aboutsummaryrefslogtreecommitdiff
path: root/nerv/layer
diff options
context:
space:
mode:
Diffstat (limited to 'nerv/layer')
-rw-r--r--nerv/layer/affine.lua75
-rw-r--r--nerv/layer/init.lua2
-rw-r--r--nerv/layer/lstm.lua55
-rw-r--r--nerv/layer/lstm_gate.lua97
-rw-r--r--nerv/layer/lstmp.lua61
-rw-r--r--nerv/layer/projection.lua70
-rw-r--r--nerv/layer/rnn.lua15
7 files changed, 131 insertions, 244 deletions
diff --git a/nerv/layer/affine.lua b/nerv/layer/affine.lua
index 16250fd..b68cf3d 100644
--- a/nerv/layer/affine.lua
+++ b/nerv/layer/affine.lua
@@ -48,6 +48,10 @@ function MatrixParam:_update(alpha, beta)
-- momentum gain
local mmt_gain = 1.0 / (1.0 - gconf.momentum)
local n = gconf.batch_size * mmt_gain
+ -- clip gradient
+ if gconf.clip then
+ self.correction_acc:clip(-gconf.clip, gconf.clip)
+ end
-- perform update
if gconf.momentum > 0 then
self.correction:add(self.correction, self.correction_acc, gconf.momentum, 1.0)
@@ -87,7 +91,11 @@ local AffineLayer = nerv.class('nerv.AffineLayer', 'nerv.Layer')
-- @param global_conf see `self.gconf` of `nerv.Layer.__init`
-- @param layer_conf a table providing with settings dedicated for the layer,
-- for `layer_conf` fields that are shared by all layers, see
--- `nerv.Layer.__init`. The affine layer requires parameters to be bound, the
+-- `nerv.Layer.__init`. This fields can be specified:
+-- * `activation`: the type of the activation function layer, also known as \sigma in \sigma(Wx + b). The activation function layer must gurantee not use parameter `input` in its `back_propagate` function. Default value none (no activation function).
+-- * `no_bias`: a bool value indicates use bias parameter or not. Default value false.
+-- * `param_type`: a string table has the same length with `dim_in`, indicates the parameter type for every input. 'D' for diagonal weight matrix, 'N' for normal weight matrix. Default 'N' for every input.
+-- The affine layer requires parameters to be bound, the
-- following parameter names will be looked up while binding:
--
-- * `ltp`: the linear transformation parameter, also known as the weight matrix, W in Wx + b
@@ -96,6 +104,11 @@ local AffineLayer = nerv.class('nerv.AffineLayer', 'nerv.Layer')
function AffineLayer:__init(id, global_conf, layer_conf)
nerv.Layer.__init(self, id, global_conf, layer_conf)
self:check_dim_len(-1, 1) -- exactly one output, allow multiple inputs
+ self.param_type = layer_conf.param_type or table.vector(#self.dim_in, 'N')
+ if layer_conf.activation then
+ self.activation = layer_conf.activation('', global_conf, {dim_in = {self.dim_out[1]}, dim_out = {self.dim_out[1]}})
+ end
+ self.no_bias = layer_conf.no_bias
self:bind_params()
end
@@ -108,24 +121,29 @@ function AffineLayer:bind_params()
self["ltp" .. i] = self:find_param(pid_list, lconf, self.gconf,
nerv.LinearTransParam,
