diff options
Diffstat (limited to 'nerv/layer')
-rw-r--r-- | nerv/layer/affine_recurrent.lua | 80 | ||||
-rw-r--r-- | nerv/layer/gate_fff.lua | 73 | ||||
-rw-r--r-- | nerv/layer/gru.lua | 2 | ||||
-rw-r--r-- | nerv/layer/init.lua | 9 |
4 files changed, 8 insertions, 156 deletions
diff --git a/nerv/layer/affine_recurrent.lua b/nerv/layer/affine_recurrent.lua deleted file mode 100644 index fd6f38f..0000000 --- a/nerv/layer/affine_recurrent.lua +++ /dev/null @@ -1,80 +0,0 @@ -local Recurrent = nerv.class('nerv.AffineRecurrentLayer', 'nerv.Layer') - ---id: string ---global_conf: table ---layer_conf: table ---Get Parameters -function Recurrent:__init(id, global_conf, layer_conf) - self.id = id - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self.gconf = global_conf - self.log_pre = self.id .. "[LOG]" - - self.bp = self:find_param("bp", layer_conf, global_conf, nerv.BiasParam, {1, self.dim_out[1]}) --layer_conf.bp - self.ltp_hh = self:find_param("ltphh", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[2], self.dim_out[1]}) --layer_conf.ltp_hh --from hidden to hidden - self.ltp_ih = self:find_param("ltpih", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[1], self.dim_out[1]}) --layer_conf.ltp_hh --from hidden to hidden - - self:check_dim_len(2, 1) - self.direct_update = layer_conf.direct_update - - self.clip = layer_conf.clip --clip error in back_propagate - if self.clip ~= nil then - nerv.info("%s creating, will clip the error by %f", self.log_pre, self.clip) - end -end - ---Check parameter -function Recurrent:init(batch_size) - if self.ltp_hh.trans:ncol() ~= self.bp.trans:ncol() or - self.ltp_ih.trans:ncol() ~= self.bp.trans:ncol() then - nerv.error("mismatching dimensions of ltp and bp") - end - if self.dim_in[1] ~= self.ltp_ih.trans:nrow() or - self.dim_in[2] ~= self.ltp_hh.trans:nrow() then - nerv.error("mismatching dimensions of ltp and input") - end - if (self.dim_out[1] ~= self.bp.trans:ncol()) then - nerv.error("mismatching dimensions of bp and output") - end - - self.ltp_hh:train_init() - self.ltp_ih:train_init() - self.bp:train_init() -end - -function Recurrent:batch_resize(batch_size) - -- do nothing -end - -function Recurrent:update(bp_err, input, output) - self.ltp_ih:update_by_err_input(bp_err[1], input[1]) - self.ltp_hh:update_by_err_input(bp_err[1], input[2]) - self.bp:update_by_gradient(bp_err[1]:colsum()) -end - -function Recurrent:propagate(input, output) - output[1]:mul(input[1], self.ltp_ih.trans, 1.0, 0.0, 'N', 'N') - output[1]:mul(input[2], self.ltp_hh.trans, 1.0, 1.0, 'N', 'N') - output[1]:add_row(self.bp.trans, 1.0) -end - -function Recurrent:back_propagate(bp_err, next_bp_err, input, output) - next_bp_err[1]:mul(bp_err[1], self.ltp_ih.trans, 1.0, 0.0, 'N', 'T') - next_bp_err[2]:mul(bp_err[1], self.ltp_hh.trans, 1.0, 0.0, 'N', 'T') - --[[ - for i = 0, next_bp_err[2]:nrow() - 1 do - for j = 0, next_bp_err[2]:ncol() - 1 do - if (next_bp_err[2][i][j] > 10) then next_bp_err[2][i][j] = 10 end - if (next_bp_err[2][i][j] < -10) then next_bp_err[2][i][j] = -10 end - end - end - ]]-- - if self.clip ~= nil then - next_bp_err[2]:clip(-self.clip, self.clip) - end -end - -function Recurrent:get_params() - return nerv.ParamRepo({self.ltp_ih, self.ltp_hh, self.bp}) -end diff --git a/nerv/layer/gate_fff.lua b/nerv/layer/gate_fff.lua deleted file mode 100644 index 6082e27..0000000 --- a/nerv/layer/gate_fff.lua +++ /dev/null @@ -1,73 +0,0 @@ -local GateFFFLayer = nerv.class('nerv.GateFLayer', 'nerv.Layer') --Full matrix gate - -function