diff options
Diffstat (limited to 'nerv/layer')
-rw-r--r-- | nerv/layer/duplicate.lua | 41 | ||||
-rw-r--r-- | nerv/layer/graph.lua | 156 | ||||
-rw-r--r-- | nerv/layer/gru.lua | 4 | ||||
-rw-r--r-- | nerv/layer/identity.lua | 30 | ||||
-rw-r--r-- | nerv/layer/init.lua | 12 | ||||
-rw-r--r-- | nerv/layer/lstm.lua | 52 | ||||
-rw-r--r-- | nerv/layer/rnn.lua | 38 | ||||
-rw-r--r-- | nerv/layer/sigmoid.lua | 6 |
8 files changed, 308 insertions, 31 deletions
diff --git a/nerv/layer/duplicate.lua b/nerv/layer/duplicate.lua new file mode 100644 index 0000000..137472b --- /dev/null +++ b/nerv/layer/duplicate.lua @@ -0,0 +1,41 @@ +local DuplicateLayer = nerv.class('nerv.DuplicateLayer', 'nerv.Layer') + +function DuplicateLayer:__init(id, global_conf, layer_conf) + nerv.Layer.__init(self, id, global_conf, layer_conf) + self:check_dim_len(1, -1) + if #self.dim_out < 1 then + nerv.error('no output specified') + end + for i = 1, #self.dim_out do + if self.dim_out[i] ~= self.dim_in[1] then + nerv.error('mismatching dimensions of outputs') + end + end +end + +function DuplicateLayer:init() +end + +function DuplicateLayer:batch_resize() +end + +function DuplicateLayer:propagate(input, output) + for i = 1, #self.dim_out do + output[i]:copy_from(input[1]) + -- FIXME: use reference copy to speed up + end +end + +function DuplicateLayer:back_propagate(bp_err, next_bp_err) + next_bp_err[1]:copy_from(bp_err[1]) + for i = 2, #self.dim_out do + next_bp_err[1]:add(next_bp_err[1], bp_err[i], 1.0, 1.0) + end +end + +function DuplicateLayer:update() +end + +function DuplicateLayer:get_params() + return nerv.ParamRepo({}, self.loc_type) +end diff --git a/nerv/layer/graph.lua b/nerv/layer/graph.lua new file mode 100644 index 0000000..5f42fca --- /dev/null +++ b/nerv/layer/graph.lua @@ -0,0 +1,156 @@ +local GraphLayer = nerv.class('nerv.GraphLayer', 'nerv.Layer') + +function GraphLayer:__init(id, global_conf, layer_conf) + nerv.Layer.__init(self, id, global_conf, layer_conf) + self:graph_init(layer_conf.layer_repo, layer_conf.connections) +end + +local function parse_id(str) + local id, port, _ + _, _, id, port = string.find(str, "([a-zA-Z0-9_.]+)%[([0-9]+)%]") + if id == nil or port == nil then + _, _, id, port = string.find(str, "(.+)%[([0-9]+)%]") + if not (id == "<input>" or id == "<output>") then + nerv.error("wrong format of connection id") + end + end + port = tonumber(port) + return id, port +end + +function GraphLayer:add_prefix(layers, connections) + local function ap(name) + return self.id .. '.' .. name + end + + for layer_type, sublayers in pairs(layers) do + local tmp = {} + for name, layer_config in pairs(sublayers) do + tmp[ap(name)] = layer_config + end + layers[layer_type] = tmp + end + + for i = 1, #connections do + local from, to = connections[i][1], connections[i][2] + if parse_id(from) ~= '<input>' then + connections[i][1] = ap(from) + end + if parse_id(to) ~= '<output>' then + connections[i][2] = ap(to) + end + end +end + +function GraphLayer:discover(id, layer_repo) + if id == '<output>' then + id = '<input>' + end + local layers = self.layers + local ref = layers[id] + if ref == nil then + local layer = layer_repo:get_layer(id) + local dim_in, dim_out = layer:get_dim() + self.layer_num = self.layer_num + 1 + ref = { + layer = layer, + inputs = {}, + outputs = {}, + dim_in = dim_in, + dim_out = dim_out, + id = self.layer_num, + } + layers[id] = ref + end + return ref +end + +function GraphLayer:graph_init(layer_repo, connections) + local layers = {} + layers['<input>'] = { + inputs = {}, + outputs = {}, + dim_in = self.dim_out, + dim_out = self.dim_in, + id = 0, + } + self.layers = layers + self.layer_num = 0 + self.connections = {} + + -- check data dimension between connected ports + for _, edge in pairs(connections) do + local from, to, time = edge[1], edge[2], edge[3] + local id_from, port_from = parse_id(from) + local id_to, port_to = parse_id(to) + local ref_from = self:discover(id_from, layer_repo) + local ref_to = self:discover(id_to, layer_repo) + if ref_from.outputs[port_from] ~= nil then + nerv.error('%s has already been attached', from) + end + if ref_to.inputs[port_to] ~= nil then + nerv.error('%s has already been attached', to) + end + if ref_from.dim_out[port_from] ~= ref_to.dim_in[port_to] then + nerv.error('mismatching data dimension between %s and %s', from, to) + end + if ref_from.id == 0 and ref_to.id == 0 then + nerv.error('short-circuit connection between <input> and <output>') + end + ref_from.outputs[port_from] = true + ref_to.inputs[port_to] = true + table.insert(self.connections, {ref_from.id, port_from, ref_to.id, port_to, time}) + end + + -- check dangling ports + for id, ref in pairs(layers) do + if id ~= '<input>' then + for i = 1, #ref.dim_in do + if ref.inputs[i] == nil then + nerv.error('dangling input port %d of layer %s', i, id) + end + end + for i = 1, #ref.dim_out do + if ref.outputs[i] == nil then + nerv.error('dangling output port %d os layer %s', i, id) + end + end + end + end + for i = 1, #self.dim_in do + if layers['<input>'].outputs[i] == nil then + nerv.error('dangling port %d of layer <input>', i) + end + end + for i = 1, #self.dim_out do + if layers['<input>'].inputs[i] == nil then + nerv.error('dangling port %d of layer <output>', i) + end + end +end + +function GraphLayer:set_attr(name, value) + self[name] = value + for id, ref in pairs(self.layers) do + if id ~= '<input>' then + ref.layer:set_attr(name, value) + end + end +end + +function GraphLayer:get_sublayer(id) + if self.layers[id] == nil or id == '<input>' then + nerv.error('layer with id %s not found', id) + end + return self.layers[id].layer +end + +function GraphLayer:get_params() + local param_repos = {} + for id, ref in pairs(self.layers) do + if id ~= '<input>' then + table.insert(param_repos, ref.layer:get_params()) + end + end + return nerv.ParamRepo.merge(param_repos, self.loc_type) +end diff --git a/nerv/layer/gru.lua b/nerv/layer/gru.lua index a590a67..71718d7 100644 --- a/nerv/layer/gru.lua +++ b/nerv/layer/gru.lua @@ -13,7 +13,7 @@ function GRULayer:__init(id, global_conf, layer_conf) -- prepare a DAGLayer to hold the lstm structure local pr = layer_conf.pr if pr == nil then - pr = nerv.ParamRepo(nil, self.loc_type) + pr = nerv.ParamRepo({}, self.loc_type) end local function ap(str) @@ -102,7 +102,7 @@ end function GRULayer:bind_params() local pr = layer_conf.pr if pr == nil then - pr = nerv.ParamRepo(nil, self.loc_type) + pr = nerv.ParamRepo({}, self.loc_type) end self.lrepo:rebind(pr) end diff --git a/nerv/layer/identity.lua b/nerv/layer/identity.lua new file mode 100644 index 0000000..d56337d --- /dev/null +++ b/nerv/layer/identity.lua @@ -0,0 +1,30 @@ +local IdentityLayer = nerv.class('nerv.IdentityLayer', 'nerv.Layer') + +function IdentityLayer:__init(id, global_conf, layer_conf) + nerv.Layer.