{self.dim_in[i], self.dim_out[1]})
+ if self.param_type[i] == 'D' then
+ self['ltp' .. i].trans:diagonalize()
+ end
local no_update = lconf["no_update_ltp" .. i]
if (no_update ~= nil) and no_update or lconf.no_update_all then
self["ltp" .. i].no_update = true
end
end
self.ltp = self.ltp1 -- alias of ltp1
- self.bp = self:find_param("bp", lconf, self.gconf,
- nerv.BiasParam,
- {1, self.dim_out[1]},
- nerv.Param.gen_zero)
- local no_update = lconf["no_update_bp"]
- if (no_update ~= nil) and no_update or lconf.no_update_all then
- self.bp.no_update = true
+ if not self.no_bias then
+ self.bp = self:find_param("bp", lconf, self.gconf,
+ nerv.BiasParam,
+ {1, self.dim_out[1]},
+ nerv.Param.gen_zero)
+ local no_update = lconf["no_update_bp"]
+ if (no_update ~= nil) and no_update or lconf.no_update_all then
+ self.bp.no_update = true
+ end
end
end
function AffineLayer:init(batch_size)
- if self.dim_out[1] ~= self.bp.trans:ncol() then
+ if not self.no_bias and self.dim_out[1] ~= self.bp.trans:ncol() then
nerv.error("mismatching dimensions of linear transform and bias paramter")
end
for i = 1, #self.dim_in do
@@ -137,7 +155,13 @@ function AffineLayer:init(batch_size)
end
self["ltp" .. i]:train_init()
end
- self.bp:train_init()
+ if not self.no_bias then
+ self.bp:train_init()
+ end
+ if self.activation then
+ self.bak_mat = self.mat_type(batch_size, self.dim_out[1])
+ self.bak_mat:fill(0)
+ end
end
function AffineLayer:batch_resize(batch_size)
@@ -147,26 +171,43 @@ end
function AffineLayer:update()
for i = 1, #self.dim_in do
self["ltp" .. i]:update_by_err_input()
+ if self.param_type[i] == 'D' then
+ self['ltp' .. i].trans:diagonalize()
+ end
+ end
+ if not self.no_bias then
+ self.bp:update_by_gradient()
end
- self.bp:update_by_gradient()
end
function AffineLayer:propagate(input, output)
+ local result = self.activation and self.bak_mat or output[1]
-- apply linear transform
- output[1]:mul(input[1], self.ltp1.trans, 1.0, 0.0, 'N', 'N')
+ result:mul(input[1], self.ltp1.trans, 1.0, 0.0, 'N', 'N')
for i = 2, #self.dim_in do
- output[1]:mul(input[i], self["ltp" .. i].trans, 1.0, 1.0, 'N', 'N')
+ result:mul(input[i], self["ltp" .. i].trans, 1.0, 1.0, 'N', 'N')
end
-- add bias
- output[1]:add_row(self.bp.trans, 1.0)
+ if not self.no_bias then
+ result:add_row(self.bp.trans, 1.0)
+ end
+ if self.activation then
+ self.activation:propagate({result}, output)
+ end
end
function AffineLayer:back_propagate(bp_err, next_bp_err, input, output)
+ local result = self.activation and self.bak_mat or bp_err[1]
+ if self.activation then
+ self.activation:back_propagate(bp_err, {result}, {result}, output)
+ end
for i = 1, #self.dim_in do
- next_bp_err[i]:mul(bp_err[1], self["ltp" .. i].trans, 1.0, 0.0, 'N', 'T')
- self["ltp" .. i]:back_propagate_by_err_input(bp_err[1], input[i])