GateFFFLayer:__init(id, global_conf, layer_conf) - self.id = id - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self.gconf = global_conf - - for i = 1, #self.dim_in do - self["ltp" .. i] = self:find_param("ltp" .. i, layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[i], self.dim_out[1]}) --layer_conf.ltp - end - self.bp = self:find_param("bp", layer_conf, global_conf, nerv.BiasParam, {1, self.dim_out[1]})--layer_conf.bp - - self:check_dim_len(-1, 1) --accept multiple inputs -end - -function GateFFFLayer:init(batch_size) - for i = 1, #self.dim_in do - if self["ltp" .. i].trans:ncol() ~= self.bp.trans:ncol() then - nerv.error("mismatching dimensions of linear transform and bias paramter") - end - if self.dim_in[i] ~= self["ltp" .. i].trans:nrow() then - nerv.error("mismatching dimensions of linear transform parameter and input") - end - self["ltp"..i]:train_init() - end - - if self.dim_out[1] ~= self.ltp1.trans:ncol() then - nerv.error("mismatching dimensions of linear transform parameter and output") - end - self.bp:train_init() - self.err_bakm = self.gconf.cumat_type(batch_size, self.dim_out[1]) -end - -function GateFFFLayer:batch_resize(batch_size) - if self.err_m:nrow() ~= batch_size then - self.err_bakm = self.gconf.cumat_type(batch_size, self.dim_out[1]) - end -end - -function GateFFFLayer:propagate(input, output) - -- apply linear transform - output[1]:mul(input[1], self.ltp1.trans, 1.0, 0.0, 'N', 'N') - for i = 2, #self.dim_in do - output[1]:mul(input[i], self["ltp" .. i].trans, 1.0, 1.0, 'N', 'N') - end - -- add bias - output[1]:add_row(self.bp.trans, 1.0) - output[1]:sigmoid(output[1]) -end - -function GateFFFLayer:back_propagate(bp_err, next_bp_err, input, output) - self.err_bakm:sigmoid_grad(bp_err[1], output[1]) - for i = 1, #self.dim_in do - next_bp_err[i]:mul(self.err_bakm, self["ltp" .. i].trans, 1.0, 0.0, 'N', 'T') - end -end - -function GateFFFLayer:update(bp_err, input, output) - self.err_bakm:sigmoid_grad(bp_err[1], output[1]) - for i = 1, #self.dim_in do - self["ltp" .. i]:update_by_err_input(self.err_bakm, input[i]) - end - self.bp:update_by_gradient(self.err_bakm:colsum()) -end - -function GateFFFLayer:get_params() - local pr = nerv.ParamRepo({self.bp}) - for i = 1, #self.dim_in do - pr:add(self["ltp" .. i].id, self["ltp" .. i]) - end - return pr -end diff --git a/nerv/layer/gru.lua b/nerv/layer/gru.lua index 2162e28..e81d21a 100644 --- a/nerv/layer/gru.lua +++ b/nerv/layer/gru.lua @@ -48,7 +48,7 @@ function GRULayer:__init(id, global_conf, layer_conf) ["nerv.TanhLayer"] = { [ap("mainTanhL")] = {{}, {dim_in = {dout1}, dim_out = {dout1}}}, }, - ["nerv.GateFLayer"] = { + ["nerv.LSTMGateLayer"] = { [ap("resetGateL")] = {{}, {dim_in = {din1, din2}, dim_out = {din2}, pr = pr}}, diff --git a/nerv/layer/init.lua b/nerv/layer/init.lua index 6b7a1d7..54f33ae 100644 --- a/nerv/layer/init.lua +++ b/nerv/layer/init.lua @@ -109,11 +109,16 @@ nerv.include('bias.lua') nerv.include('window.lua') nerv.include('mse.lua') nerv.include('combiner.lua') -nerv.include('affine_recurrent.lua') nerv.include('softmax.lua') nerv.include('elem_mul.lua') -nerv.include('gate_fff.lua') nerv.include('lstm.lua') nerv.include('lstm_gate.lua') nerv.include('dropout.lua') nerv.include('gru.lua') + +-- The following lines are for backward compatibility, and will be removed in +-- the future. The use of these names are deprecated. +nerv.DropoutLayerT = nerv.DropoutLayer +nerv.GRULayerT = nerv.GRULayer +nerv.LSTMLayerT = nerv.LSTMLayer +nerv.SoftmaxCELayerT = nerv.SoftmaxCELayer |