diff options
Diffstat (limited to 'nerv/layer')
-rw-r--r-- | nerv/layer/affine.lua | 24 |
1 files changed, 13 insertions, 11 deletions
diff --git a/nerv/layer/affine.lua b/nerv/layer/affine.lua index 8b4751c..1ac4681 100644 --- a/nerv/layer/affine.lua +++ b/nerv/layer/affine.lua @@ -88,7 +88,7 @@ local AffineLayer = nerv.class('nerv.AffineLayer', 'nerv.Layer') -- @param layer_conf a table providing with settings dedicated for the layer, -- for `layer_conf` fields that are shared by all layers, see -- `nerv.Layer.__init`. This fields can be specified: --- * `activation`: the type of the activation function layer, also known as \sigma in \sigma(Wx + b). Default value none (no activation function). +-- * `activation`: the type of the activation function layer, also known as \sigma in \sigma(Wx + b). The activation function layer must gurantee not use parameter `input` in its `back_propagate` function. Default value none (no activation function). -- * `no_bias`: a bool value indicates use bias parameter or not. Default value false. -- * `param_type`: a string table has the same length with `dim_in`, indicates the parameter type for every input. 'D' for diagonal weight matrix, 'N' for normal weight matrix. Default 'N' for every input. -- The affine layer requires parameters to be bound, the @@ -99,11 +99,12 @@ local AffineLayer = nerv.class('nerv.AffineLayer', 'nerv.Layer') function AffineLayer:__init(id, global_conf, layer_conf) nerv.Layer.__init(self, id, global_conf, layer_conf) - self.param_type = layer_conf.param_type or table.vector(#self.dim_in, 'N') self:check_dim_len(-1, 1) -- exactly one output, allow multiple inputs + self.param_type = layer_conf.param_type or table.vector(#self.dim_in, 'N') if layer_conf.activation then self.activation = layer_conf.activation('', global_conf, {dim_in = {self.dim_out[1]}, dim_out = {self.dim_out[1]}}) end + self.no_bias = layer_conf.no_bias self:bind_params() end @@ -138,7 +139,7 @@ function AffineLayer:bind_params() end function AffineLayer:init(batch_size) - if self.dim_out[1] ~= self.bp.trans:ncol() then + if not self.no_bias and self.dim_out[1] ~= self.bp.trans:ncol() then nerv.error("mismatching dimensions of linear transform and bias paramter") end for i = 1, #self.dim_in do @@ -154,10 +155,8 @@ function AffineLayer:init(batch_size) self.bp:train_init() end if self.activation then - self.act_bak = self.mat_type(batch_size, self.dim_out[1]) - self.act_bak:fill(0) - self.err_bak = self.mat_type(batch_size, self.dim_out[1]) - self.err_bak:fill(0) + self.bak_mat = self.mat_type(batch_size, self.dim_out[1]) + self.bak_mat:fill(0) end end @@ -168,6 +167,9 @@ end function AffineLayer:update() for i = 1, #self.dim_in do self["ltp" .. i]:update_by_err_input() + if self.param_type[i] == 'D' then + self['ltp' .. i].trans:diagonalize() + end end if not self.no_bias then self.bp:update_by_gradient() @@ -175,7 +177,7 @@ function AffineLayer:update() end function AffineLayer:propagate(input, output) - local result = self.activation and self.act_bak or output[1] + local result = self.activation and self.bak_mat or output[1] -- apply linear transform result:mul(input[1], self.ltp1.trans, 1.0, 0.0, 'N', 'N') for i = 2, #self.dim_in do @@ -186,15 +188,15 @@ function AffineLayer:propagate(input, output) result:add_row(self.bp.trans, 1.0) end if self.activation then - self.activation:propagate({self.act_bak}, output) + self.activation:propagate({result}, output) end end function AffineLayer:back_propagate(bp_err, next_bp_err, input, output) + local result = self.activation and self.bak_mat or bp_err[1] if self.activation then - self.activation:back_propagate(bp_err, {self.err_bak}, {self.act_bak}, output) + self.activation:back_propagate(bp_err, {result}, {result}, output) end - local result = self.activation and self.err_bak or bp_err[1] for i = 1, #self.dim_in do next_bp_err[i]:mul(result, self["ltp" .. i].trans, 1.0, 0.0, 'N', 'T') self["ltp" .. i]:back_propagate_by_err_input(result, input[i]) |