+ next_bp_err[i]:mul(result, self["ltp" .. i].trans, 1.0, 0.0, 'N', 'T')
+ self["ltp" .. i]:back_propagate_by_err_input(result, input[i])
+ end
+ if not self.no_bias then
+ self.bp:back_propagate_by_gradient(result:colsum())
end
- self.bp:back_propagate_by_gradient(bp_err[1]:colsum())
end
function AffineLayer:get_params()
diff --git a/nerv/layer/init.lua b/nerv/layer/init.lua
index d175d02..054784b 100644
--- a/nerv/layer/init.lua
+++ b/nerv/layer/init.lua
@@ -272,13 +272,11 @@ nerv.include('combiner.lua')
nerv.include('softmax.lua')
nerv.include('elem_mul.lua')
nerv.include('lstm.lua')
-nerv.include('lstm_gate.lua')
nerv.include('dropout.lua')
nerv.include('gru.lua')
nerv.include('rnn.lua')
nerv.include('duplicate.lua')
nerv.include('identity.lua')
-nerv.include('projection.lua')
nerv.include('lstmp.lua')
nerv.include('relu.lua')
diff --git a/nerv/layer/lstm.lua b/nerv/layer/lstm.lua
index 3de3453..5d73ad2 100644
--- a/nerv/layer/lstm.lua
+++ b/nerv/layer/lstm.lua
@@ -2,9 +2,12 @@ local LSTMLayer = nerv.class('nerv.LSTMLayer', 'nerv.GraphLayer')
function LSTMLayer:__init(id, global_conf, layer_conf)
nerv.Layer.__init(self, id, global_conf, layer_conf)
- self:check_dim_len(1, 1)
+ self:check_dim_len(-1, 1)
+ if #self.dim_in == 0 then
+ nerv.error('LSTM layer %s has no input', self.id)
+ end
- local din = layer_conf.dim_in[1]
+ local din = layer_conf.dim_in
local dout = layer_conf.dim_out[1]
local pr = layer_conf.pr
@@ -17,48 +20,51 @@ function LSTMLayer:__init(id, global_conf, layer_conf)
mainCombine = {dim_in = {dout, dout}, dim_out = {dout}, lambda = {1, 1}},
},
['nerv.DuplicateLayer'] = {
- inputDup = {dim_in = {din}, dim_out = {din, din, din, din}},
outputDup = {dim_in = {dout}, dim_out = {dout, dout, dout, dout, dout}},
cellDup = {dim_in = {dout}, dim_out = {dout, dout, dout, dout, dout}},
},
['nerv.AffineLayer'] = {
- mainAffine = {dim_in = {din, dout}, dim_out = {dout}, pr = pr},
+ mainAffine = {dim_in = table.connect({dout}, din), dim_out = {dout}, pr = pr},
+ forgetGate = {dim_in = table.connect({dout, dout}, din), dim_out = {dout},
+ param_type = table.connect({'N', 'D'}, table.vector(#din, 'N')), pr = pr, activation = nerv.SigmoidLayer},
+ inputGate = {dim_in = table.connect({dout, dout}, din), dim_out = {dout},
+ param_type = table.connect({'N', 'D'}, table.vector(#din, 'N')), pr = pr, activation = nerv.SigmoidLayer},
+ outputGate = {dim_in = table.connect({dout, dout}, din), dim_out = {dout},
+ param_type = table.connect({'N', 'D'}, table.vector(#din, 'N')), pr = pr, activation = nerv.SigmoidLayer},
},
['nerv.TanhLayer'] = {
mainTanh = {dim_in = {dout}, dim_out = {dout}},
outputTanh = {dim_in = {dout}, dim_out = {dout}},
},
- ['nerv.LSTMGateLayer'] = {
- forgetGate = {dim_in = {din, dout, dout}, dim_out = {dout}, param_type = {'N', 'N', 'D'}, pr = pr},