__init(self, id, global_conf, layer_conf) + self:check_dim_len(1, 1) + if self.dim_in[1] ~= self.dim_out[1] then + nerv.error('mismatching dimensions of input and output') + end +end + +function IdentityLayer:init() +end + +function IdentityLayer:batch_resize() +end + +function IdentityLayer:propagate(input, output) + output[1]:copy_from(input[1]) +end + +function IdentityLayer:back_propagate(bp_err, next_bp_err) + next_bp_err[1]:copy_from(bp_err[1]) +end + +function IdentityLayer:update() +end + +function IdentityLayer:get_params() + return nerv.ParamRepo({}, self.loc_type) +end diff --git a/nerv/layer/init.lua b/nerv/layer/init.lua index 146ad8c..475ef62 100644 --- a/nerv/layer/init.lua +++ b/nerv/layer/init.lua @@ -85,6 +85,14 @@ function Layer:get_dim() return self.dim_in, self.dim_out end +function Layer:set_attr(name, value) + self[name] = value +end + +function Layer:get_sublayer(id) + nerv.error('primitive layer does not have sublayers') +end + function Layer:find_param(plist, lconf, gconf, p_type, p_dim) if type(plist) == "string" then plist = {plist} @@ -119,6 +127,7 @@ function Layer:find_param(plist, lconf, gconf, p_type, p_dim) return p end +nerv.include('graph.lua') nerv.include('affine.lua') nerv.include('sigmoid.lua') nerv.include('tanh.lua') @@ -133,6 +142,9 @@ nerv.include('lstm.lua') nerv.include('lstm_gate.lua') nerv.include('dropout.lua') nerv.include('gru.lua') +nerv.include('rnn.lua') +nerv.include('duplicate.lua') +nerv.include('identity.lua') -- The following lines are for backward compatibility, and will be removed in -- the future. The use of these names are deprecated. diff --git a/nerv/layer/lstm.lua b/nerv/layer/lstm.lua index d4c9212..641d5dc 100644 --- a/nerv/layer/lstm.lua +++ b/nerv/layer/lstm.lua @@ -8,7 +8,7 @@ function LSTMLayer:__init(id, global_conf, layer_conf) -- prepare a DAGLayer to hold the lstm structure local pr = layer_conf.pr if pr == nil then - pr = nerv.ParamRepo(nil, self.loc_type) + pr = nerv.ParamRepo({}, self.loc_type) end local function ap(str) @@ -18,47 +18,47 @@ function LSTMLayer:__init(id, global_conf, layer_conf) local dout1, dout2, dout3 = self.dim_out[1], self.dim_out[2], self.dim_out[3] local layers = { ["nerv.CombinerLayer"] = { - [ap("inputXDup")] = {{}, {dim_in = {din1}, + [ap("inputXDup")] = {dim_in = {din1}, dim_out = {din1, din1, din1, din1}, - lambda = {1}}}, + lambda = {1}}, - [ap("inputHDup")] = {{}, {dim_in = {din2}, + [ap("inputHDup")] = {dim_in = {din2}, dim_out = {din2, din2, din2, din2}, - lambda = {1}}}, + lambda = {1}}, - [ap("inputCDup")] = {{}, {dim_in = {din3}, + [ap("inputCDup")] = {dim_in = {din3}, dim_out = {din3, din3, din3}, - lambda = {1}}}, + lambda = {1}}, - [ap("mainCDup")] = {{}, {dim_in = {din3, din3}, + [ap("mainCDup")] = {dim_in = {din3, din3}, dim_out = {din3, din3, din3}, - lambda = {1, 1}}}, + lambda = {1, 1}}, }, ["nerv.AffineLayer"] = { - [ap("mainAffineL")] = {{}, {dim_in = {din1, din2}, + [ap("mainAffineL")] = {dim_in = {din1, din2}, dim_out = {dout1}, - pr = pr}}, + pr = pr}, }, ["nerv.TanhLayer"] = { - [ap("mainTanhL")] = {{}, {dim_in = {dout1}, dim_out = {dout1}}}, - [ap("outputTanhL")] = {{}, {dim_in = {dout1}, dim_out = {dout1}}}, + [ap("mainTanhL")] = {dim_in = {dout1}, dim_out = {dout1}}, + [ap("outputTanhL")] = {dim_in = {dout1}, dim_out = {dout1}}, }, ["nerv.LSTMGateLayer"] = { - [ap("forgetGateL")] = {{}, {dim_in = {din1, din2, din3}, - dim_out = {din3}, pr = pr}}, - [ap("inputGateL")] = {{}, {dim_in = {din1, din2, din3}, - dim_out = {din3}, pr = pr}}, - [ap("outputGateL")] = {{}, {dim_in = {din1, din2, din3}, - dim_out = {din3}, pr = pr}}, + [ap("forgetGateL")] = {dim_in = {din1, din2, din3}, + dim_out = {din3}, pr = pr}, + [ap("inputGateL")] = {dim_in = {din1, din2, din3}, + dim_out = {din3}, pr = pr}, + [ap("outputGateL")] = {dim_in = {din1, din2, din3}, + dim_out = {din3}, pr = pr}, }, ["nerv.ElemMulLayer"] = { - [ap("inputGMulL")] = {{}, {dim_in = {din3, din3}, - dim_out = {din3}}}, - [ap("forgetGMulL")] = {{}, {dim_in = {din3, din3}, - dim_out = {din3}}}, - [ap("outputGMulL")] = {{}, {dim_in = {din3, din3}, - dim_out = {din3}}}, + [ap("inputGMulL")] = {dim_in = {din3, din3}, + dim_out = {din3}}, + [ap("forgetGMulL")] = {dim_in = {din3, din3}, + dim_out = {din3}}, + [ap("outputGMulL")] = {dim_in = {din3, din3}, + dim_out = {din3}}, }, } @@ -114,7 +114,7 @@ end function LSTMLayer:bind_params() local pr = layer_conf.pr if pr == nil then - pr = nerv.ParamRepo(nil, self.loc_type) + pr = nerv.ParamRepo({}, self.loc_type) end self.lrepo:rebind(pr) end diff --git a/nerv/layer/rnn.lua b/nerv/layer/rnn.lua new file mode 100644 index 0000000..e59cf5b --- /dev/null +++ b/nerv/layer/rnn.lua @@ -0,0 +1,38 @@ +local RNNLayer = nerv.class('nerv.RNNLayer', 'nerv.GraphLayer') + +function RNNLayer:__init(id, global_conf, layer_conf) + nerv.Layer.__init(self, id, global_conf, layer_conf) + self:check_dim_len(1, 1) + + local din = layer_conf.dim_in[1] + local dout = layer_conf.dim_out[1] + + local pr = layer_conf.pr + if pr == nil then + pr = nerv.ParamRepo({}, self.loc_type) + end + + local layers = { + ['nerv.AffineLayer'] = { + main = {dim_in = {din, dout}, dim_out = {dout}, pr = pr}, + }, + ['nerv.SigmoidLayer'] = { + sigmoid = {dim_in = {dout}, dim_out = {dout}}, + }, + ['nerv.DuplicateLayer'] = { + dup = {dim_in = {dout}, dim_out = {dout, dout}}, + } + } + + local connections = { + {'<input>[1]', 'main[1]', 0}, + {'main[1]', 'sigmoid[1]', 0}, + {'sigmoid[1]', 'dup[1]', 0}, + {'dup[1]', 'main[2]', 1}, + {'dup[2]', '<output>[1]', 0}, + } + + self:add_prefix(layers, connections) + local layer_repo = nerv.LayerRepo(layers, pr, global_conf) + self:graph_init(layer_repo, connections) +end diff --git a/nerv/layer/sigmoid.lua b/nerv/layer/sigmoid.lua index a9f9749..5974ffc 100644 --- a/nerv/layer/sigmoid.lua +++ b/nerv/layer/sigmoid.lua @@ -3,6 +3,9 @@ local SigmoidLayer = nerv.class("nerv.SigmoidLayer", "nerv.Layer") function SigmoidLayer:__init(id, global_conf, layer_conf) nerv.Layer.__init(self, id, global_conf, layer_conf) self:check_dim_len(1, 1) + if self.dim_in[1] ~= self.dim_out[1] then + nerv.error("mismatching dimensions of input and output") + end end function SigmoidLayer:bind_params() @@ -10,9 +13,6 @@ function SigmoidLayer:bind_params() end function SigmoidLayer:init() - if self.dim_in[1] ~= self.dim_out[1] then - nerv.error("mismatching dimensions of input and output") - end end function SigmoidLayer:batch_resize(batch_size) |