exported to
+-- chunk files as chunks.
+-- @type nerv.Param
local Param = nerv.class('nerv.Param')
+--- The constructor.
+-- @param id the identifier for the group of parameters
+-- @param global_conf a table describing the computation state and providing
+-- with some global settings
+
function Param:__init(id, global_conf)
self.id = id
self.gconf = global_conf
end
+--- Retrieve the metadata of the parameter group. This function implements the
+-- *chunk* interface.
+-- @return a table containing all metadata
+
function Param:get_info()
return self.info
end
+--- Set the metadata of the parameter group. This function implements the
+-- *chunk* interface.
+-- @param info a table containing all metadata
+
function Param:set_info(info)
self.info = info
end
+--- Read from the given file handle. This function implements the
+-- *chunk* interface.
+-- @param handle the file handle
+
function Param:read(handle)
nerv.error_method_not_implemented()
end
+--- Write to the given file handle. This function implements the
+-- *chunk* interface.
+-- @param handle the file handle
+
function Param:write(handle)
nerv.error_method_not_implemented()
end
-function Param:update(gradient)
- nerv.error_method_not_implemented()
-end
+--- Generate zero.
+-- @return zero
-function Param:gen_zero()
+function Param.gen_zero()
return 0
end
+--- The class describing a single computation node which calculates from the
+-- input ports to the output ports which could be the input of others.
+-- @type nerv.Layer
+
local Layer = nerv.class('nerv.Layer')
+--- The constructor. All inheriting classes should call this base constructor to
+-- initialize some predefined fields (of `self`):
+--
+-- * `id`: the identifier of the layer
+-- * `gconf`: a table describing the computation state and providing
+-- with some global settings
+-- * `lconf`: a table providing with settings dedicated for the layer. There
+-- are some fields considered to be "standard" and shared by all
+-- layers:
+-- * `dim_in`: an array of each input port dimension (width) with order
+-- * `dim_out`: an array of each output port dimension (width) with order
+-- * `params`: optional, a table containing pairs of the manually bound
+-- parameter name used by the layer and parameter id used to find the
+-- parameter in the parameter repo
+-- * `pr`: optional, the parameter repo (see `nerv.ParamRepo`) to find
+-- parameters while binding, used by `nerv.Layer.find_param`
+-- * `mat_type`: the type of matrix should be used when storing intermediate
+-- results
+-- * `loc_type`: a value from `nerv.ParamRepo.LOC_TYPES` indicating whether the
+-- storage of `nerv.Param` instances is on host or device RAM
+-- * `dim_in`: an array of each input port dimension (width) with order
+-- * `dim_out`: an array of each output port dimension (width) with order
+--
+-- @param id the identifier
+-- @param global_conf see `self.gconf`
+-- @param layer_conf see `self.lconf`
+
function Layer:__init(id, global_conf, layer_conf)
self.id = id
self.gconf = global_conf
@@ -48,22 +106,57 @@ function Layer:__init(id, global_conf, layer_conf)
self.dim_out = layer_conf.dim_out
end
+--- Initialize the layer, called for each epoch.
+
function Layer:init(batch_size)
nerv.error_method_not_implemented()
end
-function Layer:update(bp_err, input, output)
+--- Update (change the state of) the bound (tied) parameter according to the
+-- calculation.
+-- @param bp_err an array of row-major matrices storing the error
+-- back-propagated from the output ports
+-- @param input an array of row-major matrices storing the input before the
+-- forward propagation
+-- @param ouput an array of row-major matrices storing the output after the
+-- forward propagation
+-- @param t BPTT time `t`
+
+function Layer:update(bp_err, input, output, t)
nerv.error_method_not_implemented()
end
-function Layer:propagate(input, output)
+--- Calculate the values in output ports according to the input.
+-- @param input an array of row-major matrices storing the input before the
+-- forward propagation
+-- @param ouput an array of row-major matrices storing the output after the
+-- forward propagation
+-- @param t BPTT time `t`
+
+function Layer:propagate(input, output, t)
nerv.error_method_not_implemented()
end
-function Layer:back_propagate(bp_err, next_bp_err, input, output)
+--- Calculate the next error value (`next_bp_err`) by back-propagation.