- inputGate = {dim_in = {din, dout, dout}, dim_out = {dout}, param_type = {'N', 'N', 'D'}, pr = pr},
- outputGate = {dim_in = {din, dout, dout}, dim_out = {dout}, param_type = {'N', 'N', 'D'}, pr = pr},
- },
['nerv.ElemMulLayer'] = {
inputGateMul = {dim_in = {dout, dout}, dim_out = {dout}},
forgetGateMul = {dim_in = {dout, dout}, dim_out = {dout}},
outputGateMul = {dim_in = {dout, dout}, dim_out = {dout}},
},
}
+ for i = 1, #din do
+ layers['nerv.DuplicateLayer']['inputDup' .. i] = {dim_in = {din[i]}, dim_out = {din[i], din[i], din[i], din[i]}}
+ end
local connections = {
-- lstm input
- {'<input>[1]', 'inputDup[1]', 0},
+ --{'<input>[1 .. n]', 'inputDup(1 .. n)[1]', 0},
-- input gate
- {'inputDup[1]', 'inputGate[1]', 0},
- {'outputDup[1]', 'inputGate[2]', 1},
- {'cellDup[1]', 'inputGate[3]', 1},
+ {'outputDup[1]', 'inputGate[1]', 1},
+ {'cellDup[1]', 'inputGate[2]', 1},
+ --{'inputDup(1 .. n)[1]', 'inputGate[3 .. n + 2]', 0},
-- forget gate
- {'inputDup[2]', 'forgetGate[1]', 0},
- {'outputDup[2]', 'forgetGate[2]', 1},
- {'cellDup[2]', 'forgetGate[3]', 1},
+ {'outputDup[2]', 'forgetGate[1]', 1},
+ {'cellDup[2]', 'forgetGate[2]', 1},
+ --{'inputDup(1 .. n)[2]', 'forgetGate[3 .. n + 2]', 0},
-- lstm cell
{'forgetGate[1]', 'forgetGateMul[1]', 0},
{'cellDup[3]', 'forgetGateMul[2]', 1},
- {'inputDup[3]', 'mainAffine[1]', 0},
- {'outputDup[3]', 'mainAffine[2]', 1},
+ {'outputDup[3]', 'mainAffine[1]', 1},
+ --{'inputDup(1 .. n)[3]', 'mainAffine[2 .. n + 1]', 0},
{'mainAffine[1]', 'mainTanh[1]', 0},
{'inputGate[1]', 'inputGateMul[1]', 0},
{'mainTanh[1]', 'inputGateMul[2]', 0},
@@ -67,9 +73,9 @@ function LSTMLayer:__init(id, global_conf, layer_conf)
{'mainCombine[1]', 'cellDup[1]', 0},
-- forget gate
- {'inputDup[4]', 'outputGate[1]', 0},
- {'outputDup[4]', 'outputGate[2]', 1},
- {'cellDup[4]', 'outputGate[3]', 0},
+ {'outputDup[4]', 'outputGate[1]', 1},
+ {'cellDup[4]', 'outputGate[2]', 0},
+ --{'inputDup(1 .. n)[4]', 'outputGate[2 .. n + 1]', 0},
-- lstm output
{'cellDup[5]', 'outputTanh[1]', 0},
@@ -78,6 +84,13 @@ function LSTMLayer:__init(id, global_conf, layer_conf)
{'outputGateMul[1]', 'outputDup[1]', 0},
{'outputDup[5]', '<output>[1]', 0},
}
+ for i = 1, #din do
+ table.insert(connections, {'<input>[' .. i .. ']', 'inputDup' .. i .. '[1]', 0})
+ table.insert(connections, {'inputDup' .. i .. '[1]', 'inputGate[' .. (i + 2) .. ']', 0})
+ table.insert(connections, {'inputDup' .. i .. '[2]', 'forgetGate[' .. (i + 2) .. ']', 0})
+ table.insert(connections, {'inputDup' .. i .. '[3]', 'mainAffine[' .. (i + 1) .. ']', 0})
+ table.insert(connections, {'inputDup' .. i .. '[4]', 'outputGate[' .. (i + 2) .. ']', 0})
+ end
self:add_prefix(layers, connections)
local layer_repo = nerv.LayerRepo(layers, pr, global_conf)
diff --git a/nerv/layer/lstm_gate.lua b/nerv/layer/lstm_gate.lua
deleted file mode 100644
index 39a3ff7..0000000
--- a/nerv/layer/lstm_gate.lua
+++ /dev/null
@@ -1,97 +0,0 @@
-local LSTMGateLayer = nerv.class('nerv.LSTMGateLayer', 'nerv.Layer')
--- NOTE: this is a full matrix gate
-
-function LSTMGateLayer:__init(id, global_conf, layer_conf)
- nerv.Layer.__init(self, id, global_conf, layer_conf)
- self.param_type = layer_conf.param_type
- self:check_dim_len(-1, 1) --accept multiple inputs
- self:bind_params()
-end
-
-function LSTMGateLayer:bind_params()
- local lconf = self.lconf
- lconf.no_update_ltp1 = lconf.no_update_ltp1 or lconf.no_update_ltp
- for i = 1, #self.dim_in do
- local pid = "ltp" .. i
- local pid_list = i == 1 and {pid, "ltp"} or pid
- self["ltp" .. i] = self:find_param(pid_list, lconf, self.gconf,
- nerv.LinearTransParam,
- {self.dim_in[i], self.dim_out[1]})
- if self.param_type[i] == 'D' then
- self["ltp" .. i].trans:diagonalize()
- end
- local no_update = lconf["no_update_ltp" .. i]
- if (no_update ~= nil) and no_update or lconf.no_update_all then
- self["ltp" .. i].no_update = true
- end
- end
- self.ltp = self.ltp1 -- alias of ltp1
- self.bp = self:find_param("bp", lconf, self.gconf,
- nerv.BiasParam, {1, self.dim_out[1]},
- nerv.Param.gen_zero)
- local no_update = lconf["no_update_bp"]
- if (no_update ~= nil) and no_update or lconf.no_update_all then
- self.bp.no_update = true
- end
-end
-
-function LSTMGateLayer:init(batch_size)
- if self.dim_out[1] ~= self.bp.trans:ncol() then
- nerv.error("mismatching dimensions of linear transform and bias paramter")
- end
- for i = 1, #self.dim_in do
- if self.dim_in[i] ~= self["ltp" .. i].trans:nrow() then
- nerv.error("mismatching dimensions of linear transform parameter and input")
- end
- if self.dim_out[1] ~= self["ltp" .. i].trans:ncol() then
- nerv.error("mismatching dimensions of linear transform parameter and output")
- end
- self["ltp" .. i]:train_init()
- end
- self.bp:train_init()
- self.err_bakm = self.mat_type(batch_size, self.dim_out[1])
-end
-
-function LSTMGateLayer:batch_resize(batch_size)
- if self.err_m:nrow() ~= batch_size then
- self.err_bakm = self.mat_type(batch_size, self.dim_out[1])
- end
-end
-
-function LSTMGateLayer:propagate(input, output)
- -- apply linear transform
- output[1]:mul(input[1], self.ltp1.trans, 1.0, 0.0, 'N', 'N')
- for i = 2, #self.dim_in do
- output[1]:mul(input[i], self["ltp" .. i].trans, 1.0, 1.0, 'N', 'N')
- end
- -- add bias
- output[1]:add_row(self.bp.trans, 1.0)
- output[1]:sigmoid(output[1])
-end
-
-function LSTMGateLayer:back_propagate(bp_err, next_bp_err, input, output)
- self.err_bakm:sigmoid_grad(bp_err[1], output[1])
- for i = 1, #self.dim_in do
- next_bp_err[i]:mul(self.err_bakm, self["ltp" .. i].trans, 1.0, 0.0, 'N', 'T')
- self["ltp" .. i]:back_propagate_by_err_input(self.err_bakm, input[i])
- end
- self.bp:back_propagate_by_gradient(self.err_bakm:colsum())