+-- @param bp_err an array of row-major matrices storing the error
+-- back-propagated from the output ports
+-- @param next_bp_err an array of row-major matrices storing the next error
+-- back-propagated to the input ports
+-- @param input an array of row-major matrices storing the input before the
+-- forward propagation
+-- @param ouput an array of row-major matrices storing the output after the
+-- forward propagation
+-- @param t BPTT time `t`
+
+function Layer:back_propagate(bp_err, next_bp_err, input, output, t)
nerv.error_method_not_implemented()
end
+--- Check the length of the dimention array. This function is recommended for
+-- invocation when checking the ports in your layer implementation.
+-- @param len_in the expected number of input ports (-1 if variable)
+-- @param len_out the expected number of output ports (-1 if variable)
+
function Layer:check_dim_len(len_in, len_out)
local expected_in = #self.dim_in
local expected_out = #self.dim_out
@@ -77,27 +170,60 @@ function Layer:check_dim_len(len_in, len_out)
end
end
+--- Get all the parameters used by (bound to) the layer.
+-- @return a `nerv.ParamRepo` instance storing all the involved parameters
+
function Layer:get_params()
nerv.error_method_not_implemented()
end
+--- Lookup and bind the parameters in the repo specified in layer settings.
+-- This function will lead to the invocation of `find_param` if the layer is
+-- implemented appropriately.
+
function Layer:bind_params()
nerv.error_method_not_implemented()
end
+--- Get two arrays describing the dimension of input and ouput.
+-- @return two arrays: `<dim_in>, <dim_out>`
+
function Layer:get_dim()
return self.dim_in, self.dim_out
end
+--- Set an attribute to the layer.
+-- @param name the name of the attribute
+-- @param value the value of the attribute
+
function Layer:set_attr(name, value)
self[name] = value
end
+--- Get the contained (nested) layer inside the layer (useful for complex
+-- layers like `nerv.GraphLayer`).
+-- @param id the identifier of the nested layer to be find
+
function Layer:get_sublayer(id)
nerv.error('primitive layer does not have sublayers')
end
-function Layer:find_param(plist, lconf, gconf, p_type, p_dim, p_gen)
+--- Find the parameter according to the layer settings. This function should be
+-- used as the only way to locate a parameter in the implementation of
+-- `bind_params` (see `nerv.AffineLayer.bind_params`).
+-- @param plist the potential names for the parameter in the order of lookup priority
+-- @param lconf a table providing with settings dedicated for the layer
+-- @param gconf a table describing the computation state and providing with
+-- some global settings
+-- @param ptype the type for constructing the parameter instance when
+-- auto-generation is triggered
+-- @param pdim an array specifying each dimension of the parameter when
+-- auto-generation is triggered
+-- @param pgen the function used to generate values when auto-generation is
+-- triggered, `gconf.param_gen` will be used if `nil`
+
+function Layer:find_param(plist, lconf, gconf, ptype, pdim, pgen)
+
if type(plist) == "string" then
plist = {plist}
end
@@ -123,14 +249,14 @@ function Layer:find_param(plist, lconf, gconf, p_type, p_dim, p_gen)
pid = self.id .. '_' .. plist[1]
nerv.info("param id for [%s] of layer [%s] is not found in the specified param repo, " ..
"switch to auto-generate", plist_str, self.id)
- local p = p_type(pid, gconf)
- p.trans = self.mat_type(unpack(p_dim))
- p_gen = p_gen or gconf.param_gen
- or gconf.param_random -- obsolete name
- if type(p_gen) ~= "function" then
+ local p = ptype(pid, gconf)
+ p.trans = self.mat_type(unpack(pdim))
+ pgen = pgen or gconf.param_gen
+ or gconf.param_random -- obsolete name
+ if type(pgen) ~= "function" then
nerv.error("a param generate function is needed")
end
- p.trans:generate(p_gen)
+ p.trans:generate(pgen)
return p
end