-end
-
-function LSTMGateLayer:update()
- for i = 1, #self.dim_in do
- self["ltp" .. i]:update_by_err_input()
- if self.param_type[i] == 'D' then
- self["ltp" .. i].trans:diagonalize()
- end
- end
- self.bp:update_by_gradient()
-end
-
-function LSTMGateLayer:get_params()
- local pr = nerv.ParamRepo({self.bp}, self.loc_type)
- for i = 1, #self.dim_in do
- pr:add(self["ltp" .. i])
- end
- return pr
-end
diff --git a/nerv/layer/lstmp.lua b/nerv/layer/lstmp.lua
index bbb2091..49c9516 100644
--- a/nerv/layer/lstmp.lua
+++ b/nerv/layer/lstmp.lua
@@ -2,9 +2,12 @@ local LSTMPLayer = nerv.class('nerv.LSTMPLayer', 'nerv.GraphLayer')
function LSTMPLayer:__init(id, global_conf, layer_conf)
nerv.Layer.__init(self, id, global_conf, layer_conf)
- self:check_dim_len(1, 1)
+ self:check_dim_len(-1, 1)
+ if #self.dim_in == 0 then
+ nerv.error('LSTMP layer %s has no input', self.id)
+ end
- local din = layer_conf.dim_in[1]
+ local din = layer_conf.dim_in
local dcell = layer_conf.cell_dim
local dout = layer_conf.dim_out[1]
@@ -18,51 +21,52 @@ function LSTMPLayer:__init(id, global_conf, layer_conf)
mainCombine = {dim_in = {dcell, dcell}, dim_out = {dcell}, lambda = {1, 1}},
},
['nerv.DuplicateLayer'] = {
- inputDup = {dim_in = {din}, dim_out = {din, din, din, din}},
outputDup = {dim_in = {dout}, dim_out = {dout, dout, dout, dout, dout}},
cellDup = {dim_in = {dcell}, dim_out = {dcell, dcell, dcell, dcell, dcell}},
},
['nerv.AffineLayer'] = {
- mainAffine = {dim_in = {din, dout}, dim_out = {dcell}, pr = pr},
+ mainAffine = {dim_in = table.connect({dout}, din), dim_out = {dcell}, pr = pr},
+ forgetGate = {dim_in = table.connect({dout, dcell}, din), dim_out = {dcell},
+ param_type = table.connect({'N', 'D'}, table.vector(#din, 'N')), pr = pr, activation = nerv.SigmoidLayer},
+ inputGate = {dim_in = table.connect({dout, dcell}, din), dim_out = {dcell},
+ param_type = table.connect({'N', 'D'}, table.vector(#din, 'N')), pr = pr, activation = nerv.SigmoidLayer},
+ outputGate = {dim_in = table.connect({dout, dcell}, din), dim_out = {dcell},
+ param_type = table.connect({'N', 'D'}, table.vector(#din, 'N')), pr = pr, activation = nerv.SigmoidLayer},
+ projection = {dim_in = {dcell}, dim_out = {dout}, pr = pr, no_bias = true},
},
['nerv.TanhLayer'] = {
mainTanh = {dim_in = {dcell}, dim_out = {dcell}},
outputTanh = {dim_in = {dcell}, dim_out = {dcell}},
},
- ['nerv.LSTMGateLayer'] = {
- forgetGate = {dim_in = {din, dout, dcell}, dim_out = {dcell}, param_type = {'N', 'N', 'D'}, pr = pr},
- inputGate = {dim_in = {din, dout, dcell}, dim_out = {dcell}, param_type = {'N', 'N', 'D'}, pr = pr},
- outputGate = {dim_in = {din, dout, dcell}, dim_out = {dcell}, param_type = {'N', 'N', 'D'}, pr = pr},
- },
['nerv.ElemMulLayer'] = {
inputGateMul = {dim_in = {dcell, dcell}, dim_out = {dcell}},
forgetGateMul = {dim_in = {dcell, dcell}, dim_out = {dcell}},
outputGateMul = {dim_in = {dcell, dcell}, dim_out = {dcell}},
},
- ['nerv.ProjectionLayer'] = {
- projection = {dim_in = {dcell}, dim_out = {dout}, pr = pr},
- },
}
-
+ for i = 1, #din do
+ layers['nerv.DuplicateLayer']['inputDup' .. i] = {dim_in = {din[i]}, dim_out = {din[i], din[i], din[i], din[i]}}
+ end
+
local connections = {
-- lstm input
- {'<input>[1]', 'inputDup[1]', 0},
+ --{'<input>[1 .. n]', 'inputDup(1 .. n)[1]', 0},
-- input gate
- {'inputDup[1]', 'inputGate[1]', 0},
- {'outputDup[1]', 'inputGate[2]', 1},
- {'cellDup[1]', 'inputGate[3]', 1},
+ {'outputDup[1]', 'inputGate[1]', 1},
+ {'cellDup[1]', 'inputGate[2]', 1},
+ --{'inputDup(1 .. n)[1]', 'inputGate[3 .. n + 2]', 0},
-- forget gate
- {'inputDup[2]', 'forgetGate[1]', 0},
- {'outputDup[2]', 'forgetGate[2]', 1},
- {'cellDup[2]', 'forgetGate[3]', 1},
+ {'outputDup[2]', 'forgetGate[1]', 1},
+ {'cellDup[2]', 'forgetGate[2]', 1},
+ --{'inputDup(1 .. n)[2]', 'forgetGate[3 .. n + 2]', 0},
-- lstm cell
{'forgetGate[1]', 'forgetGateMul[1]', 0},
{'cellDup[3]', 'forgetGateMul[2]', 1},
- {'inputDup[3]', 'mainAffine[1]', 0},
- {'outputDup[3]', 'mainAffine[2]', 1},
+ {'outputDup[3]', 'mainAffine[1]', 1},
+ --{'inputDup(1 .. n)[3]', 'mainAffine[2 .. n + 1]', 0},
{'mainAffine[1]', 'mainTanh[1]', 0},
{'inputGate[1]', 'inputGateMul[1]', 0},
{'mainTanh[1]', 'inputGateMul[2]', 0},
@@ -71,9 +75,9 @@ function LSTMPLayer:__init(id, global_conf, layer_conf)
{'mainCombine[1]', 'cellDup[1]', 0},
-- forget gate
- {'inputDup[4]', 'outputGate[1]', 0},
- {'outputDup[4]', 'outputGate[2]', 1},
- {'cellDup[4]', 'outputGate[3]', 0},
+ {'outputDup[4]', 'outputGate[1]', 1},
+ {'cellDup[4]', 'outputGate[2]', 0},
+ --{'inputDup(1 .. n)[4]', 'outputGate[2 .. n + 1]', 0},
-- lstm output
{'cellDup[5]', 'outputTanh[1]', 0},
@@ -83,6 +87,13 @@ function LSTMPLayer:__init(id, global_conf, layer_conf)
{'projection[1]', 'outputDup[1]', 0},
{'outputDup[5]', '<output>[1]', 0},
}
+ for i = 1, #din do
+ table.insert(connections, {'<input>[' .. i .. ']', 'inputDup' .. i .. '[1]', 0})
+ table.insert(connections, {'inputDup' .. i .. '[1]', 'inputGate[' .. (i + 2) .. ']', 0})
+ table.insert(connections, {'inputDup' .. i .. '[2]', 'forgetGate[' .. (i + 2) .. ']', 0})
+ table.insert(connections, {'inputDup' .. i .. '[3]', 'mainAffine[' .. (i + 1) .. ']', 0})
+ table.insert(connections, {'inputDup' .. i .. '[4]', 'outputGate[' .. (i + 2) .. ']', 0})
+ end
self:add_prefix(layers, connections)
local layer_repo = nerv.LayerRepo(layers, pr, global_conf)
diff --git a/nerv/layer/projection.lua b/nerv/layer/projection.lua
deleted file mode 100644
index 077125b..0000000
--- a/nerv/layer/projection.lua
+++ /dev/null
@@ -1,70 +0,0 @@
-local ProjectionLayer = nerv.class('nerv.ProjectionLayer', 'nerv.Layer')
-
---- The constructor.
-function ProjectionLayer:__init(id, global_conf, layer_conf)
- nerv.Layer.__init(self, id, global_conf, layer_conf)
- self:check_dim_len(-1, 1) -- exactly one output, allow multiple inputs
- self:bind_params()
-end
-
-function ProjectionLayer:bind_params()
- local lconf = self.lconf
- lconf.no_update_ltp1 = lconf.no_update_ltp1 or lconf.no_update_ltp
- for i = 1, #self.dim_in do
- local pid = "ltp" .. i
- local pid_list = i == 1 and {pid, "ltp"} or pid
- self["ltp" .. i] = self:find_param(pid_list, lconf, self.gconf,
- nerv.LinearTransParam,
- {self.dim_in[i], self.dim_out[1]})
- local no_update = lconf["no_update_ltp" .. i]
- if (no_update ~= nil) and no_update or lconf.no_update_all then
- self["ltp" .. i].no_update = true
- end
- end
- self.ltp = self.ltp1 -- alias of ltp1
-end
-
-function ProjectionLayer:init(batch_size)
- for i = 1, #self.dim_in do
- if self.dim_in[i] ~= self["ltp" .. i].trans:nrow() then
- nerv.error("mismatching dimensions of linear transform parameter and input")
- end
- if self.dim_out[1] ~= self["ltp" .. i].trans:ncol() then
- nerv.error("mismatching dimensions of linear transform parameter and output")
- end
- self["ltp" .. i]:train_init()
- end
-end
-
-function ProjectionLayer:batch_resize(batch_size)
- -- do nothing
-end
-
-function ProjectionLayer:update()
- for i = 1, #self.dim_in do
- self["ltp" .. i]:update_by_err_input()
- end
-end
-
-function ProjectionLayer:propagate(input, output)
- -- apply linear transform
- output[1]:mul(input[1], self.ltp1.trans, 1.0, 0.0, 'N', 'N')
- for i = 2, #self.dim_in do
- output[1]:mul(input[i], self["ltp" .. i].trans, 1.0, 1.0, 'N', 'N')
- end
-end
-
-function ProjectionLayer:back_propagate(bp_err, next_bp_err, input, output)
- for i = 1, #self.dim_in do
- next_bp_err[i]:mul(bp_err[1], self["ltp" .. i].trans, 1.0, 0.0, 'N', 'T')
- self["ltp" .. i]:back_propagate_by_err_input(bp_err[1], input[i])
- end
-end
-
-function ProjectionLayer:get_params()
- local pr = nerv.ParamRepo({self.ltp1}, self.loc_type)
- for i = 2, #self.dim_in do
- pr:add(self["ltp" .. i])
- end
- return pr
-end
diff --git a/nerv/layer/rnn.lua b/nerv/layer/rnn.lua
index fd6e753..63e0b55 100644
--- a/nerv/layer/rnn.lua
+++ b/nerv/layer/rnn.lua
@@ -4,12 +4,7 @@ function RNNLayer:__init(id, global_conf, layer_conf)
nerv.Layer.__init(self, id, global_conf, layer_conf)
self:check_dim_len(-1, 1)
if #self.dim_in == 0 then
- nerv.error('RNN Layer %s has no input', self.id)
- end
-
- self.activation = layer_conf.activation
- if self.activation == nil then
- self.activation = 'nerv.SigmoidLayer'
+ nerv.error('RNN layer %s has no input', self.id)
end
local din = layer_conf.dim_in
@@ -22,10 +17,7 @@ function RNNLayer:__init(id, global_conf, layer_conf)
local layers = {
['nerv.AffineLayer'] = {
- main = {dim_in = table.connect({dout}, din), dim_out = {dout}, pr = pr},
- },
- [self.activation] = {
- activation = {dim_in = {dout}, dim_out = {dout}},
+ main = {dim_in = table.connect({dout}, din), dim_out = {dout}, pr = pr, activation = layer_conf.activation},
},
['nerv.DuplicateLayer'] = {
duplicate = {dim_in = {dout}, dim_out = {dout, dout}},
@@ -33,8 +25,7 @@ function RNNLayer:__init(id, global_conf, layer_conf)
}
local connections = {
- {'main[1]', 'activation[1]', 0},
- {'activation[1]', 'duplicate[1]', 0},
+ {'main[1]', 'duplicate[1]', 0},
{'duplicate[1]', 'main[1]', 1},
{'duplicate[2]', '<output>[1]', 0},
}